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Learning Ising or Potts models from data has become an important topic in statistical physics and compu-
tational biology, with applications to predictions of structural contacts in proteins and other areas of biological
data analysis. The corresponding inference problems are challenging since the normalization constant (partition
function) of the Ising or Potts distribution cannot be computed efficiently on large instances. Different ways to
address this issue have resulted in a substantial amount of methodological literature. In this paper we investigate
how these methods could be used on much larger data sets than studied previously. We focus on a central aspect,
that in practice these inference problems are almost always severely undersampled, and the operational result is
almost always a small set of leading predictions. We therefore explore an approach where the data are prefiltered
based on empirical correlations, which can be computed directly even for very large problems. Inference is only
used on the much smaller instance in a subsequent step of the analysis. We show that in several relevant model
classes such a combined approach gives results of almost the same quality as inference on the whole data set. It
can therefore provide a potentially very large computational speedup at the price of only marginal decrease in
prediction quality. We also show that the results on whole-genome epistatic couplings that were obtained in a
recent computation-intensive study can be retrieved by our approach. The method of this paper hence opens up
the possibility to learn parameters describing pairwise dependences among whole genomes in a computationally
feasible and expedient manner.

DOI: 10.1103/PhysRevE.98.032407

I. INTRODUCTION

Learning from a multiple sequence alignment has emerged
in recent years as an important development in statistical
physics and computational biology. A main paradigm has
been to use the data to infer parameters of a pairwise model,
namely, an Ising model if the data are binary or a Potts
model if the data have more than two types. From a statistical
point of view these are inference problems in exponential
families [1], while from a physical point of view the approach
has been called the inverse Ising or Potts problem [2,3] and
direct-coupling analysis (DCA) [4,5].

Since DCA was first successfully used to find interpro-
tein contacts in two kinds of protein dimers [4], it has
been used to identify various biological interactions, such
as native contacts of proteins [3,5–7], nucleotide-nucleotide
contacts of RNAs [8], multiple-scale protein-protein inter-
actions [9,10], amino acid–nucleotide interactions in RNA-
protein complexes [11], and synergistic effects of mutations
(epistasis) not necessarily related to spatial contacts [12–14].
Moreover, an exciting perspective has been opened: Contact
prediction of DCA can also be integrated into structure-
prediction methodology to approach in silico prediction of
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protein three-dimensional structures from primary sequences
(see, e.g., [15–20] for some important contributions, [21] for
a highlight, and [22] for a recent review).

To set the stage for the following discussion we introduce
basic notions. A set of similar (homologous) sequences can be
arranged in a matrix such that each column contains, as often
as possible, like symbols. Such a matrix is called a multiple
sequence alignment (MSA). The rows in an MSA are the
individual sequences, and a column corresponds to a position
along the structure, which we will refer to as a locus. In real
biological data some sequences typically lack one or several
long or short subsequences, which give rise to gaps in the
MSA. In nucleotide sequence data gaps are often represented
by the International Union of Pure and Applied Chemistry
code N (any nucleotide). An MSA is hence represented by
an N × L matrix consisting of N sequences where each, with
possible gaps, fits into L loci.

We continue by stressing that the actual use of DCA is
comprised of two steps: (1) learning a pairwise model from
an MSA and (2) providing a relatively small set of predictions
according to the inferred model (for further assessment and
use). Hence two challenges are posed. We will refer to the
number of parameters in the pairwise model as P and the
number of retained predictions as K.

The first challenge is learning a pairwise model from
data. Straightforward implementation of maximum likelihood
(ML) estimation is not computationally feasible for the data
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of current interest. Therefore, various approximations to ML
have been used in DCA, starting with message passing [4]
and mean-field approximation [5]. A different estimator called
pseudolikelihood maximization (PLM) was introduced in the
DCA field in [3] and is currently considered the best [23].
Given infinite samples, PLM has the important property of
statistical consistency, meaning that it will, with probability
one, give the same result as ML, provided the data were
generated by a model in the exponential family. However,
in all successful DCA applications to date, the scenario is
very different: The number of samples is typically less or
much less than that of the parameters in the pairwise model.
These basic theoretical results therefore do not in themselves
establish the practical superiority of PLM over other flavors
of DCA; such a conclusion instead relies on empirical testing
or on other arguments. Direct-coupling analysis was reviewed
as a method in biological sequence analysis in [24] and more
recently and more extensively from the methodological point
of view in [22,23].

For the Ising model, several methods concerning this
scenario have been introduced and rigorously analyzed in
[25–28]. An assumption made at several places in these con-
tributions, not otherwise made in DCA, is sparsity, i.e., that a
fraction of the possible pairwise couplings is zero. A second
assumption is use of a criterion common in the machine
learning or statistics literature, that the goal of inference is
to find the sparsity structure. For reasons we will return to
below, this is different from the criterion which has been
common in DCA. The first of these methods [25] relies on
the same main method of pseudolikelihood maximization,
but with a sparsity-promoting �1 regularization, which is
well known to be inferior to �2 regularization in the context
of DCA.

The authors of [25–28] proved strong results of the type
that perfect structure recovery is achievable with only N ∼
ln L samples when the interaction graph is sparse and there
is a gap between the smallest nonzero coupling and the set
of strictly zero couplings. The authors of [27] furthermore
proved that the parameters of an Ising model can be learned by
the RISE algorithm up to small �2 error and with high proba-
bility from N ∼ ln L independent samples, without assuming
a gap (see Theorem 1 therein). An analogous result was later
shown also for the PLM algorithm in [28] (in section S1
of the Supplementary Material of that paper). These results,
however, assume a bounded maximum interaction strength
and bounded degree (β and d in [27,28]) which do not hold
for the random power-law (RPL) and Sherrington-Kirkpatrick
(SK) models we consider in this paper and which are, in
our view, also unlikely to be present in real biological data.
Nevertheless, these quite recent developments point to further
possibilities in algorithm development and we do not exclude
that the RISE and logRISE methods introduced in [27,28] may
turn out to be practically competitive or superior to PLM or
other DCA methods. Such conclusions would however have
to rely on wider empirical testing and are out of the scope of
our paper.

The second challenge is how to choose K to balance
correctness and mistakes of predictions when learning cannot
be perfect due to limited computation resource and/or limited
number of samples. Thus it depends on both the learning

scheme of choice and the criterion according to which the
inference is evaluated. For in silico testing it is clear that
comparison can (and should) be made between the inferred
parameters and the model parameters from which the data
were generated. Due to the high dimensionality of the prob-
lem, such comparisons can however be done in many different
ways. For the case of protein structure, comparison has been
made between inferred parameters and spatial distances in
protein structures. It is well known that in this case only a
small subset of leading parameters yield good predictions, and
we will in the following adopt such a criterion also for in silico
testing. Not much theoretic analysis has been done to date
for such learning criteria, one exception being the regression
model built to estimate prediction accuracy of two DCA
schemes in [29] and the statistical characteristics of learning
in [30].

