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Light propagating in a nondispersive medium is accompanied by a mass density wave (MDW) of atoms set
in motion by the optical force of the field itself [Phys. Rev. A 95, 063850 (2017)]. This recent result is in
strong contrast with the approximation of fixed atoms, which assumes that atoms are fixed to their equilibrium
positions when light propagates in a medium and which is deeply rooted in the conventional electrodynamics of
continuous media. In many photonic materials, the atoms carry the majority of the total momentum of light and
their motion also gives rise to net transfer of medium mass with a light pulse. In this work we use optoelastic
continuum dynamics combining the optical force field, elasticity theory, and Newtonian mechanics to analyze
the angular momentum carried by the MDW. Our calculations are based on classical physics, but by dividing
the numerically calculated angular momenta of Laguerre-Gaussian (LG) pulses with the photon number, we can
also study the single-quantum values. We show that accounting for the MDW in the analysis of the angular
momentum gives for the field’s share of the total angular momentum of light a quantized value that is generally
a fraction of h̄. In contrast, the total angular momentum of the mass-polariton (MP) quasiparticle, which is a
coupled state of the field and the MDW, and also the elementary quantum of light in a medium, is an integer
multiple of h̄. Thus, the angular momentum of the MP has coupled field and medium components, which cannot
be separately experimentally measured. This discovery is related to the previous observation that a bare photon
including only the field part cannot propagate in a medium. The same coupling is found for orbital and spin
angular momentum components. The physical picture of the angular momentum of light emerging from our
theory is fundamentally more general than earlier theoretical models, in which the total angular momentum of
light is assumed to be carried by the electromagnetic field only or by an electronic polariton state, which also
involves dipolar electronic oscillations. These models cannot describe the MDW shift of atoms associated with
light. We simulate the MDW of LG pulses in silicon and present a schematic experimental setup for measuring
the contribution of the atomic MDW to the total angular momentum of light.

DOI: 10.1103/PhysRevA.98.033813

I. INTRODUCTION

Since the pioneering theoretical work of Allen et al. [1],
there has been rapid progress in both theoretical and exper-
imental studies of the angular momentum of light [2–18]. In
the groundbreaking works, the angular momentum of light has
been split into orbital angular momentum (OAM) and spin an-
gular momentum (SAM) [19–21]. The OAM is related to the
helical phasefronts of optical vortex beams and it is described
by the vortex topological charge l ∈ {0,±1,±2, . . . }, and the
SAM is related to the circular polarization of the wave and it
is described by the polarization helicity σ ∈ [−1, 1] [22,23].

The photon angular momentum has been considered both
in vacuum and in various photonic materials also in the
near-field regime [24–26]. Advances have been made also in
the understanding of the topological and phase properties of
light [22,27–33]. Interestingly, the recently developed mass-
polariton (MP) theory of light [34,35] shows that, in many
photonic materials, the majority of the momentum of light
is carried by the medium atoms. This theory questions the
conventional approximation of fixed atomic positions in the
description of propagation of light in a medium. Thus, a
question arises: what happens in a nondispersive dielectric
when the total angular momentum of light is shared between
the electromagnetic field and the medium atoms moving under
the influence of the optical force field?

The MP theory of light shows that a light pulse propagating
in a medium drives forwards an atomic mass density wave
(MDW) [34,35]. The existence of the MDW that propagates
with a light pulse follows directly from the classical op-
toelastic continuum dynamics (OCD), which combines the
well-known optical force density and the elasticity theory with
the Newtonian dynamics of the medium. In the single-photon
picture, the coupling of the electromagnetic field to the atomic
MDW gives rise to MP quasiparticles, which are covariant
coupled states of the field and matter.

The MP quasiparticles carry a total momentum of the
Minkowski form pMP = nh̄ω/c, where n is the refractive
index of the nondispersive medium, h̄ is the reduced Planck
constant, ω is the angular frequency, and c is the speed
of light in vacuum [35]. The total MP momentum is split
between the electromagnetic field and the MDW so that the
share of the field corresponds to the Abraham momentum
pfield = h̄ω/(nc) and the MDW carries the difference of the
Minkowski and Abraham momenta pMDW = pMP − pfield.

In this work we show that the MP theory of light can and
must be used to describe the angular momentum of light in
nondispersive media. We will also show that sharing of the
angular momentum between the field and matter is related to
fundamental quantum properties of light. A single quantum
of circularly polarized light is well known to carry an angular
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momentum h̄. Here we will show that, e.g., in the case of
silicon and assuming a wavelength of λ0 = 1550 nm, it is
shared between the field (0.083h̄) and the MDW (0.917h̄).
Since both these partial angular momenta are fractions of h̄,
also a fundamental question arises regarding the quantization
of light in a medium. Our results strongly suggest that only
the quantum of the coupled state of the electromagnetic
field and the medium has a real physical meaning. We also
present a schematic experimental setup for the measurement
of the azimuthal atomic displacements related to the angular
momentum transfer of the MDW in optical fibers.

This work is organized as follows: Section II describes
the theoretical foundations of the description of angular mo-
mentum in the MP theory of light. Section III presents the
Laguerre-Gaussian (LG) mode pulses that are known to carry
angular momentum. The OCD simulations of the propagation
of selected LG mode light pulses in a medium are presented
in Sec. IV. In Sec. VI we discuss whether the atomic MDW
has an effect in the analysis of previous microparticle rotation
experiments [11–14,36–38]. A schematic plan of the fiber
rotation experiment for the experimental verification of the
azimuthal atomic displacement of the MDW is presented in
Sec. VII. Finally, conclusions are drawn in Sec. VIII.

II. ANGULAR MOMENTUM IN THE
MASS-POLARITON THEORY

A. Angular momentum of the electromagnetic field

The fundamental expression of the total angular momen-
tum of the electromagnetic field in vacuum is conventionally
given by [20,21,39–59]

Jfield =
∫

r ×
(

E × H
c2

)
d3r, (1)

where E × H/c2 = gfield is the linear momentum density of
the electromagnetic field [39,40], Nph is the photon number,
and ẑ is the unit vector in the direction of propagation. In the
MP theory of light, Eq. (1) describes only the electromagnetic
field’s share of the total angular momentum of light. This
result is independent of the conventional separation of the
angular momentum of the electromagnetic field into SAM and
OAM and into the external and internal parts, which are briefly
discussed in Appendix A.

