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Abstract—This paper deals with estimation of the permanent-
magnet (PM) flux in sensorless synchronous motor drives.
A back-electromotive-force (back-EMF)-based observer is aug-
mented with an adaptation law for the PM flux magnitude.
The gains of the augmented observer are designed based on the
linearized model. The proposed design makes PM flux estimation
independent of speed estimation and enables straightforward
analytical pole placement of the observer. Practical design guide-
lines are given. The proposed design is evaluated by means of
simulations and laboratory experiments using a 2.2-kW interior
PM synchronous motor drive.

Index Terms—Observer, parameter adaptation, permanent
magnet (PM), speed sensorless, stability conditions.

I. INTRODUCTION

Sensorless control is a relevant technology in permanent-
magnet (PM) synchronous motor drives. As an example,
removing the need for a fragile motion sensor makes it
possible to reduce the overall size and to improve reliability
in traction drives. Rotor-position estimation for sensorless
control is typically realized using a back-electromotive-force
(back-EMF)-based observer [1]–[4], augmented with a signal-
injection method for operation at lowest speeds.

At low speeds, the back-EMF-based observers are sensitive
to errors in the stator resistance. As the speed and the back-
EMF increase, position estimation becomes more sensitive to
errors in the magnetic model parameters. The inductances (or
saturation characteristics) can be identified during the self-
commissioning stage without rotating the shaft [5], [6]. On the
other hand, the PM flux cannot be properly estimated without
spinning the rotor. If the application allows only standstill
commissioning, a rough estimate for the PM flux can be
computed based on the motor nameplate data. The PM flux
also changes with temperature [7]–[9]. Inaccuracies in the PM-
flux estimate result in decreased control performance, position
estimation errors, and even instability [10].

To increase the accuracy of the PM-flux estimate, online
identification and adaptation schemes have been proposed [8],
[11]–[14]. In [14], the back-EMF-based observer is augmented
with a parameter adaptation law for the PM flux. Moreover, the
PM flux is estimated from the d-direction current estimation
error with an integral adaptation law while the speed is
obtained from the q-direction estimation error [14].

In this paper, a back-EMF-based observer augmented with a
PM-flux adaptation law is considered. The main contributions
are:

1) The PM-flux adaptation law considered in [14] is mod-
ified in such a way that PM-flux estimation can be
designed independently of speed estimation. This mod-
ification simplifies the observer design and eliminates
undesired transients from the PM-flux estimate.

2) Analytical expressions for the gains of the augmented
observer are developed in a form, which allows placing
the closed-loop poles of the linearized estimation-error
dynamics.

3) Practical design guidelines are given for the free design
parameters of the augmented observer.

The observer design is evaluated by means of simulations
and laboratory experiments using a 2.2-kW interior PM syn-
chronous motor drive.

II. MOTOR MODEL

Real space vectors are used. Vectors are denoted using bold-
face lowercase letters and matrices using boldface uppercase
letters. For example, the current vector is i = [id, iq]

T, where
id and iq are the components of the vector. The identity matrix
is I = [ 1 0

0 1 ] and the orthogonal rotation matrix is J = [ 0 −11 0 ].
The electrical rotor angle is ϑm and the electrical angular

rotor speed is ωm = dϑm/dt. The electrical radians are used
throughout the paper. In rotor coordinates, the inductance ma-
trix and the PM-flux linkage vector, respectively, are denoted
by

L =

[
Ld 0
0 Lq

]
ψf =

[
ψf

0

]
(1)

where Ld is the direct-axis inductance, Lq is the quadrature-
axis inductance, and ψf is the PM flux. The machine model
is expressed in estimated rotor coordinates, whose d-axis is
aligned at ϑ̂m with respect to the stator coordinates. The stator
flux linkage is

ψ = L′i+ψ′f (2)

where the inductance matrix and PM-flux vector, respectively,

L′ = eϑ̃mJL e−ϑ̃mJ ψ′f = eϑ̃mJψf (3)

depend nonlinearly on the estimation error ϑ̃m = ϑm− ϑ̂m of
the rotor position. The stator voltage is

u = Ri+
dψ

dt
+ ω̂mJψ (4)

where R is the resistance and ω̂m = dϑ̂m/dt is the angular
speed of the coordinate system.
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Fig. 1. (a) Block diagram of the sensorless control system. The DC-link
voltage udc and the phase currents are measured. The deadtime effect and
power device voltage drops are compensated for in the pulse-width modulator
(PWM) using the phase-current feedback. Space vectors in stator coordinates
are marked with the superscript s. (b) Internal structure of the observer. The
blue lines and blocks represent PM-flux adaptation.