Let us note that a commonly used rule of thumb in DCA
has been to retain about as many predictions as the data
dimension L. From the common sense point of view that one
should not try to learn more features than one has independent
samples, this is inappropriate unless the MSA is a square or
a thin matrix, i.e., unless N is at least as large as L. For the
genome-scale problems in [14] the MSA was a fat matrix of N

about 103 and L about 105 and the fraction K/P of predictions
that could be retained, according to the common sense rule,
would be less than 10−8. In an extreme extrapolation that the
genome of every living human being on earth was accurately
sequenced, N would be 1010, while L, if approximately every
eighth nucleotide would vary, as has been estimated for the
protein-coding part of the human genome [31], would be
about 5 × 108. The resulting MSA would be thin, but the num-
ber of parameters P of the Potts model would be very large
(about 2 × 1018) and K/P according to the common sense
rule would again be not more than about 10−8. From another
point of view, both the rule of thumb and the common sense
rule would be unnecessarily pessimistic when the scaling N ∼
ln L derived in [25–28] would apply, but as discussed above,
we do not know this to be the case for the data we consider.

The issue we address in this work is the following. Assume
that DCA is to be scaled up to applications where L is
order of 106 or larger (the whole human genome would be
5 × 108 or larger). This will not be possible at all using current
DCA methods since it is already cumbersome to run even
approximate inference methods on the data set whose L is
about 105 (see [14,32]). However, since inference is only
used to retain a very small set of leading predictions, it is
conceivable that the problem can be dimensionally reduced
before inference. We will introduce a straightforward scheme
that makes this possible and show that it works on both in
silico and real data.

The paper is organized as follows. In Sec. II we review
the DCA approach and the PLM computational scheme. In
Sec. III we formally introduce correlation-compressed direct-
coupling analysis (CCDCA) as an inference procedure. We
then test CCDCA on in silico data, with the models and prin-
ciples discussed in Sec. IV and the results presented in Sec. V.
In Sec. VI we present an example where epistatic couplings
are inferred from a collection of whole-genome sequences
of the human pathogen Streptococcus pneumoniae. We show
that CCDCA finds essentially the same leading couplings
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as a much more demanding DCA-based method [14] (see
also [32]).

We note that the current best-performing versions of DCA
for the application in contact prediction of proteins are hybrid
schemes that rely also on other information [19,33–35]. Al-
though such schemes can probably be expected to outperform
pure DCA also in other applications, we are in this paper
only concerned with the performance of DCA and DCA-like
procedures alone.

II. BRIEF SUMMARY OF DIRECT-COUPLING ANALYSIS

The basic assumption behind DCA is that samples are
drawn from a probabilistic model of the Potts model type

P{h,J}(σ ) = 1

Z
exp

(
β

∑
i

hi (σi ) + β
∑
i<j

Jij (σi, σj )

)
. (1)

Here σ ≡ (σ1, σ2, . . . , σL) denotes a configuration of the sys-
tem and σi is the allele (state) of locus i; h ≡ {hi : i ∈ [1, L]}
denotes the set of external fields and J ≡ {Jij : 1 � i < j �
L} denotes the set of pairwise couplings; the parameter β

(inverse temperature) is introduced for later convenience and
here just sets an overall scale of the energy terms. For later
notational convenience, when i > j we define Jij (σi, σj ) ≡
Jji (σj , σi ). For simplicity, in the next section and the rest of
this section, we give formulas for the Ising model, i.e., the
two-state Potts model in the Ising gauge [4,5,36]). Hence, for
all allowed i and j , σi = ±1, hi (σi ) = hiσi , and Jij (σi, σj ) =
Jijσiσj .

Given N observed samples σ (1), σ (2), . . . , σ (N ), the ML
estimation means to minimize the objective function

f (h, J ) ≡ − 1

N

N∑
n=1

ln P{h,J}(σ (n) )

= ln Z − β
∑

i

hi〈σi〉 − β
∑
i<j

Jij 〈σiσj 〉, (2)

where 〈·〉 means averaging over all the N samples. The
optimal values of the parameters h and J are determined by
the variational conditions

1

Z

∂Z

∂hi

= β〈σi〉, (3a)

1

Z

∂Z

∂Jij

= β〈σiσj 〉. (3b)

This requires calculating the partition function Z(h, J ) and
its first derivatives and therefore renders the straightforward
(brute-force or Monte Carlo) implementation of ML only
feasible for small systems. Therefore, various approximate
implementations have been proposed, reviewed in [22,23].

Besides likelihood, pseudolikelihood can also be used for
inference [37,38]; the resultant approach is called pseudolike-
lihood maximization and is also reviewed in [22,23]. Pseudo-
likelihood maximization amounts to maximizing conditional
probabilities for each locus simultaneously or separately and
uses configurations rather than statistics in the inference
process. Among pure DCA, PLM is now considered as the
best-performing one [33,35].

For the Ising model, the conditional probability of observ-
ing one locus σi given the observation of all the other loci σ \i
is

P{hi ,J i }(σi |σ \i ) = 1

1 + exp(−2βσiθi )
, (4)

where J i denotes {Jij : j �= i}, σ \i ≡ σ \ σi denotes the state
of all the other (L − 1) loci, and θi = hi + ∑

j �=i Jij σj is the
instantaneous field on locus i. The corresponding objective
function for locus i in PLM is

f PLM
i (hi, J i ) = 1

N

N∑
n=1

ln
[
1 + exp

(−2βσ
(n)
i θ

(n)
i

)]
. (5)

We can minimize these L objective functions simulta-
neously (symmetric PLM [3]) or separately by removing
the constraint Jij = Jji (asymmetric PLM [36]). Since the
separate optimizations will usually give Jij �= Jji with finite
samples, in [36] the output of asymmetric PLM is taken to be
J PLM

ij ≡ (Jij + Jji )/2. Asymmetric PLM can be easily paral-
lelized and allows for considerable computational speedup as
the optimization problems are also smaller; asymmetric PLM
gives almost the same accuracy for predictions [36] and we
will therefore here also use asymmetric PLM.