Note that, in previous works neglecting the atomic MDW
[25,60], the correct total angular momentum of light in
a medium has been obtained by assuming the Minkowski
angular momentum density r × (D × B) for the field. The
assumption that the Minkowski angular momentum density is
carried by the pure electromagnetic field or by the electronic
polariton state involving oscillations of electrons around fixed
nuclei cannot explain the MDW associated with light in a
medium as described by the MP theory of light [34,35].

B. Beyond the approximation of fixed atoms

The approximation of fixed atoms is conventionally used
in the electrodynamics of continuous media [39,40]. In this
approximation the atomic nuclei are fixed to their equilibrium
positions and they respond to the electromagnetic field only
through polarization. Conventionally, the atoms have been

assumed to be bound to their positions (or relative positions
in the case of moving media) as their total mass energy is
extremely large compared to the energy scale of optical fields.
Consequently, during the short interaction time of the medium
atoms and the propagating optical field, the optical force can
move atoms only by an exceedingly small amount. Tradition-
ally, this small atomic movement has been considered to be
totally negligible.

This approximation would be justified if the polariton
state of light would include only electronic oscillations as is
conventionally assumed, for instance, in the case of exciton
polaritons and in the simple Lorentz oscillator model of
dielectric permittivity. If we only account for the electronic
polariton state, the center of masses of the negative electron
density and the positive nucleon density move in opposite
directions and the total center of mass of the atom stands still.
Both these mass shifts are anyway, for a free plane-wave field
in a nondispersive medium, considered to be parallel to the
electric field vector, i.e., orthogonal to the wave vector, and
thus cannot contribute to the MDW, which propagates in the
direction of the Poynting vector.

Recently, the approximation of fixed atoms has been ques-
tioned by the results of the MP theory of light and the related
computer simulations based on the OCD model [34,35]. Cou-
pling the conventional electrodynamics and elasticity theories
of continuous media, the OCD model shows that the collective
small motion of atoms forms an atomic MDW. Since coupled
systems have been under detailed studies in many fields of
physics for decades, it is surprising that the coupled dynamics
of the electromagnetic field and the atomic MDW has not been
studied in detail already much earlier.

We note here an early paper by Poynting [61], where the
existence of “small longitudinal material waves accompany-
ing light waves” is foretold. Thus, he considered essentially
the same phenomenon as the MDWs in the MP theory of light.
Poynting made his calculations in the most simple case of an
electromagnetic plane wave. He also correctly calculated the
very small kinetic energy associated to the MDWs. However,
he did not calculate the mass energy, which is transferred
with these waves. Therefore, the relation of these waves to
the covariance principle of the special theory of relativity
and to the conservation of the center of energy velocity of
an isolated system was not recovered. In addition, he did not
study whether these waves could carry angular momentum.

C. Newton’s equation of motion

In the OCD model, the coupling between the field and
matter is described by Newton’s equation of motion. As the
atomic velocities are nonrelativistic, Newton’s equation of
motion for the mass density of the medium ρa(r, t ) is given
by

ρa(r, t )
d2ra(r, t )

dt2
= fopt (r, t ) + fel(r, t ), (2)

where ra(r, t ) is the position- and time-dependent atomic
displacement field of the medium, fopt (r, t ) is the optical
force density experienced by atoms, given in Eq. (3) below,
and fel(r, t ) is the elastic force density between atoms that
are displaced from their initial equilibrium positions by the
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optical force density. The elastic force density for anisotropic
cubic crystals, such as silicon, is given, e.g., in Ref. [62].

For the optical force density, we use the expression that
is well known in previous literature [39,40]. It is given for a
dielectric medium by [63]

fopt (r, t ) = −ε0

2
E2∇n2 + n2 − 1

c2

∂

∂t
E × H. (3)

Note that the OCD model enables the use of any physically
meaningful form of the optical force density in solving the
dynamical equations [63]. However, the different terms can-
not be arbitrarily modified without breaking the momentum
conservation and the relativistic covariance condition [34,35].

The optical force density in Eq. (3) leads to the transfer of
a part of the total momentum of light by the MDW [34,35]. In
this work we show that the optical force density in Eq. (3) is
also responsible for the description of the optical torque in the
medium and the related transfer of a substantial part of the to-
tal angular momentum of light by the MDW. In calculating the
optoelastic force field, we have neglected the extremely small
damping of the electromagnetic field due to the transfer of
field energy to the kinetic and elastic energies of the medium.
The accuracy of this approximation is estimated in Ref. [34].

D. Angular momentum of the mass density wave

The angular momentum density of the MDW can be writ-
ten according to classical mechanics as

JMDW =
∫

r × ρavad
3r, (4)

where ρava = gMDW is the linear momentum density of the
MDW [34]. This classical angular momentum of the MDW
follows purely from the motion of atoms in the MDW driven
by the optical force density. Whether there exist any experi-
mentally feasible ways to separate this total angular momen-
tum of the MDW into OAM and SAM parts will be discussed
below and is partly left as a topic of further work.

The total angular momentum of the coupled MP state of
the field and matter is given by the sum of the field and MDW
contributions as

JMP =
∫

r ×
(

ρava + E × H
c2

)
d3r, (5)

where ρava + E × H/c2 = gMP is the total linear momentum
density of the MP. As shown by the computer simulations
below, the angular momentum of the MDW is an integral part
of the total angular momentum of light in a medium.

III. FIELDS CARRYING ANGULAR MOMENTUM

A. Laguerre-Gaussian pulses

It is well known that helically phased light carries OAM
regardless of the radial distribution of the fields [19]. How-
ever, it is often useful to express beams in a complete basis set
of orthogonal modes. A convenient choice as the basis set for
beams that carry OAM is provided by the LG modes.