III. OBSERVER

A. Structure

Fig. 1(a) shows the overall structure of the sensorless control
scheme. Fig. 1(b) shows the internal structure of the observer,
operating in estimated rotor coordinates. The flux observer is
defined by [4]

dψ̂

dt
= u−Ri− ω̂mJψ̂ +Ke (5a)

e = Li+ ψ̂f − ψ̂ (5b)

where K is a 2× 2 observer gain matrix, the estimated PM-
flux vector is ψ̂f = [ψ̂f , 0]

T, and estimates are marked with a
hat. The correction vector e is equal to the difference between
the measured current and the estimated current, scaled by the
inductance matrix.

As shown in Fig. 1(b), the proportional-integral (PI) mech-
anism is used to drive the error signal ε1 to zero by adjusting
the speed estimate

dω̂mi

dt
= ε1 (6a)

ω̂m = kpε1 + kiω̂mi (6b)

where kp and ki are the gains and ω̂mi is the integral state.
The speed estimate is further fed to the integrator for getting
the position estimate as

dϑ̂m
dt

= ω̂m (7)

The error signal used in (6) is defined by means of the scalar
product

ε1 = λTJe (8)

where the projection vector λ can be a constant vector or it
may depend on ψ̂ and i.

The PM flux is adapted using the integral mechanism

dψ̂f

dt
= kfε2 (9)

where kf is the adaptation gain and the error signal is

ε2 = λTe (10)

As can be noticed from (8) and (10), the orthogonal com-
ponents of the correction signal e are used to calculate the
error signals ε1 and ε2. Furthermore, the magnitude of the
projection vector λ is irrelevant due to the adaptation gains,
while its direction affects the properties of the observer.

B. Linearized Estimation-Error Dynamics

The nonlinear estimation-error dynamics can be linearized
for analysis purposes, as explained in [14], [15]. The
operating-point quantities are marked with the subscript 0. The
accurate model parameters are assumed, making the operating-
point estimation errors zero, e.g., ϑ̂m0 = ϑm0, further leading
to L′0 = L and ψ′f0 = ψ̂f0 = ψf . The standard linearization
procedure of (2)–(10) gives a state-space representation

dx

dt
= Ax+B1ωm +B2ψf (11a)

ω̂m = C1x+D1ψf (11b)

ψ̂f = C2x (11c)

where the state vector and system matrices are

x =


ψ̃

ψ̂f

ω̂mi

ϑ̃m

 B1 =


0
0
0
1

 B2 =


k0

−kfλd0
−λq0
kpλq0



A =


−K0 − ωm0J −k0 0 K0Jψa0

kfλ
T
0 kfλd0 0 −kfλT

0 Jψa0

λT
0 J λq0 0 λT

0ψa0

−kpλT
0 J −kpλq0 −ki kpλ

T
0ψa0


C1 =

[
kpλ

T
0 J kpλq0 ki −kpλT

0ψa0

]
C2 =

[
0 1 0 0

]
D1 = kpλq0 (12)

and ψ̃ = ψ − ψ̂ is the flux estimation error. Furthermore, in
order to simplify the notation, an auxiliary flux linkage vector
is defined as

ψa0 = (L+ JLJ)i0 +ψf

=

[
(Ld − Lq)id0 + ψf

−(Ld − Lq)iq0

]
=

[
ψad0

ψaq0

]
(13)

and the gains are given by

k0 =K0

[
1
0

]
λ0 =

[
λd0
λq0

]
(14)
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Fig. 2. Linearized model of the estimation-error dynamics.

The properties of (11) depend on the observer gain K0, the
projection vector λ0, the speed-adaptation gains kp and ki,
and the PM-flux adaptation gain kf .

Fig. 2 shows the block diagram corresponding to the
linearized model. The transfer functions are obtained from
(11). As examples, the transfer function from the actual speed
ωm(s) to the estimated speed ω̂m(s) is

G11(s) =
ω̂m(s)

ωm(s)
= C1(sI−A)−1B1 (15)

and the transfer function from the actual PM-flux ψf(s) to the
PM-flux estimate ψ̂f(s) is

G22(s) =
ψ̂f(s)

ψf(s)
= C2(sI−A)−1B2 (16)

The closed-form expressions for these transfer functions can
be easily calculated using any symbolic mathematics package.