Regularization is widely used in DCA literature, partly to
avoid overfitting and partly as a heuristic device to make the
algorithm return a finite and stable answer. As in [36], the �2

regularization is used here; the regularization term for f PLM
i

reads

Ri (hi, J i ) = λhh
2
i + λJ

2

∑
j �=i

J 2
ij . (6)

The factor 2 appears because Jij is present in both f PLM
i and

f PLM
j . It has been observed many times that the identity and

order of the largest inferred couplings in DCA often do not
depend much on regularization; some further examples in this
direction are given in Appendix C.

III. DATA COMPRESSION BEFORE INFERENCE

Although pseudolikelihood maximization and other ap-
proximate inference methods can handle systems much larger
than those for which full maximum likelihood is feasible,
they still cannot be applied to very large systems. Therefore,
further approximations and/or simplifications are called for.
Here we formally introduce correlation-compressed direct-
coupling analysis to address this issue. The principle of
CCDCA is illustrated in Fig. 1.

A list-based presentation of CCDCA, appropriate for Ising
data, is as follows.

(i) Given an N × L MSA data matrix A, first compute the
covariance matrix C with Cij = 〈σiσj 〉 − 〈σi〉〈σj 〉 being the
correlation between the two loci i and j .

(ii) Find the m largest elements (either positive or negative)
of the matrix C and then identify the � loci which appear in
these m elements. Obviously � � 2m.

(iii) Retain these � loci and eliminate all the others. The
original MSA matrix A is then reduced to a smaller N × �

MSA matrix B. This correlation-compressed matrix B then
serves as input for DCA analysis.
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GTGCGATGTCAGCTAGGCGATGCGCTGTATGGCGGTATTG

CAGCGATTTGTGCTCGGCGAGGCGCTGTATGCCGGTATGG
CATCGGTGGATGATCGTCGATGCACAGTGTGCCGGTATGC

GTGCTG

GTTCAG
TGTAGC

σ (1) =

σ (N)=

Cij > Ckl||| | > |Cnp| > ...

σ (1) =

σ (N)=

......

......

ji

σ (2) =

......

~
~

~

......

σ (2) =

FIG. 1. Illustration of CCDCA as applied to nucleotide sequence
data. The input MSA data set is an N × L matrix A, with N

the total number of sample sequences (σ (α), α = 1, 2, . . . , N) and
L the length of each sequence. Each entry is a sequence letter (one of
the four nucleotides A, G, C, and T). In the data analyzed in Sec. VI
one of the sequence letters can also be N (anything). The covariance
matrix Cij between any two loci i and j is then computed by reading
the ith and the j th column of matrix A, and the column pair (i, j )
is given a score. In Sec. VI the score used is MI. The m column
pairs of largest scores are selected. After considering the � � 2m loci
involved in these m pairs, the original MSA matrix A is reduced to
another N × � MSA matrix B for further analysis by some flavors of
DCA.

Our approach is to first reduce the MSA based on measured
correlations and only then apply a DCA scheme such as
PLM. The idea is hence to take “direct” in the acronym DCA
both literally and seriously. We call DCA on the correlation-
compressed data CCDCA. When the flavor of DCA is PLM
we thus alternatively call the resulting algorithm correlation-
compressed pseudolikelihood maximization (CCPLM). This
is the flavor assessed and used in the following sections of the
paper; two other flavors of DCA (naive mean-field inversion
and regularized least squares) are considered in Appendix B.

As a historical note we note that an approach similar to
CCDCA was in fact used in the very first papers on DCA [4],
but has not been used in the DCA literature since. The motiva-
tion in [4] was that the message-passing flavor of DCA used
at that time did not scale up well to values of L on the order of
100. This shortcoming was later overcome using other flavors
of DCA. Our motivation is in many ways similar in spirit in
that no version of DCA currently in use scales up to L of the
order of 106 or beyond.

IV. TEST SETS AND EVALUATION PROCEDURES

The study of inverse Ising and inverse Potts problems
began about a decade ago stimulated by early results in
neuroscience [39], before it was widely appreciated that the
success of DCA on practical data sets rests on ‘both’ the
inference procedure ‘and’ the choice to retain only some
largest predictions. Controlled tests were done generating data
from some known distribution and then checking how well the

parameters could be recovered. Most of these tests were done
using the root-mean-square (rms) criterion and J matrices
generated by some variant of the SK model [40] (see [2] for
an early review, [38,41] for two representative examples at the
time, and [23] for a recent comprehensive survey).

Neither of these choices is however suitable as to how DCA
methods are currently used. The rms criterion includes all
predictions in the J matrix rather than just the largest ones,
and therefore does not reflect how well a method recovers the
leading couplings. In a standard SK model on L spins with
Gaussian couplings, the typical values of the couplings scale
as 1/

√
L and the largest values follow a Gumbel extreme

value distribution with size about
√

ln L/
√

L. All the cou-
plings are then of very similar values, so this should in fact be
a very challenging case, possibly much more so than realistic
data. We will for completeness and back-compatibility also
consider this model, but current practice in DCA additionally
calls for other model classes and other evaluation criteria, as
we will now discuss.

A. Random power-law test model class

As another test model class, relatively simple to describe,
we propose the RPL model class as follows.

(a) The magnitudes of the elements of J are generated ac-
cording to a power-law distribution, with a probability density
function ρ(x) = cx−γ for x in some interval xl � x � xu.
The exponent γ is tunable and c is a normalization constant.
If γ > 1, then c = (1 − γ )/[x1−γ

u − x
1−γ

l ].
(b) The signs of the elements of J can be chosen either all

positive (ferromagneticlike model) or randomized (spin-glass-
like model).

(c) All elements are generated as independently and iden-
tically distributed random variables with the above charac-
teristics. For the Ising model (q = 2) this just means that
the coupling coefficients Jij are independently and identically
distributed random variables as above, while for Potts mod-
els (q > 2) we take all the elements of the q × q coupling
matrix between any two loci as independently and identically
distributed random variables.

Obviously many similar distributions could be considered,
e.g., relaxing the biologically questionable assumption that
the elements in a q × q coupling matrix are independent, but
such extensions will be left for future work. The essence of the
RPL class is that the coupling constants are widely distributed
in size.

B. Sherrington-Kirkpatrick test model class

We also consider the more traditional SK spin-glass model,
where conventional DCA methods have been extensively
tested in silico in the past. In Sec. V we apply CCPLM on
SK model data. The coupling constants Jij in this model
will be quenched independently and identically distributed
Gaussian random variables with mean zero and variance 1/L.
The coupling constants are hence narrowly distributed around
zero; there are no exceptionally strong interactions.
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C. Evaluation by scatter diagrams

When testing DCA procedures on in silico data, a most
natural graphical procedure is by scatter diagrams. By this
measure the inferred value of an interaction coefficient is
given as the ordinate (value on the y axis) plotted against the
true value given as the abscissa (value on the x axis). If the
inference procedure is accurate, the points will lie along the
diagonal (y = x). If there are systematic differences between
large interactions and other interactions, as there will be in the
test cases described below, this will show up as deviations of
the data cloud from the diagonal.