The LG mode function for the mode LGpl is given in the
limit of constant beam waist or large Rayleigh range as [1,64]

up,l (r, φ) = u0

(√
2r

w0

)|l|
e−r2/w2

0 eilφL|l|
p

(
2r2

w2
0

)
, (6)

where Ll
p are the generalized Laguerre polynomials, u0 is a

normalization constant that also depends on the values of p

and l, and w0 is the waist radius [1]. The waist radius is a
distance where the intensity of the beam has dropped to 1/e2

of its on-axis value.

B. Linear polarization

The electric and magnetic fields of a LG beam with linear
polarization along the x direction are written in the paraxial
approximation for a given wave number k as presented, e.g.,
in Refs. [1,65,66]. Here we study a light pulse with a Gaus-
sian distribution for k as described by the Gaussian function
u(k) = e−[(k−nk0 )/(n�k0 )]2/2/(

√
2π n�k0), where k0 = ω0/c is

the wave number in vacuum for central frequency ω0, and
�k0 is the standard deviation of the wave number in vacuum.
Therefore we write the electric and magnetic fields of the
LGpl pulse as

Ep,l (r, t )

= Re

[∫ ∞

−∞
iω(k)

(
up,l x̂ + i∂up,l

k∂x
ẑ
)

u(k)ei[kz−ω(k)t]dk

]
,

(7)
Hp,l (r, t )

= Re

[∫ ∞

−∞

ik

μ0

(
up,l ŷ + i∂up,l

k∂y
ẑ
)

u(k)ei[kz−ω(k)t]dk

]
,

(8)

where ω(k) = ck/n is the dispersion relation of a nondisper-
sive medium.

The wave number and its standard deviation in the medium
are given in terms of the vacuum quantities by k0,med = nk0

and �k0,med = n�k0. The standard deviations of the x and y

components of the wave number are given by �kx = �ky =√
2/w0. The standard deviations of the spatial dimensions of

the pulse energy density are �z = 1/(
√

2�k0,med) and �x =
�y = 1/(

√
2�kx ) = w0/2. The corresponding standard de-

viation in time is then �t = n�z/c = 1/(
√

2�k0c) and the
full width at half maximum is �tFWHM = 2

√
2 ln 2�t .

In the monochromatic field limit, the fields in Eqs. (7) and
(8) and the resulting Poynting vector can be approximated
further as explained in Appendix B. This approximation
allows us to perform the integrations in Eqs. (7) and (8)
analytically, which reduces the computational power needed
in the three-dimensional simulations. As shown in Ref. [34],
we can also approximate the actual instantaneous Poynting
vector of a light pulse with its time average over the harmonic
cycle without losing accuracy in the calculation of the total
quantities, such as the linear and angular momenta and the
transferred mass of the light pulse.
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FIG. 1. Simulations for a linearly polarized LG0,2 pulse that carries OAM in silicon. (a) The electric field polarization lies in the vertical
plane y = 0 as the polarization is linear. The opaque surface shows the helical phasefront of the pulse. The density plot in the plane z = 0 shows
the time-averaged field intensity. (b) The vector arrows present the time-averaged atomic velocities in the MDW driven by the field. In the z

direction, the plot region corresponds to one harmonic cycle in the middle of the pulse. The z component of the atomic velocities dominates
and it has been scaled down using a factor of 10−5 to make the spiraling of the atomic velocities around the optical axis visible. The colors
correspond to the magnitude of the transverse component of the atomic velocities. (c) Representation of the azimuthal atomic displacement
due to the transfer of OAM with the MDW of atoms. The vector arrows show the direction and the color bar shows the magnitude. The atomic
displacement is represented at the instance of time just after the pulse has gone and elastic forces have not had enough time to relax the strain
field related to these atomic displacements.

C. Circular polarization

As defined from the point of view of the source, the electric
and magnetic fields of a right circularly polarized LGpl pulse
are given in the paraxial approximation by [65,67]

Ep,l (r, t )

= 1√
2

Re

[∫ ∞

−∞
iω(k)

(
up,l x̂ + i∂up,l

k∂x
ẑ
)

u(k)ei[kz−ω(k)t]dk

+
∫ ∞

−∞
iω(k)

(
up,l ŷ + i∂up,l

k∂y
ẑ
)

u(k)ei[kz−ω(k)t+π/2]dk

]
,

(9)
Hp,l (r, t )

= 1√
2

Re

[∫ ∞

−∞

ik

μ0

(
up,l ŷ + i∂up,l

k∂y
ẑ
)

u(k)ei[kz−ω(k)t]dk

−
∫ ∞

−∞

ik

μ0

(
up,l x̂ + i∂up,l

k∂x
ẑ
)

u(k)ei[kz−ω(k)t+π/2]dk

]
.

(10)

These fields can be seen as superpositions of two linearly
polarized fields, whose transverse components are orthogonal
to each other, and which have a phase difference of π/2. The
first terms in Eqs. (9) and (10) correspond to the linearly
polarized fields in Eqs. (7) and (8).

As in the case of linear polarization above, in the
monochromatic field limit, the fields in Eqs. (9) and (10) and
the resulting Poynting vector can be approximated further as
explained in Appendix B.

IV. ANGULAR MOMENTUM SIMULATIONS

Next we simulate the propagation of LG light pulses in
silicon. We simulate a pulse, which has a total electromagnetic

energy of U0 = 5 mJ and a central vacuum wavelength of
λ0 = 1550 nm. These values correspond to the central angular
frequency of ω0 = 2πc/λ0 = 1.215 × 1015 s−1 and the pho-
ton number of Nph = U0/h̄ω0 = 3.901 × 1016. The phase and
group refractive indices of silicon are given by np = 3.4757
and ng = 3.5997 for λ0 = 1550 nm [68]. Since the dispersion
is not very large, for simplicity, in this work we neglect the
dispersion and use the phase refractive index only. However,
the dispersion could be accounted for in the MP theory of light
as shown in Ref. [34].

The lateral width of the LG mode in Eq. (6) is determined
by �kx = �ky = √

2/w0 = 10−4k0, which correspond to the
waist radius of w0 ≈ 3.5 mm. The longitudinal pulse width is
determined by the spectral width �ω/ω0 = �k0/k0 = 10−5,
which corresponds to �z ≈ 5.0 mm and �tFWHM ≈ 140 ps.
The normalization constant u0 in Eq. (6) becomes fixed by
requiring that the total electromagnetic energy of the pulse is
U0 as defined above.