IV. PROPOSED GAINS AND DESIGN GUIDELINES

A. Proposed Gain Selection

A gain selection for the observer with PM-flux adaptation is
proposed. The analysis is based on the linearized model (11),
which is of the fifth order and has two inputs and two outputs.
To ease the gain selection, the dynamics of this system are to
be splitted and to be partly decoupled.

Based on the system matrix A in (12), the speed-adaptation
loop can be decoupled from the flux observer and from
the PM-flux adaptation loop if the following conditions are
fulfilled

K0Jψa0 = 0 λT
0 Jψa0 = 0 (17)

resulting in G21(s) = 0 in Fig. 2. The latter condition can be
met simply by choosing a suitable projection vector

λ0 =
ψa0

‖ψa0‖2
(18)

Only the direction of the vector λ0 is relevant, while the
magnitude of λ0 is chosen to simplify the following ex-
pressions. It is also worth noticing that the projection vector
λ0 = [λd0, 0]

T, which is often applied for speed estimation
[14], [15], does not fulfil the latter condition in (17).

1) Flux Observer: The first condition in (17) is also met,
if the observer gain matrix is selected as [4], [16]

K =

[
k′1
k′2

]
ψT

a0

ψad0
=

[
k′1 −βk′1
k′2 −βk′2

]
(19)

where k′1 and k′2 are free parameters and β is an auxiliary
variable given by

β = −ψaq0

ψad0
=

(Ld − Lq)iq0
ψf + (Ld − Lq)id0

(20)

The division by ψad0 in (19) is introduced in order to simplify
the following equations only.

For pole placement purposes, the parameters k′1 and k′2 are
selected as

k′1 = −k1 +
k2a

ωm0
k′2 = −k2 −

k1a

ωm0
(21)

where the coefficient a ≥ 0 is related to the pole location of
PM-flux adaptation. The gains k1 and k2 are given by

k1 = −b+ β(c/ωm0 − ωm0)

β2 + 1
k2 =

βb− c/ωm0 + ωm0

β2 + 1
(22)

where the coefficients b ≥ 0 and c ≥ 0 are related to the
pole locations of the flux observer. If the PM-flux adaptation
bandwidth is zero (a = 0), the observer gain reduces to the
gain in [4], [16], where no PM-flux adaptation is used.

2) Speed Adaptation: Under the proposed gain selection,
the transfer function (15) from the actual speed to the speed
estimate reduces to

ω̂m(s)

ωm(s)
=

(s+ a)(s2 + bs+ c)(skp + ki)

(s+ a)(s2 + bs+ c)(s2 + skp + ki)

=
skp + ki

s2 + skp + ki
(23)

where the speed-adaptation gains kp > 0 and ki > 0 are
now directly the coefficients of the characteristic polynomial.
Even if the flux-observer dynamics and the PM-flux adaptation
dynamics cancel out from (23), they still are a part of the
whole system and the corresponding closed-loop poles should
be properly placed.

3) PM-Flux Adaptation: If the PM-flux adaptation gain is

kf = −
ac

λd0ω2
m0

(24)

the transfer function (16) reduces to

ψ̂f(s)

ψf(s)
=

(ac/ω2
m0)(s

2 + ω2
m0)(s

2 + skp + ki)

(s+ a)(s2 + bs+ c)(s2 + skp + ki)

=
(c/ω2

m0)(s
2 + ω2

m0)

s2 + bs+ c

a

s+ a
(25)

It can be noticed that because the conditions in (17) are met,
the speed-adaptation loop does not affect the operation of the
PM-flux adaptation loop. This decoupling feature simplifies
the design procedure of the observer, since PM-flux adaptation
can be designed independently of speed adaptation. However,
the coupling between the flux observer and the PM-flux
adaptation loop still exists.



TABLE I
DATA OF A 2.2-kW INTERIOR PM SYNCHRONOUS MOTOR

Parameter Value Value (p.u.)