D. Evaluation by true positive rate

A general evaluation procedure when using DCA on real
data was introduced in [4] and has been used since in most
empirical work and DCA applications. It has however not
been equally used in testing on model classes and we will
therefore introduce it formally.

(i) Generate coupling coefficients or matrices Jij according
a preferred scheme, in our case the RPL or SK as in the
previous sections.

(ii) Draw N independent samples from the Gibbs-
Boltzmann distribution with those model parameters. In prac-
tice this has to be done with the Markov-chain Monte Carlo
(MCMC) and may have issues with convergence for strongly
coupled systems (low temperature). In the tests below we
will therefore limit ourselves to weakly coupled systems (high
temperature).

(iii) Consider the two lists

J true = ∣∣J true,1
ij

∣∣ �
∣∣J true,2

ij

∣∣ � · · · ∣∣J true,k
ij

∣∣,
J pred = ∣∣J pred,1

ij

∣∣ �
∣∣J pred,2

ij

∣∣ � · · · ∣∣J pred,k

ij

∣∣
of the k strongest true interactions and the k strongest pre-
dicted interactions, where | · | is a suitable norm. Compare
the lists and determine how many elements l they have in
common. The true positive rate (TPR) of the k strongest
couplings is then defined as

TPR(k) ≡ l

k
. (7)

E. Evaluation by visualization

In Sec. VI below we consider real data where the true
couplings are unknown. In fact, it is then not known if it
is a good approximation to assume that the data have been
generated from a Potts model or what model class describes
the data at all. In a recent paper [14] couplings were inferred
by a modified DCA procedure and then discussed from the
viewpoint of plausibility and relevance in the light of how the
data had been obtained and known facts of S. pneumoniae
biology. In this work we compare results from CCDCA to
those of [14] by a visual procedure where couplings are
displayed as lines in a circular plot and the darkness of a
line is proportional to the coupling strength. The strongest
inferred couplings thus stand out as isolated black lines on a
gray background formed by many weaker inferred couplings.
The circular plots are produced by CIRCOS [42].

Given a list of scored couplings, evaluation by visualiza-
tion proceeds as follows.

(a) Partition the whole genome into nonoverlapping win-
dows of size 100 base pairs (bp).

(b) Couplings connected between the same two windows
are replaced by a coarse-grained coupling, the score of which
is simply the sum of scores of couplings to be replaced. The
two end points of coarse-grained coupling are the beginning
of the two windows.

F. Evaluation of CCDCA on in silico data

We evaluate our CCDCA method as follows. First we
generate coupling coefficients according to model test classes
such as RPL or SK (described in Sec. IV) and then we
generate N independent samples from the Gibbs-Boltzmann
distribution. This yields an N × L MSA which we call data
matrix A. We apply DCA on A to get the values of all
couplings and compute a true positive rate TPRA(k). For this
to be feasible L cannot be very large, as discussed above.

The CCDCA method consists in reducing A to a smaller
data matrix B on which we run DCA. This leads to a new
set of couplings obtained by CCDCA and to new true positive
rates TPRB (k). The evaluation of the data reduction scheme
then proceeds by comparing the couplings obtained from
DCA and CCDCA in a scatter diagram and by comparing
TPRA(k) to TPRB (k). Obviously, such an evaluation can only
be done on relatively small systems as otherwise we could
not run the DCA on the huge matrix A at once. If it works, it
would however support the idea to use the same procedure on
very large data sets.

V. RESULTS ON IN SILICO DATA

In this section we describe the results of CCDCA on the
RPL and SK models. The data dimension L is 1024. For RPL
we use the power-law exponent γ = 3, lower cutoff xl = 1,
and upper cutoff xu = ∞. For the regularization, we use
throughout λh = λJ = 0.01. Other choices of regularization
parameters are discussed in Appendix C and are shown to
have only small effects on the result of the inference, in
agreement with the literature. Further parameter choices are
discussed together with the presentations of the results. Some
results on the SK model with planted couplings are presented
separately in Appendix D.

We schematically show results for the ferromagnetic and
spin-glass couplings and for the severely undersampled and
slightly undersampled problems and different levels of com-
pression in the CCDCA step. For the ferromagnetic case the
signs of all the Ising terms in Eq. (1) are positive, while for the
spin-glass case they have random signs. For the ferromagnetic
model the critical temperature Tc was estimated to be around
1900, while for the spin-glass model the Tc was estimated
to be around 120 (see Appendix A). We note again that β

is here not a physical temperature, but only sets an overall
scale of the couplings. We here report results only from the
high-temperature regime where T ≡ β−1 is larger than Tc by
some margin and so we expect that in all cases considered
the MCMC will converge fast enough such that the sam-
pled configurations obey the Gibbs-Boltzmann equilibrium
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FIG. 2. Scatter diagrams of inferred couplings vs true couplings for ferromagnetic RPL data. The number of spins is L = 1024 and the
number of samples (obtained at T = 2500) is (a)–(d) N = 0.5L and (e)–(h) N = 16L. (a) and (e) Scatter diagrams of the covariance elements
Cij as the inferred couplings. Also shown are scatter diagrams of the inferred couplings being the CCPLM results at different levels of
compression: CCPLM on MSA from the subsystem of size (b) � = 16 (with m = 8), (c) � = 32 (with m = 16), (d) � = 64 (with m = 32), (f)
� = 16 (with m = 8), (g) � = 31 (with m = 16), and (h) � = 61 (with m = 32).

distribution. In the results shown here the severely undersam-
pled case has N = L/2 configurations, i.e., the MSA is a
fat matrix of shape 1:2. The other case, also undersampled,
analogously has N = 16L; the MSA is a thin matrix of shape
16:1. Both settings are undersampled because N is much less
than the total number of model parameters P , which is of
order L2.