In the simulations we also use the mass density of silicon,
which is ρ0 = 2329 kg/m3 [69], and the elastic constants in
the direction of the (100) plane, which are C11 = 165.7 GPa,
C12 = 63.9 GPa, and C44 = 79.6 GPa [70]. These elastic
constants correspond to the bulk modulus of B = (C11 +
2C12)/3 = 97.8 GPa and the shear modulus of G = C44 =
79.6 GPa.

A. Simulations for orbital angular momentum

First, we consider the OAM related to the MDW of moving
atoms. As an example, we use a linearly polarized LG0,2 pulse
that is well known to carry OAM as l = 2. The SAM of this
pulse is zero due to linear polarization for which σ = 0.

Figure 1(a) illustrates the linearly polarized LG0,2 mode.
The vector arrows in Fig. 1(a) present the directions of the
instantaneous electric (blue) and magnetic (red) fields. For
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FIG. 2. Simulations for a right circularly polarized LG0,0 pulse that carries SAM in silicon. (a) The position dependence of the transverse
component of the electric field polarization forms a helical surface as the polarization is circular. The opaque surface shows the plane of
constant phase. The density plot in the plane z = 0 shows the time-averaged field intensity. (b) The vector arrows present the time-averaged
atomic velocities in the MDW driven by the field. In the z direction, the plot region corresponds to one harmonic cycle in the middle of the
pulse. The z component of the atomic velocities dominates and it has been scaled down using a factor of 10−5 to make the spiraling of the
atomic velocities around the optical axis visible. The colors correspond to the magnitude of the transverse component of the atomic velocities.
(c) Representation of the azimuthal atomic displacement due to the transfer of OAM with the MDW of atoms. The vector arrows show the
direction and the color bar shows the magnitude. The atomic displacement is represented at the instance of time just after the pulse has gone
and elastic forces have not had enough time to relax the strain field related to these atomic displacements.

our linearly polarized field, the electric field vectors lie in the
plane y = 0 while the magnetic field vectors are located in
the plane x = 0. The exact spatial distributions of the fields
are, however, more complex and not shown in the figure. The
opaque surface shows the phasefront of the pulse, which forms
a double helix for our pulse with l = 2. The density plot in the
plane z = 0 shows the time-averaged field intensity. The field
intensity has a vortex at x = y = 0, which is characteristic for
all higher order LG modes.

Figure 1(b) shows the time-averaged atomic velocities in
the MDW driven by a linearly polarized LG0,2 pulse. The z

component of the atomic velocities dominates and it has been
scaled down using a factor of 10−5 to make the transverse
velocity components visible. The atomic velocities are seen to
spiral around the optical axis so that the velocity distribution
of atoms has a vortex at x = y = 0. The velocity distribution
of atoms in the MDW clearly follows the field intensity in the
density plot in Fig. 1(a). This is an expected result since the
optical force density in the second term of Eq. (3) driving the
atomic MDW forwards is determined by the Poynting vector.

The atomic velocity distribution of the light pulse obtained
in the simulations can be used with Eq. (4) to calculate the
angular momentum of the MDW. Within the numerical
accuracy of the simulations and the monochromatic
field approximation described in Appendix B, we obtain
JMDW = 7.157 × 1016h̄ẑ. For the angular momentum of
the electromagnetic field, given by Eq. (1), we obtain
Jfield = 6.459 × 1015h̄ẑ. Dividing these values with the
photon number of the pulse gives JMDW/Nph = 1.834h̄ẑ and
Jfield/Nph = 0.166h̄ẑ. The sum of these angular momenta
is the total angular momentum of the mass polariton, given
by JMP/Nph = 2h̄ẑ. This equals the expected total angular
momentum of the linearly polarized LG0,2 mode with l = 2

and σ = 0. Therefore, our results indicate that the total
angular momentum of light in a medium is split between the
field and the MDW in such a way that the MDW carries a
substantial part of the total angular momentum of light.

Figure 1(c) shows the transverse component of the sim-
ulated atomic displacement for the linearly polarized LG0,2

pulse just after the light pulse has gone. The time-dependent
simulations of the atomic displacements and velocities in a
fixed transverse plane are presented as a video file in the
Supplemental Material [71]. In the passage of the pulse, the
atomic displacements monotonically increase to their max-
imum values, whose transverse components are shown in
Fig. 1(c). In contrast, the average atomic velocity increases
in the pulse front, obtains its maximum value in the middle of
the pulse, and decreases to zero in the tail of the pulse.

B. Simulations for spin angular momentum

Next, we consider the SAM of the atomic MDW by sim-
ulating the propagation of a right circularly polarized LG0,0

pulse. This pulse carries SAM but no OAM as l = 0 and
σ = 1.

Figure 2(a) illustrates the right circularly polarized LG0,0

mode. The vector arrows show the directions of the in-
stantaneous electric (blue) and magnetic (red) fields. These
field vectors form polarization surfaces that are helical for
our circularly polarized field. The opaque surface shows the
phasefront of the pulse. In contrast to the higher order LG0,2

pulse in Fig. 1(a), the phasefront is a plane for our LG0,0 pulse
with l = 0. The density plot in the transverse plane z = 0
shows the cross section of the time-averaged field intensity.
In contrast to the case of the LG0,2 pulse in Fig. 1(a), the field
intensity in Fig. 2(a) obtains its maximum value at x = y = 0
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FIG. 3. Instantaneous atomic velocity in the MDW. The position dependence of the transverse component of the instantaneous atomic
velocity of the MDW (a) for the linearly polarized LG0,1 pulse carrying OAM of Nph h̄, (b) for the circularly polarized LG0,0 pulse carrying
SAM of Nph h̄, and (c) for the circularly polarized LG0,1 pulse carrying both OAM of Nph h̄ and SAM of Nph h̄. The transverse atomic velocities
are plotted for one instance of time in the middle of the pulse.

for the LG0,0 pulse. Therefore, there is not any vortex in the
field intensity when l = 0.