Rating
Voltage (phase-neutral, peak)

√
2/3 · 370 V 1

Current (peak)
√

2 · 4.3 A 1
Frequency 75 Hz 1
Speed 1 500 r/min 1
Torque 14 Nm 0.80

Model
Resistance R 4.75 Ω 0.095
d-axis inductance Ld 36 mH 0.34
q-axis inductance Lq 51 mH 0.48
PM flux ψf 0.57 Vs 0.89

B. Design Guidelines

1) Flux Observer: In the following, some design guidelines
for the observer with PM-flux adaptation are given. In order to
keep the observer gain (19) within reasonable limits, the design
parameters b and c should be selected such that the closed-
loop poles of the flux observer remain in the vicinity of the
open-loop system poles, which can be solved from det(sI −
RL−1 − ωm0J) = 0. The damping of the open-loop poles
decreases as the speed increases [4]. In the closed-loop system,
it is favorable to increase the damping of the poles at higher
speeds. This condition can be achieved, e.g., by selecting the
design parameters as follows [16]

b = b′ + 0.75|ω̂m| c = 1.5b|ω̂m| (26)

At zero speed, the flux-observer poles are placed at s = 0 and
s = −b′. It is recommended to choose the constant b′ larger
than R/Ld and R/Lq [4].

2) Speed Adaptation: The two poles related to the speed-
adaptation loop can be placed at s = −ωo, i.e,

kp = ωo ki = ω2
o (27)

where ωo can be considered as an approximate speed-
adaptation bandwidth. It is favourable to select the bandwidth
of the speed-adaptation loop to be at least 20 . . . 30 times
higher than the bandwidth of the speed-control loop.

3) PM-Flux Adaptation: The actual PM-flux magnitude
changes slowly as a function of the temperature. The PM-flux
adaptation dynamics (25) are governed by the flux-observer
poles, the pole at s = −a, and the zeros at s = ±jωm0. Due
to these speed-dependent dynamics, it is advisable to enable
PM-flux adaptation only at medium and higher speeds, e.g.,
at |ω̂m| > 0.25 p.u. Furthermore, the parameter a should have
a lower value (e.g., a = 0.1 p.u.) in order to make the pole at
s = −a to dominate the PM-flux adaptation dynamics,

ψ̂f(s)

ψf(s)
≈ a

s+ a
(28)

Higher values for a could also be selected, but then a does not
anymore represent the approximate bandwidth of the PM-flux
adaptation loop.
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Fig. 3. Areas of stable operation (marked with blue color) in the space of the
angular speed ωm and actual torque T . The relative parameter uncertainty
in parameter estimates Ld, Lq, and R is: (a) 25%; (b) 50%. The stable
operation areas are limited due to the id,ref = 0 control principle. With the
MTPA control principle, the corresponding stable areas would be larger.

V. ROBUSTNESS ANALYSIS

The effect of the parameter errors on the local stability of
the estimation-error dynamics is analyzed via the linearized
model. The stability analysis can be carried out as follows.
First, the erroneous values of the inductances and the stator
resistance are inserted in the observer equation (5) and in the
auxiliary flux linkage vector (13). The actual (correct) motor
parameters are inserted in (1). Then, the steady-state operating
point (i.e. ψ̃0 and ϑ̃m0) is solved from (1)–(5) by assuming
dψ/dt = dψ̂/dt = e = 0. Finally, the nonlinear model
(2)–(10) is linearized in the vicinity of the given operating
point in a similar manner as (11), taking into account the
effects of the parameter errors. If the steady-state operating
point does not exist or if any of the five eigenvalues of the
linearized system matrix has a positive real part, the observer
is considered unstable. Otherwise, the observer is considered
stable.

In the following examples, the parameters of a 2.2-kW
six-pole interior PM given in Table I are used. The design
parameters are: b′ = 2π · 20 rad/s, ωo = 2π · 100 rad/s,
and a = 2π · 7.5 rad/s. For the sake of simplicity, the
id,ref = 0 control principle is applied. Fig. 3 shows areas
of stable operation in the space of the angular speed and
actual torque with erroneous model parameters. The relative
parameter uncertainty is 25% in Fig. 3(a) and 50% in Fig. 3(b).
The same relative uncertainty is assumed in all the parameter
estimates at every speed-torque point and only the worst case
is illustrated.