Figures 2 and 3 show the performance of CCDCA as
scatter diagrams and also the performance of using bare
correlations as predictors for the coupling coefficients. We
see that CCPLM has similar performance to PLM in iden-
tifying the strongest interactions in the system. When the
number of sampled configurations is relatively large (i.e.,
N = 16L) the quantitative predictions by CCPLM on the
strongest interactions are rather accurate, even though the
subsystem contains only very few loci of the original system
[Figs. 2(e)–2(h) and 3(e)–3(h)]. When the configurations are
severely undersampled (i.e., N = 0.5L) there is a high danger
of false-positive DCA results (namely, some weak interac-
tions were predicted to be strong); but even in this difficult
case the values of the few strongest coupling constants are
still predicted relatively accurately by the CCPLM method
[Figs. 2(a)–2(d) and 3(a)–3(d)]. The couplings Jij in the
RPL instances have quite different values and some of them
are very strong (e.g., up to Jij ≈ 700). The correlations Cij

between the strongly interacting loci i and j are then naturally
quite strong too. Indeed, for the strongest couplings in the
spin-glass case [Figs. 3(a) and 3(e)], the scatter diagram of

Cij vs Jij practically falls on a single curve, though not
on a straight line. For this reason the strongest covariance
coefficients can alone serve as good indicators of the strongest
direct interactions in the RPL class. The additional advantage
of CCPLM (and full PLM) is that then the strengths of the
strongest direct interactions can also be estimated, as one
can see from the practically straight lines in Figs. 2(f)–2(h),
3(b)–3(d), and 3(f)–3(h).

Figure 4 displays the same data as true positive rates. For
the severely undersampled cases [Figs. 4(a) and 4(c)] CCPLM
is basically able to retrieve to the leading (largest) couplings as
well as full PLM, while for couplings beyond the compression
threshold CCPLM falls below the other curves. Bare correla-
tion analysis works for these instances almost as well as full
PLM, a result that can also be deduced from, in particular,
Fig. 3(a). Qualitatively the same behavior is also found for
the better-sampled data [Figs. 4(b) and 4(d)]. For the better-
sampled spin-glass RPL data [Fig. 4(d)] correlations alone are
quite good predictors of the identity of the strongest coupled
pairs, a result which can also be read off from Fig. 3(e). As
discussed above, the actual values of the couplings are less
well predicted by bare correlations, with more scatter or more
nonlinear deviations away from the diagonal in the scatter
diagrams (Figs. 2 and 3).

We then turn to applying CCPLM to the SK spin-glass
model. As Fig. 5(a) suggests, the covariance Cij scales
roughly linearly with the coupling constant Jij in the high-
temperature region, but there is a high degree of dispersion
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FIG. 3. Same as Fig. 2 but for a spin-glass RPL instance (L = 1024 and temperature T = 300). The number of samples is (a)–(d) N = 0.5L

and (e)–(h) N = 16L. The size of the subsystem is (b) � = 16 (with m = 8), (c) � = 29 (with m = 16), (d) � = 57 (with m = 32), (f) � = 16
(with m = 8), (g) � = 31 (with m = 16), and (h) � = 56 (with m = 32).

due to undersampling of equilibrium configurations (here we
use N = 16L). If the sampled configurations are used by
PLM to infer the coupling constants, the qualitative agreement
with the true values is better but not perfect [Fig. 5(b)].
Results in this direction were obtained already in the early
DCA literature (cf. [38,41]) and have recently been developed
further [23,43]. We here apply CCPLM on the subsystem
corresponding to the m strongest covariance elements. The
inference results for the subsystem of sizes � = 16 (for m =
8), � = 31 (for m = 16), and � = 62 (for m = 32) are shown
in Figs. 5(c), 5(d), and 5(e), respectively. The predicted values
of the coupling constants in these subsystems are in good
agreement with the true values. The CCPLM method therefore
is capable of identifying the strongest interactions also in these
systems, but the inferred values of the coupling coefficients
are less accurate than in the RPL class.

In the main text of the paper we consider only PLM,
but as shown in Appendix B, our CCDCA method can also
be combined in the same way with other DCA methods
such as naive mean-field inversion [44] and regularized least
squares [45]. In Appendix B we also discuss the effect of
temperature on the inference performance.

VI. RETRIEVAL OF EPISTATIC COUPLINGS FROM
WHOLE-GENOME BACTERIAL DATA BY CCDCA

In this section we discuss retrieving couplings on the
genome scale from real data. The general biological term
for combinatorial effects in fitness is epistasis [46]. All the
settings where DCA has been applied can be considered as

special cases of epistasis, generated by the physical interac-
tions of residues in a protein or by any other mechanism. As
in the DCA literature overall, we here assume that inferred
Ising or Potts parameters directly measure epistasis. The phe-
nomenon of correlated variations between loci in data is called
linkage disequilibrium [47]. Linkage disequilibrium can be
due both to epistasis and to shared ancestry of loci at close
enough genomic positions. In the following we will separate
long-range couplings, which are unlikely to result from shared
ancestry, from short-range couplings, where linkage disequi-
librium could be caused by both epistasis and shared ancestry.

In recent years data sets have been obtained on whole
genomes of samples from entire bacterial populations. Typ-
ically, for these data sets, L is not larger than a few million
(size of a bacterial genome) and N is not larger than a few
thousand (largest current data set). In practice, genomes in
naturally occurring organisms only vary on a subset of all
positions, thus the number of varying loci L may reduce to
a few hundred thousand. Still, the number of Potts model
parameters to describe a distribution over 100 000 loci would
be on the order of 1010 and to learn such models directly from
data is very challenging.

In two recent contributions PLM was used to analyze
epistasis in the human pathogen S. pneumoniae (the pneumo-
coccus). In the first approach [14] the pneumococcal genome
was split into about 1500 chunks. One locus was randomly
selected from each chunk and PLM was run on this (much
reduced) set, then run again on a new random selection, and
so on. A putative interaction was scored by how many times
it appeared in the lists of top interactions, each of which was
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FIG. 4. True positive rates [Eq. (7)] for the random power-law model, with couplings being [(a) and (b)] ferromagnetic (FM) and [(c) and
(d)] spin-glass (SG). The data dimension L = 1024 and the power-law exponent γ = 3. Results are shown for sample numbers (a) and (c)
N = 0.5L and (b) and (d) N = 16L. Temperatures are T = 2500 for the ferromagnetic case and T = 300 for the spin-glass case, in both
cases well above the estimated critical temperature. The elements of the coupling matrix J are ranked according to the covariance matrix C

(circles), the PLM predictions on the whole system (squares), or the PLM predictions on the correlation-compressed subsystem constructed
using m = 8 (stars), m = 16 (crosses), and m = 32 (triangles) strongest covariance elements.

learned from a random selection. This scheme requires many
such samples, in practice several tens of thousands. In the
second approach [32] an optimized version of PLM was run
on all the loci at once and the inferred Potts model parameters
were used as in standard DCA. Both methods yield very
similar results, but both also lead to substantial computation
time. We will here see how well CCDCA manages on this
challenging real-world data set, assuming that the results
from [14] can be taken as ground truth. Evaluation will be
the visual comparison as described in Sec. IV E.