Figure 2(b) shows the time-averaged atomic velocities
in the MDW driven by the right circularly polarized LG0,0

pulse. The atomic velocities are again seen to spiral around
the direction of propagation along the z axis. Again, the z

component of the atomic velocities dominates and it has been
scaled down using a factor of 10−5 to make the transverse
velocity components visible. Whereas in Fig. 1 the spiraling
of the atomic velocities followed from the higher order nature
of the LG0,2 pulse, here the spiraling follows purely from
the circular polarization. As in the case of OAM in Fig. 1,
the atomic velocities in the MDW driven by the circularly
polarized light pulse carrying only SAM also follow the field
intensity in the density plot in Fig. 2(a). Again, this follows
from the fact that the optical force density in the second term
of Eq. (3) driving the atomic MDW forwards is determined by
the Poynting vector.

Using Eq. (4) and the atomic velocity distribution of the
MDW obtained in the simulations, we can again calculate
the angular momentum of the MDW. Within the monochro-
matic field approximation described in Appendix B and the
numerical accuracy of the simulations, we obtain JMDW =
3.578 × 1016h̄ẑ. The corresponding angular momentum of the
electromagnetic field, given by Eq. (1), has a value of Jfield =
3.230 × 1015h̄ẑ. Dividing the angular momenta of the MDW
and the electromagnetic field with the photon number of the
pulse gives JMDW/Nph = 0.917h̄ẑ and Jfield/Nph = 0.083h̄ẑ.
Summing these angular momenta together then gives total
angular momentum of the mass polariton as JMP/Nph = h̄ẑ,
which is an expected result for the right circularly polarized
LG0,0 mode with l = 0 and σ = 1. Therefore, these results
give further support for the splitting of the total angular
momentum of light between the field and the MDW.

Figure 2(c) shows the transverse component of the sim-
ulated atomic displacement for the right circularly polarized
LG0,0 pulse just after the light pulse has gone. The time-
dependent simulations of the atomic displacements and ve-
locities in a fixed transverse plane are presented as a video
file in the Supplemental Material [71]. In the passage of the
pulse, the atomic displacements again monotonically increase

to their maximum values, while the average atomic velocity
increases in the pulse front, obtains its maximum value in the
middle of the pulse, and decreases to zero in the tail of the
pulse.

C. Differences in the instantaneous mass density waves

Figure 3 shows the transverse components of the instanta-
neous atomic velocities in the MDWs of the linearly polarized
LG0,1 pulse carrying OAM (Nphh̄), the circularly polarized
LG0,0 pulse carrying SAM (Nphh̄), and the circularly po-
larized LG0,1 pulse carrying both OAM (Nphh̄) and SAM
(Nph h̄). One can directly observe the notable difference that,
in the case of linear polarization in Fig. 3(a) (see also a video
file in the Supplemental Material [71]), the atomic velocities
vary as a function of the azimuthal angle, whereas in the case
of circular polarizations in Figs. 3(b) and 3(c), this azimuthal
dependence is missing. Therefore, we can conclude that the
MDW component that has azimuthal variations is related to
the linear polarization while the MDW component that is
approximately constant in the azimuthal direction is related
to the circular polarization. Thus, the MDWs of linearly and
circularly polarized light pulses are in principle separable.
However, whether the physical separation into the OAM and
SAM components is possible in the general case of a pulse
carrying both OAM and SAM remains an open question in
the classical regime where one can in principle measure the
transverse velocity distribution and the shift of atoms in the
MDW. However, for a single light quantum in a medium, our
results strongly suggest that the total angular momentum of
the quantum, which is an integer multiple of h̄, cannot be di-
vided in a physically meaningful way into the OAM and SAM
components of either the MDW or the electromagnetic field.

V. COMPARISON OF THE OCD AND MP QUASIPARTICLE
MODEL RESULTS

For a general Laguerre-Gaussian pulse with total elec-
tromagnetic energy U0 = Nph h̄ω0, we can calculate the nu-
merical values of the angular momenta in Eqs. (1), (4),
and (5). Within the numerical accuracy of the simulations,
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we obtain

Jfield =
∫

r ×
(

E × H
c2

)
d3r = (l + σ )

Nph h̄

n2
ẑ, (11)

JMDW =
∫

r × ρavad
3r =

(
1 − 1

n2

)
(l + σ )Nph h̄ẑ, (12)

JMP =
∫

r ×
(

ρava + E × H
c2

)
d3r = (l + σ )Nph h̄ẑ, (13)

i.e., the numerically calculated values of the integrals are
equal to the right-hand side results within seven digits. Thus,
the right-hand side results divided by the photon number
represent the single quantum MP quasiparticle model values
of the corresponding angular momenta.

Equations (11)–(13) indicate that the total angular mo-
mentum of light in a nondispersive medium is split between
the field and the MDW in the same ratio JMDW/Jfield =
n2 − 1 as the total linear momentum pMDW/pfield and en-
ergy EMDW/Efield shown in Refs. [34,35]. The comparison
of Eqs. (11)–(13) shows that the atomic MDW carries a
substantial part (for many photonic materials most) of the total
angular momentum of light in a medium. In previous works on
the angular momentum of light in a medium [25,60], which
have neglected the atomic MDW, the correct total angular
momentum of light has been obtained by assuming that the
field carries the Minkowski momentum, which corresponds to
the angular momentum density r × (D × B). According to the
MP theory of light, this assumption is not justified [34,35].

VI. ANALYZING MICROPARTICLE
ROTATION EXPERIMENTS

It is worth to consider whether the MDW has an effect
in the previous microparticle rotation experiments performed
to probe the OAM and SAM of light [11–14,36–38]. These
experiments are based on trapping particles by using optical
tweezers, which rely on the gradient force to confine a dielec-
tric particle near the point of highest light intensity [13,72]. It
has been observed that the OAM and SAM of light result in
the rotation of absorptive [11,36,37] and birefringent [12–14]
particles. Therefore, the physical mechanism of the observed
angular momentum transfer is very different compared to the
angular momentum of the MDW. In order to observe the
angular momentum of the MDW, one should aim at observing
the rotation of the homogeneous host medium itself when light
propagates through it. This rotation related to the MDW is
much smaller than the rotation of a single microparticle and it
is not expected to be observable in the previous experiments.