It can be noticed that slightly higher torque can be obtained



in the motoring mode than in the regenerating mode. For
example, if the parameter uncertainty is 25%, the motoring
torque of 1 p.u. can be reached at ωm0 > 0.04 p.u. If the
parameter uncertainty is 50%, the motoring torque of 1 p.u.
can be obtained at ωm0 > 0.10 p.u. However, this analysis
does not include any errors there might be in the output
voltage. With exact parameter estimates, any torque value
could be reached, except at zero speed, where the observer is
only marginally stable. The maximum available torque in this
study is strongly limited due to the id,ref = 0 control principle.
This makes the system very sensitive to overestimation of Lq.
If the maximum torque-per-ampere (MTPA) control principle
is applied, the stable operation areas in Fig. 3 would clearly
increase.

VI. RESULTS

A. Implementation of a Control System

The motion-sensorless control system with PM-flux adap-
tation is evaluated by means of simulations and experiments
using the 2.2-kW interior PM synchronous motor drive. The
parameters of the motor are given in Table I. A sensorless con-
trol system was implemented on a dSPACE DS1006 processor
board, following the guidelines given in [4]. The stator currents
and the DC-link voltage are sampled in the beginning of each
PWM period; both the switching and sampling frequencies
are 5 kHz. The inverter nonlinearities are compensated for
using a simple current feedforward method. The actual rotor
speed is measured using an incremental encoder only for
monitoring purposes. The control scheme shown in Fig. 1(a)
was augmented with a speed controller (having the bandwidth
of 2π · 2 rad/s), which provides the torque reference based
on the speed reference and the estimated speed. The current
controller has the bandwidth of 2π · 200 rad/s. For simplicity,
the d-axis current reference id,ref = 0 is applied. Thus, the
q-axis current reference is iq,ref = 2Tref/(3pψ̂f).

B. Dynamic Performance

Fig. 4(a) shows the simulated response of PM-flux adapta-
tion in a no-load condition at the speed of 750 r/min. PM-
flux adaptation is enabled at t = 0.01 s. As predicted by the
linearized model, PM-flux adaptation affects speed adaptation.
Fig. 4(b) shows the corresponding experimental results, which
match very well with the simulation results. The rise time of
the PM-flux estimate from 10% to 90% is approximately 45
ms, which agrees very closely with the designed approximate
bandwidth a = 2π · 7.5 rad/s.

C. Sensitivity to Parameter Errors

Fig. 5 demonstrates the sensitivity of the observer to the
PM-flux error. The motor is first accelerated to half the rated
speed, and a 10-Nm load-torque step is applied at t = 2.6
s. Initial value of the PM-flux estimate is ψ̂f(0) = 0.49 Vs
and the actual value is ψf = 0.57 Vs (the error is 15%). The
actual value is obtained from a separate test, where the no-load
back-EMF voltage is measured at half the rated speed. PM-
flux adaptation is enabled at t = 4 s. It can be seen from Fig. 5

(a)

(b)

Fig. 4. Dynamic response of PM-flux adaptation: (a) simulation results; (b)
experimental results. First subplot: estimated speed, actual speed, and speed
reference. Second subplot: PM-flux estimate, its initial value, and actual PM
flux.

that the PM-flux estimate converges rapidly to the actual value
and, simultaneously, the position-estimation error disappears.

Fig. 6 shows the sensitivity of the observer to the stator-
resistance error. The motor is operating at the speed of
375 r/min and PM-flux adaptation is enabled throughout the
sequence. The resistance estimate is erroneous between t = 1
and t = 5 s. Moreover, a 10-Nm load-torque step is applied
at t = 3 s. It can be seen that the PM-flux estimate becomes
inaccurate at this lower speed, if the resistance estimate is erro-
neous while the load torque is applied. Similar test sequences
were applied to test the sensitivity to the inductance errors.
According to the results, the observer is sensitive mostly to
the errors in Lq and R.

VII. CONCLUSIONS

A back-EMF-based observer with PM-flux adaptation for
motion-sensorless synchronous motor drives is proposed. A



Fig. 5. Experimental results showing the effect of the PM-flux error. PM-flux
adaptation is enabled at t = 4 s. First subplot: estimated speed, actual speed,
and speed reference. Second subplot: estimated torque. Third subplot: angle-
estimation error. Last subplot: PM-flux estimate, its initial value, and actual
PM flux.

gain selection is proposed for the augmented observer based on
the linearized model. The proposed gain selection makes PM-
flux estimation independent of speed estimation and enables
straightforward analytical pole placement of the observer.
Based on the simulation and experimental results, fast and
accurate estimation of the PM flux can be obtained.
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