A. Preparation of data

The data contain the genome alignment for 3156 isolates of
S. pneumoniae downloaded from the data repository [48]. The
nucleic acid codes contained in these data are A, C, G, T, and
N (with N meaning complete uncertainty on the type of nu-
cleic acid). The length of sequences is 2 221 315 bp. Thus the
data are severely undersampled. A Potts model fitted to these
data (with gauge chosen) would have (q − 1)2 × L(L − 1)/2
parameters for pairwise interaction and L(q − 1) parameters
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FIG. 5. Comparison of PLM and CCPLM on the SK model. There are L = 1024 spins and p = L(L − 1)/2 coupling constants. A total
number of N = 16L independent equilibrium configurations are sampled at temperature T = 2. (a) Relation between the covariance element
Cij and the true coupling constant Jij . (b) Relation between the predicted coupling constant J PLM

ij and the true value Jij for the whole system.
(c)–(e) Relation between the predicted coupling constant and the true coupling constant for the subsystem of size (c) � = 16 (obtained by
considering the m = 8 strongest covariance elements), (d) � = 31 (for m = 16), and (e) � = 62 (for m = 32).
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for local fields, where q = 5 and L = 2 221 315, in total about
4 × 1013 parameters.

As said above, genomes in naturally occurring organisms
only vary on a subset of all positions. Fixed sites in genome
will show little correlations to others, thus will convey little
information about epistasis. By removing some frozen sites
(discussed below), we can significantly reduce the system size
to be considered. Skwark et al. [14] implement a filtering pro-
cedure, which includes removal of frozen loci, before apply-
ing the DCA-derived method. Not only to reduce the system
size to be considered, but also to achieve a direct comparison
of CCDCA with DCA-derived method used in [14], we first
use the same criteria to filter the data, i.e., to remove loci
that are not bi-allelic and loci that lack information. For each
locus, ignoring N, we denote the most common letter (among
A, C, G, and T) as major and the second most common one as
minor; when counters of letters are equal, alphabetical order
is used. The filtering criteria are as follows.

(i) Remove multi-allelic loci. A locus is considered as
multi-allelic when the counter of the third most common letter
(among A, C, G, and T) is not zero.

(ii) Remove frozen loci. A locus is considered as frozen
when its minor allele frequency (MAF) is less than 0.01. For
bi-allelic loci, the MAF is computed by

MAF = minor

major + minor
. (8)

(iii) Remove loci which have high uncertainty. A locus is
considered as highly uncertain when its frequency of the letter
N is larger than 500/3156 ≈ 0.158.

Among the 2 221 315 loci, 2 177 096 loci are bi-allelic, out
of which 113 237 loci have MAF at least 0.01; moreover, we
got 81 506 loci after removing 31 731 highly uncertain ones.
By the filtering procedure we reduce the number of states q

from 5 to 3: N , major, and minor. In the context of statistical
physics, the resulting MSA data set is a collection of 3156
configurations for a q = 3 Potts model with 81 506 nodes; by
construction major is the most common symbol at all loci and
we therefore (trivially) expect to find everywhere the inferred
external field favoring the state major.

As a simple correction to sampling bias of biological se-
quence data, reweighting is widely used in DCA literature [3–
5,36]. We also apply it here. After reweighting with threshold
x = 1 (namely, if k � 2 rows of the 3156 × 81 506 MSA
matrix are identical, only one of them is kept while the other
k−1 rows are eliminated), the number of configurations went
from 3156 to 3145, i.e., only a very small change.

B. Results

All results presented in this section have been obtained
from the code available at GitHub [49]. Apart from our central
computational pipeline (CCPLM) used to obtain the data of
Fig. 6, the GitHub repository also holds code to compute
correlations (CC) for Fig. 8 and a reimplementation (PLM)
of plmDCA [36], which can run on whole bacterial genomes.
That code can be run to directly obtain data similar to those
in Fig. 7. For back-compatibility, and since our focus in
this paper is CCDCA, we show in Fig. 7 instead a different
visualization of the data published in [14].

FIG. 6. The 6003 long-range couplings among the 1.2 × 105

strongest ones identified by CCPLM with 3 × 104 largest corre-
lations. Numbers outside the rim indicates genomic positions in
units of 1000 bp. The darkness of the lines represents the strength
of couplings. The number of loci involved is 9304. Short-range
couplings, the distance of which is smaller than 10 000 bp, are not
shown here. (See Fig. 11 in Appendix E for the visualization of all
1.2 × 105 strongest couplings.) Positions 293, 332, and 1613 are the
genes pbp2x, pbp1a, and pbp2b, respectively.

To quantify correlations of two loci by a scalar, we use as
in [4] the mutual information (MI). The first step in CCDCA
is hence to find for each pair of loci a real number which
is the MI between corresponding two columns in the MSA,
then to order the pairs by these numbers in descending order,
and then to identify the set of loci which are members in the
list of m top-ranking pairs. On this subset of loci (MSA B)
we then run DCA. We use as the underlying DCA scheme
the asymmetric version of PLM [36] with hyperparameters
λh = 0.1 and λJ = 0.05. The inferred couplings between loci
i and j are scored by a modified Frobenius norm where the
state N is not counted, i.e.,

Sij =
√√√√ 3∑

si=2

3∑
sj =2

J 2
ij (si, sj ), (9)

where si = 1, 2, 3 represents the locus i being N, major, and
minor, respectively (and so does sj ) and the coupling matrix
Jij (si, sj ) is in the Ising gauge [3,4]. This scoring scheme is
analogous to the plmDCA20 method described in [50] [where
only amino-acid residues (nongap states) were included in the
scoring], which was there shown to improve the accuracy of
contact prediction in a large test set of protein families.

The results obtained by CCPLM from 9304 loci involved
in the 3 × 104 strongest correlations are shown in Fig. 6.
Numbers outside the rim indicate genomic positions in units
of 1000 bp and the numbering goes through the whole S.
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FIG. 7. The 5199 long-range strong couplings identified in [14]
depicted with the same visualization procedure as for Fig. 6. Besides
the links among genes pbp2x, pbp1a, and pbp2b, one can also
identify the link to dyr (position 1530) and the triad of interactions
involving divIVA (position 1600), pspA (position 120), and a site
upstream of gene ply (position 1890).

pneumoniae genome presented in the data. Lines connecting
genomic positions indicate the 6003 long-range couplings
among the 1.2 × 105 strongest ones identified by CCPLM
with 3 × 104 largest correlations. The darkness of lines repre-
sents the strength of couplings. Here we only show the long-
range couplings, the distance of which is at least 10 000 bp
(Fig. 11 in Appendix E shows the visualization including
short-range ones). The details of visualization are described
above in Sec. IV E.