VII. PLANNING OF THE FIBER ROTATION EXPERIMENT

Next, we study how the azimuthal atomic displacement due
to the MDW simulated in Sec. IV could be experimentally
verified. For this purpose, we propose a fiber rotation experi-
ment, where one measures the rotation of an optical fiber due
to optical forces of circularly polarized continuous wave light
beams after the fields have been switched on at time t = 0 s.
These calculations can also inspire experimentalists to design
other kinds of setups for the same purpose of verifying the
azimuthal atomic displacement predicted by the MP theory

FIG. 4. Schematic experimental setup for measuring the az-
imuthal rotation displacement �rMDW of an optical fiber due to
the MDWs resulting from the optical forces of circularly polarized
continuous wave laser beams. One of the beams has right-handed
polarization (σ = 1) while the polarization of the other beam is left
handed (σ = −1). The rotation is to be measured in the timescale
of 0.01 s after the laser beams have been switched on. In longer
timescales, the angular momentum transfer due to the optical absorp-
tion starts to dominate the MDW effect.

of light. In the relatively long timescale used here, the strain
fields in the fiber cross section are assumed to be relaxed
by the elastic forces so that all material element in the fiber
cross section have approximately the same angle of rotation
with respect to the fiber axis. In particular, here we focus on
investigating the azimuthal atomic displacement that should
be measured at the fiber surface.

A schematic illustration of the proposed setup is presented
in Fig. 4. The silicon fiber is expected to rotate due to the opti-
cal forces of two circularly polarized light beams propagating
in opposite directions. One of the beams has right-handed
polarization while the polarization of the other beam is left
handed. This way the azimuthal atomic displacements of the
MDWs of the two beams add up instead of canceling each
other. The fiber and its ends are allowed to rotate freely so
that the fiber does not experience external torques. As there
are two beams of equal intensities propagating in opposite
directions, the total longitudinal atomic displacement in the
middle of the fiber, studied in Ref. [35], is approximately zero.
In addition to the atomic displacements due to the MDWs,
also the optical absorption in the fiber contributes to the total
rotation of the fiber. This will be studied below. On the other
hand, some secondary effects, such as thermal expansion,
cannot significantly influence the rotation of the fiber since
they are not azimuthal in nature.

In the following calculations aimed to give order of mag-
nitude estimates, we use the bulk value of the refractive
index. In more detailed calculations, it should be replaced with
the effective refractive index corresponding to the waveguide
design. The waveguide dispersion should also be taken into
account. Due to the interface effects, the fiber diameter cannot
be directly compared with the fiber diameter of our calcu-
lations. The fiber diameter should also be corrected for the
possible cladding layer, metallic coating, and other factors that
influence the spreading of the pulse energy in the transverse
direction. All these factors can be easily accounted for in
the OCD simulations. Detailed calculations are presented in
a separate work [73].
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Using Eq. (4) we obtain that the total angular momentum
of the MDW is JMDW = (1 − 1/n2)σUin/ω0, where Uin is the
total electromagnetic energy inside the fiber. In terms of the
time-averaged intensity I of a single beam in the fiber, one
can write Uin = 2nπR2LI/c, where R and L are the radius
and length of the cylindrical fiber, respectively. On the other
hand, the angular momentum of the MDW can be written
as JMDW = Imi�, where Imi = 1

2πρ0R
4L is the moment of

inertia and � is the angular velocity of the cylindrical fiber.
Setting the two expressions of the angular momentum above
as equal gives the angular velocity of the fiber as � = 4σ (n −
1/n)I/(c ω0ρ0R

2). The corresponding azimuthal atomic dis-
placement on the surface of the fiber as a function of time is
then given by �rMDW = R�t = 4σ (n − 1/n)I t/(c ω0ρ0R).

Respectively, one can estimate the azimuthal atomic
displacement on the surface of the fiber following from
the optical absorption. The total angular momentum ab-
sorbed by the fiber in time �t is given by �Jabs = (1 −
e−αL)(2σπR2I�t/ω0) ≈ 2πασLR2I�t/ω0, where α is the
small absorption coefficient of the medium. On the other
hand, we have �Jabs = Imi��abs. Therefore, the angular ac-
celeration related to the optical absorption is given by αabs =
��abs/�t = 4ασI/(ω0ρ0R

2). The corresponding azimuthal
atomic displacement on the surface of the fiber as a function of
time is then given by �rabs = 1

2Rαabst
2 = 2ασI t2/(ω0ρ0R).

Above we have derived two contributions to the longitudi-
nal atomic displacement on the surface of the fiber. The effect
of the MDW depends linearly on time while the effect of the
absorption has a quadratic time dependence. Therefore, the
MDW effect dominates at small timescales while the effect
of the absorption becomes dominant in the course of time.
The timescale at which these effects have equal magnitude
can be solved by setting �rMDW = �rabs, which leads to teq =
2(n − 1/n)/(cα). In the case of silicon, absorption is very low
at λ0 = 1550 nm. The measurements by Schinke et al. [74]
and Green [75] for λ0 = 1450 nm give α ≈ 10−8 cm−1 and
the absorption is known to decrease towards λ0 = 1550 nm.
Therefore, we can conservatively estimate α = 10−8 cm−1.
This gives teq = 21 ms.

As shown above, the atomic displacement on the surface of
the fiber depends linearly on the field intensity. One must note
that the field intensity in the experiment cannot be arbitrarily
high. For silicon with λ0 = 1550 nm, the bulk value of the
breakdown threshold energy density has been reported to be
uth = 13.3 J/cm3 [76], which corresponds to the threshold
irradiance of Ith = uthc/n = 1.1 × 1011 W/cm2. Using the
fiber of diameter d = 2.5 μm, assuming I = 1

100 Ith, and
setting t = teq, we obtain �rMDW = �rabs = 2.8 nm, which
corresponds to the total atomic displacement of 5.6 nm. The
atomic displacement of this magnitude should be feasible
to measure. As the time dependencies of the MDW and
absorption contributions are different, one should also be able
to distinguish the magnitudes of both effects by observing the
change of the atomic displacement as a function of time.