As a comparison, the results reported in [14] are revisu-
alized in Fig. 7 with the same procedure. The interactions
between genes pbp2b and pbp2x as well as between pbp2x
and pbp1a are immediately visible in both figures. It is also
possible to identify other links discussed in [14] (see the
caption to Fig. 7) as well as the characteristic absence of
couplings involving loci at positions 1170–1290.

As another comparison, the 1.2 × 105 strongest correla-
tions of the 9304-locus subsystem are also visualized in Fig. 8,
where the short-range ones are not shown again. The link be-
tween genes pbp2x and pbp1a is also visible here. However, in
Fig. 8 there are many other links not identified as significant in
Figs. 6 and 7. They are presumably spurious because they do
not stand out among correlations of the whole system (Fig. 12
in Appendix E). As noted in Sec. III, correlations can be
caused by both direct and propagated couplings. By applying
DCA, we can further identify direct couplings among strong
correlations.

To demonstrate the robustness of CCDCA with the number
of top correlations used, we also show the results of CCDCA
with 1 × 104 largest correlations in Appendix E. The appear-
ance of figures is quite similar.

FIG. 8. The 19 224 long-range correlations among the 1.2 × 105

strongest ones of the subsystem from which the results shown in
Fig. 6 are obtained.

In conclusion, the agreement between results obtained by
CCDCA and the DCA-derived method in [14] should be
deemed fair, especially given that CCDCA here represents
a very significant simplification of the computational task.
Although some results from [14] (Fig. 7) can also be identified
directly from correlations (Fig. 8), the agreement between
CCDCA and DCA is better overall.

VII. DISCUSSION

We have in this work introduced correlation-compressed
direct-coupling analysis as a convenient method to detect the
strongest direct interactions from data sets (MSAs) so large
that direct application of DCA is cumbersome or not feasible.
We have validated this method on synthetic data sampled
from the random power-law model and standard Sherrington-
Kirkpatrick model, as well as (in Appendix D) the SK model
with some additional planted large couplings. Results are
good to very good for all cases tested. We have also shown
that CCDCA allows one to recover, at very low computational
overhead, the results on whole-genome bacterial population-
wide sequence data obtained in [14].

A large amount of work on inference from biological
data has been done in neuroscience and related fields (see,
e.g., [51–53]). Usually some nodes are then hidden from
experimental measurement. This poses challenges different
from those in the study of sequence data, where all nodes can
be observed, but where the system size can be very large. The
latter is the scenario we have addressed here.

We have in this work so far not given detailed perfor-
mance measures since the components of CCDCA either are
standard (computation of covariance matrices) or have been
amply documented in the earlier literature (using PLM on a
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correlation-compressed MSAs). For the data sizes tested in the
present paper the main computational bottleneck of CCDCA
is to compute the covariance matrix based on the empirical
data. Since the calculations of correlations are independent of
each other, this task can be easily parallelized. For the MSA
data set after filtering in Sec. VI the total time used to compute
all the correlations by a MATLAB implementation available
at GitHub [49] was about half an hour on a 56-core server
with four Intel Xeon E7-4850 v3 processors, which translates
to about 30 core hours. The runtime memory used is about
70 GB when storing all correlations in memory. In practical
applications this task can be further simplified by maintaining
a running list of the m strongest correlations and discarding
all the other elements (or several running lists for parallelized
implementation). By comparison, the results in [14] required
approximately 500 000 core hours. Results from PLM, the
reimplementation of plmDCA which we provide in [49],
required on the order of 20 000 core hours, while the results
from another and more code-optimized reimplementation of
plmDCA presented in [32] required on the order of 10 000
core hours. The CCDCA thus transforms DCA with single-
nucleotide resolution on the genome scale from something
that requires a sizable compute cluster to something that
can be done in a reasonable time on a stand-alone desktop
computer.

A theoretically and conceptually interesting point which
we leave to future work is a more detailed comparison of
the distributions of the couplings obtained from correlation
analysis, from PLM, and from CCPLM.

In summary we have demonstrated a means of application
of DCA-like methods to very large data sets of biological
interest by using intelligent preprocessing to reduce compu-
tational costs by a large factor.
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APPENDIX A: TEMPERATURE CHOICES

Since the power-law distribution involved in RPL models
is not bounded above and the exponent is 3, the variance is
not finite. Therefore, we cannot rescale couplings with respect
to system size, as in the Sherrington-Kirkpatrick model, to
make the free energy intensive. As a result, the phase diagram
can only be determined instance by instance. In Fig. 9 we
show the phase diagrams of instances used for ferromagnetic
and spin-glass RPL models. For each instance, we explore
three temperatures: One is apparently lower than the transition
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point, one is close, and one is apparently higher. Accordingly,
the temperatures chosen for the ferromagnetic RPL instance
are 1500, 2000, and 2500; for the spin-glass RPL instance, we
choose T = 100, 120, and 300.

APPENDIX B: DETAILED COMPARISONS OF RPL DATA

In Figs. S1–S12 of [54] we present detailed comparisons
between DCA and CCDCA on RPL data. Figures S1–S6
show comparisons on few-sample data (N = 0.5L), whereas
Figs. S7–S12 show comparisons on many-sample data (N =
16L).

Besides the DCA flavor used in the main text, PLM, two
more DCA flavors are considered here: naive mean-field in-
version (NMFI) [44] and regularized least squares (RLS) [45].
The NMFI gives couplings by the formula

J NMFI
ij = − 1

β
(C−1)ij . (B1)

The NMFI is not applicable when the rank of the data matrix
is not high enough, i.e., when the covariance matrix is not
invertible. The RLS gives couplings by the formula

J RLS
ij = − 1

β
[(C2 + λ1)−1C]ij . (B2)

With positive λ, this formula avoids the conditioning problem
of inverting the covariance matrix. The RLS can also be con-
sidered as an �2-regularized NMFI. Here λ = λJ /2 = 0.005.

Due to the difficulty of sampling according to Gibbs-
Boltzmann distribution at low temperature, some many-
sample data of the spin-glass RPL instance do not contain
enough independent samples and thus are not feasible for
NMFI. So comparisons of NMFI and CCNMFI are only
performed on all many-sample data of the ferromagnetic RPL
instance and high-temperature many-sample data of the spin-
glass instance, as shown in Figs. S7–S9 and S12. For data
which are not feasible for NMFI, the results of RLS are also
bad, especially on the data of spin-glass RPL instance.