Figure 5 shows the calculated azimuthal atomic displace-
ment �rMDW on the fiber surface due to the MDW as a
function of time and the fiber diameter. As reasoned above,
the atomic displacement is largest for small fiber diameters
and it has a linear time dependence. In the time range [0, teq]
shown in the figure, the atomic displacement �rMDW due to
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FIG. 5. The calculated total azimuthal atomic displacement due
to the MDW on the surface of a cylindrical silicon fiber as a function
of time and the fiber diameter. The assumed field intensity is I =
1.1 × 109 W/cm2. The refractive index of silicon for the assumed
vacuum wavelength of λ0 = 1550 nm is n = 3.48. In the time range
shown in the figure, the atomic displacement due to the MDW
dominates the atomic displacement due to the optical absorption.

the MDW dominates the atomic displacement �rabs due to the
optical absorption. The contribution �rabs is not shown in the
figure. The simulated nanometer-scale atomic displacements
strongly support the experimental feasibility of the measure-
ment of the azimuthal atomic displacement of the MDW.

It is also important to note that the relatively high intensity,
which is needed to produce measurable atomic displacements,
can lead to nonlinear effects that must also be accounted
for in the implementation of the experiment. To reduce the
intensity of single frequency components, one could well use
a broad spectrum only requiring that the absorption coefficient
is small for the frequencies used. This would allow reducing
nonlinear effects, such as the stimulated Brillouin scattering,
which is probably the first nonlinear effects that turns on.

VIII. CONCLUSIONS

In conclusion, we have used the MP theory of light to ana-
lyze how the angular momentum of light is shared between the
field and matter. The optical force density, which gives rise to
the momentum of the MDW [34,35], also describes the optical
torque. Consequently, in many photonic materials, most of the
total angular momentum of light, both OAM and SAM, is
not carried by the electromagnetic field but by the MDW. For
the electromagnetic field, one obtains a share of the angular
momentum that is generally a fraction of h̄. In contrast, the
total angular momentum of the MP, where the field is coupled
to the MDW, is an integer multiple of h̄. This suggests that
the angular momentum of a single quantum in a nondispersive
medium has coupled field and medium components. The same
coupling is found for OAM and SAM. The coupling that
makes it impossible to measure separately the single quantum
angular momentum components should not be confused with
the well-known quantum entanglement of eigenstates, but it is
sooner related to the covariance principle of the special theory
of relativity, which prevents a bare photon from existing in
a nondispersive medium [34,35]. The generalization of the
conventional quantum optical field theory description of light
for the presentation of the MDW coupling, studied classically
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in the present work, provides an interesting topic for further
work.

Our results strongly suggest that a single quantum of light
in a nondispersive medium should be understood to include
coupled field and medium components. Thus, a single quan-
tum becomes Lorentz invariant and fulfills the constant center
of energy law of an isolated system. Compared to earlier
theoretical models neglecting the atomic MDW, the physical
picture of the angular momentum of light emerging from our
theory is fundamentally more general. In previous works, the
correct total angular momentum of light in a medium has
been obtained only by assuming that the pure electromagnetic
field or the electronic polariton state carries the Minkowski
momentum. The results of the MP theory of light show that
this assumption is not justified. We have also pointed out
that the contribution of the atomic MDW to the total angular
momentum of light is experimentally verifiable. In this work
we have assumed a nondispersive medium, but the results can
be straightforwardly generalized for dispersive media as done
in the case of linear momentum in Ref. [35].

One interesting question that remains as a topic of further
work is whether slow-light media could be used to amplify the
MDW effect to allow its experimental verification in the same
way as slow-light media have been used to amplify the rotary
photon drag [77] and Fresnel drag effects [78]. This is, how-
ever, not obvious as the effects are fundamentally different.
In the rotary photon drag and Fresnel drag experiments, light
propagates through materials that are set in notable motion
by external forces and the effects observed follow from this
movement. In contrast, in the case of the MDW effect, the
medium in which light propagates is initially at rest and the
medium atoms become very slightly displaced by the optical
force of the light field itself.

Very accurate technologies are presently becoming avail-
able for measuring the small atomic displacements on the sur-
faces of solid media. For example, the picometer-size atomic
displacements of elastic waves generated at a highly reflective
mirror interface have been a subject of a very recent careful
study [79]. Therefore, we expect that by using a suitable
setup, these technologies might also allow probing the atomic
displacements generated by light while it is propagating inside
the medium.
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APPENDIX A: ANGULAR MOMENTUM SEPARATIONS

1. Spin and orbital angular momenta

In a nondispersive dielectric medium, the total angular
momentum of the electromagnetic field in Eq. (1) can be

written in terms of the vector potential A as [20,21,45,46]

Jfield = ε0

∫
Ei (r × ∇ )Aid

3r + ε0

∫
E × Ad3r

− ε0

∫
(r × A)E · dS, (A1)

where ε0 is the permittivity of vacuum. The vector potential
A is related to the electric and magnetic fields by the conven-
tional relations E = −∂A/∂t and B = ∇ × A with B = μ0H,
where μ0 is the permeability of vacuum. In the first term on
the right-hand side of Eq. (A1), we have used the Einstein
summation convention.

For a light pulse, the fields approach zero at infinity.
Therefore, the surface integral in the last term of Eq. (A1)
will be zero, and we can identify the OAM and SAM terms as
[20,21,80]

Lfield = ε0

∫
Ei (r × ∇ )Aid

3r, (A2)

Sfield = ε0

∫
E × Ad3r. (A3)

One can observe that these definitions of OAM and SAM in
terms of the vector potential are in general gauge dependent.
However, for fields that are exactly transverse, gauge invari-
ance is obtained if A is defined to be the gauge invariant
transverse vector potential [20,81].

The transverse field approximation is in many cases well
justified. In the commonly used paraxial approximation of
light beams, the electric and magnetic fields also have longi-
tudinal components [65,82,83]. The magnitudes of these com-
ponents are, however, typically negligible in comparison with
the transverse field components. Therefore, in the paraxial
approximation, Eqs. (A2) and (A3) can be used to separate
the total angular momentum of light into the OAM and SAM
parts reasonably accurately, but not exactly. In general, this
separation is gauge dependent and only the total angular
momentum of the electromagnetic field in Eq. (1) has a
well-defined physical meaning. In this work we use the
general definition of electromagnetic angular momentum in
Eq. (1) in all our calculations. We also show that the move-
ment of atoms in the MDW driven by the field carries a
substantial part of the total angular momentum of light in a
medium as described by Eq. (4).

2. External and internal angular momenta

In the case of a localized light pulse whose center of energy
has a position vector r0, by a change of variables r → r0 + r′,
we can write Eq. (1) as

Jfield = Jfield,ext + Jfield,int, (A4)

where Jfield,ext and Jfield,int are, respectively, the external and
internal angular momenta of the field [44,50,51,53]. The
external angular momentum is contributed by the OAM only,
while the internal angular momentum is contributed by both
the OAM and SAM. The origin-dependent external angular
momentum is given by Jfield,ext = r0 × Pfield, where Pfield =∫

gfieldd
3r is the total linear momentum of the electromagnetic

field. Therefore, the definition of the external angular mo-
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mentum corresponds to the classical definition of the angular
momentum of a point particle. It gives zero if the angular
momentum is calculated with respect to the propagation axis
in which case r0 is parallel to Pfield. The internal angular
momentum is given by Jfield,int = ∫

r′ × gfieldd
3r ′ and it does

not depend on the choice of the origin. In the case of structured
fields, the internal angular momentum Jfield,int can be nonzero
[19]. This is also shown in the simulation results. In the
simulations we make the conventional choice that the origin
lies in the optical axis so that the external angular momentum
is zero. Therefore, we directly study the internal angular
momentum quantities.

APPENDIX B: MONOCHROMATIC FIELD
APPROXIMATION OF LIGHT PULSES

1. Linear polarization

In the monocromatic field limit with �k0 	 k0 we can ap-
proximate the k-dependent parts of the integrands in Eqs. (7)
and (8) apart from the last part u(k)ei[kz−ω(k)t] with the central
frequency values as ω(k) ≈ ω0 and k ≈ k0,med = nk0. After
this, the integrals over k in Eqs. (7) and (8) can be evaluated
analytically leading to the fields given by

Ep,l (r, t ) ≈ Re

[
iω0

(
up,l x̂ + i∂up,l

nk0∂x
ẑ
)

ei(nk0z−ω0t )

]

× e−(n�k0 )2(z−ct/n)2/2, (B1)

Hp,l (r, t ) ≈ Re

[
ink0

μ0

(
up,l ŷ + i∂up,l

nk0∂y
ẑ
)

ei(nk0z−ω0t )

]

× e−(n�k0 )2(z−ct/n)2/2. (B2)

In the calculation of the optical force density by using Eq. (3),
we need the Poynting vector. We perform part of our simula-
tions by using the actual instantaneous Poynting vector and
part of the simulations by using its time average over the
harmonic cycle. As shown in Ref. [34], we can approximate
the instantaneous Poynting vector of a light pulse with its time
average over the harmonic cycle without losing accuracy in
the calculation of the total linear and angular momenta, the
transferred mass, and the averaged atomic displacements and
velocities. This time-averaged Poynting vector is given by

〈Ep,l (r, t ) × Hp,l (r, t )〉

≈ nω2
0

2μ0c
Re

(
iup,l∂u∗

p,l

nk0∂x
x̂ − iu∗

p,l∂up,l

nk0∂y
ŷ + |up,l|2ẑ

)

× e−(n�k0 )2(z−ct/n)2

= − iω0

4μ0
(u∗

p,l,k∇up,l,k − up,l,k∇u∗
p,l,k )e−(n�k0 )2(z−ct/n)2

.

(B3)

Here the first expression on the right is the explicit repre-
sentation in the Cartesian basis and the second appealing

expression is obtained by using up,l,k = up,le
ink0z. For a LG

beam without Gaussian form in the longitudinal direction, the
corresponding result has been presented in the case of vacuum
in Ref. [1].

2. Circular polarization

Using the same approximation as explained in the case of
linear polarization above, the electric and magnetic fields of a
right circularly polarized LGpl pulse in Eqs. (9) and (10) can
be written as

Ep,l (r, t ) ≈ 1√
2

Re

[
iω0

(
up,l x̂ + i∂up,l

nk0∂x
ẑ
)

ei(nk0z−ω0t )

+ iω0

(
up,l ŷ + i∂up,l

nk0∂y
ẑ
)

ei(nk0z−ω0t+π/2)

]

× e−(n�k0 )2(z−ct/n)2/2, (B4)

Hp,l (r, t ) ≈ 1√
2

Re

[
ink0

μ0

(
up,l ŷ + i∂up,l

nk0∂y
ẑ
)

ei(nk0z−ω0t )

− ink0

μ0

(
up,l x̂ + i∂up,l

nk0∂x
ẑ
)

ei(nk0z−ω0t+π/2)

]

× e−(n�k0 )2(z−ct/n)2/2. (B5)

The Poynting vector time averaged over the harmonic cycle
is then given by

〈Ep,l (r, t ) × Hp,l (r, t )〉

≈ nω2
0

2μ0c
Re

[
up,l

nk0

(
∂u∗

p,l

∂y
+ i

∂u∗
p,l

∂x

)
x̂

−u∗
p,l

nk0

(
∂up,l

∂x
+ i

∂up,l

∂y

)
ŷ + |up,l|2ẑ

]

× e−(n�k0 )2(z−ct/n)2

= − iω0

4μ0

(
u∗

p,l,k∇up,l,k − up,l,k∇u∗
p,l,k − i

∂|up,l,k|2
∂r

φ̂

)

× e−(n�k0 )2(z−ct/n)2
, (B6)

where φ̂ = − sin(φ)x̂ + cos(φ)ŷ is the azimuthal unit vector.
Again, the first expression on the right is the explicit rep-
resentation in the Cartesian basis and the second appealing
expression is obtained by using up,l,k = up,le

ink0z. In the last
expression, the first two terms inside the parentheses are
polarization independent and relate to the OAM while the last
term is polarization dependent and relates to the SAM. For a
LG beam without Gaussian form in the longitudinal direction,
the corresponding result has been presented in the case of
vacuum in Ref. [1].
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