Comparing Figs. S1–S6 with Figs. S7–S12, we can find
that a few samples are usually not enough to identify even the
largest coupling unless the temperature is high. In Fig. S1b
all TPR curves fall to zero because temperature is low and
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samples are few: The quality of data is so poor that many
correlations paired with small couplings are stronger than
correlations paired with large couplings; with more samples,
as shown in Fig. S7, all methods are able to identify leading
couplings with more samples. The oscillation of TPR curves
indicates that couplings of similar strength are ranked in the
wrong order, e.g., in Fig. S7b TPR obtained by the C method
(ordering couplings by correlations) drops at k = 2 because
the method ranks the third largest couplings above the second
largest one. In Fig. S4b the hill-like TPR curve obtained by the
C method indicates that the method cannot identify the largest
coupling but finds some other large ones; similar hill-like TPR
curves appear in Figs. S5, S10, and S11.

According to Figs. S1–S12, we can conclude that leading
couplings can be identified by CCDCA when they can be
identified by DCA no matter the DCA flavor is PLM, RLS,
or NMFI.

APPENDIX C: DEPENDENCE OF RESULTS IN THE MAIN
TEXT ON THE REGULARIZATION STRENGTH

In the main text, the regularization strength of PLM λh =
λJ = 0.01. In Figs. S13–S16 of [54], we provide comparisons
of PLM and CCPLM with three choices of regularization
coefficient (λh = λJ ∈ {0.1, 0.01, 0.001}); the conclusion that
CCDCA has the similar ability to DCA concerning identifying
leading couplings is not changed.
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FIG. 10. The (a), (e), and (i) DCA and (b)–(d), (f)–(h), and (j)–(l) CCDCA on a chain SK model containing L = 1024 spins and p =
L(L − 1)/2 couplings Jij . A total number of N = 16L equilibrium spin configurations are sampled from this model at temperature T = 5.
(a)–(d) Relation between coupling Jij and covariance element Cij . (e)–(h) and (i)–(l) Relation between the predicted coupling J PLM

ij and the
true coupling Jij ; the results are obtained with regularization parameter (e)–(h) λ = 10−2 and (i)–(l) λ = 10−5. The analysis is of (a), (e), and
(i) the whole system and the subsystems with (b), (f), and (j) � = 15 (according to the m = 8 strongest covariance elements); (c), (g), and (k)
� = 19 (for m = 16); and (d), (h), and (l) � = 20 (for m = 32) spins.
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APPENDIX D: CCDCA ON THE SK MODEL
WITH PLANTED COUPLINGS

In this appendix we consider a simply modified SK model
with planted couplings in the form of two chains of strongly
interacting loci. The test will then be to see how well CCDCA
can recover the planted couplings. The system is constructed
as follows.

(a) Generate a graph for the SK model. The number of
spins is L = 1024; each of {Jij } is an independently and
identically distributed Gaussian random variable with mean
zero and variance L−1.

(b) Add one ferromagnetic chain of length 10 by modi-
fying nine coupling constants as Jij ← Jij + 10 for (i, j ) ∈
{(1, 2), (2, 3), . . . , (9, 10)}.

(c) Add one antiferromagnetic chain of length 10 by mod-
ifying nine coupling constants Jij ← Jij − 10 for (i, j ) ∈
{(11, 12), (12, 13), . . . , (19, 20)}.

For the conventional SK model, the critical temperature
Tc = 1. Since we modify only 18 of 1024 × 1023/2 ≈ 5 ×
105 couplings in the system, when the temperature is much
higher than Tc, most of the spins in the system are only weakly
coupled, except those in the two chains. The spins in the two
chains are strongly correlated even if they are not directly
coupled with each other [Fig. 10(a)]. We can perform DCA
analysis on the N sampled equilibrium configurations through
PLM. This method assigns a value to each of the P = L(L −
1)/2 coupling constants. As demonstrated in Figs. 10(e) and
10(i), the performance of this method is relatively good
even when the number of sampled configurations N is much
smaller than the total number of parameters P .

In the case of undersampling (N � P) the aim is not
so much to infer all the coupling constants but to identify
the most significant interactions. For this latter task we can
construct a subsystem by retaining only the spins involved in
the strongest correlations. As demonstrated in Fig. 10 (second,
third, and fourth columns), the CCPLM works fine for this
problem instance. It is able to distinguish the true interactions
even if the subsystem only contains from 15 to 20 spins.

APPENDIX E: ADDITIONAL RESULTS ON THE
WHOLE-GENOME DATA SET

Here we present additional results on the real data.
First, as a supplement to Fig. 6, the visualization including

short-range couplings is shown in Fig. 11, which visualizes
all 1.2 × 105 strongest couplings identified by CCPLM with
3 × 104 largest correlations. This figure is almost the same as
Fig. 6 except that short-range couplings are not filtered out but
are depicted near the rim. As before, lines represent coarse-
grained couplings and their darkness represents the strength.
Here not only long-range couplings appear lighter, but also
their difference in darkness becomes vague: Some short-range
couplings are stronger than all long-range ones and thus limit
the range of darkness for long-range ones. Since the length of
genes is on the order of 104 bp and the focus of this work is
epistasis, we rule out couplings shorter than 104 bp to make
long-range strong couplings stand out.

Second, in Fig. 12 we show the 2423 long-range cor-
relations among the 1.2 × 105 strongest ones of the whole

FIG. 11. The 1.2 × 105 strongest couplings identified by CC-
PLM with the 3 × 104 largest correlations. This figure supplements
Fig. 6 by showing short-range couplings as well as long-range ones.
Short-range couplings are depicted near the rim and long-range
couplings are depicted inside; there is a visible margin between them.

genome after filtering. Comparing with Fig. 8, we can tell that
some correlations, which are not strong in the whole genome,
will stand out in the correlation-compressed subsystem. Then
DCA justifies its ability to distinguish direct couplings from

FIG. 12. The 2423 long-range correlations among the 1.2 × 105

strongest ones of the whole genome after filtering.
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FIG. 13. The 1.2 × 105 strongest couplings identified by CC-
PLM with the 104 largest correlations.

propagated ones by filtering out these seemingly important
correlations, as shown in Fig. 6.

Third, as a demonstration of CCDCA being robust to the
number of correlations used, the results of CCDCA with the
104 largest correlations are shown in Figs. 13 and 14, which

FIG. 14. The 52 790 long-range couplings among the 1.2 ×
105 strongest ones identified by CCPLM with the 104 largest
correlations.

show visualization with and without short-range couplings,
respectively. The lines between genes pbp2x and pbp1a as
well as those between pbp2x and pbp2b stand out in both
figures, as in Fig. 6.
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