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A B S T R A C T

There are no commonly agreed ways to assess the total energy consumption of the Internet. Estimating the
Internet's energy footprint is challenging because of the interconnectedness associated with even seemingly
simple aspects of energy consumption.

The first contribution of this paper is a common modular and layered framework, which allows researchers to
assess both energy consumption and CO2e emissions of any Internet service. The framework allows assessing the
energy consumption depending on the research scope and specific system boundaries. Further, the proposed
framework allows researchers without domain expertise to make such an assessment by using intermediate
results as data sources, while analyzing the related uncertainties. The second contribution is an estimate of the
energy consumption and CO2e emissions of online advertising by utilizing our proposed framework. The third
contribution is an assessment of the energy consumption of invalid traffic associated with online advertising. The
second and third contributions are used to validate the first.

The online advertising ecosystem resides in the core of the Internet, and it is the sole source of funding for
many online services. Therefore, it is an essential factor in the analysis of the Internet's energy footprint. As a
result, in 2016, online advertising consumed 20–282 TWh of energy. In the same year, the total infrastructure
consumption ranged from 791 to 1334 TWh. With extrapolated 2016 input factor values without uncertainties,
online advertising consumed 106 TWh of energy and the infrastructure 1059 TWh. With the emission factor of
0.5656 kg CO2e/kWh, we calculated the carbon emissions of online advertising, and found it produces 60 Mt
CO2e (between 12 and 159 Mt of CO2e when considering uncertainty). The share of fraudulent online advertising
traffic was 13.87 Mt of CO2e emissions (between 2.65 and 36.78 Mt of CO2e when considering uncertainty).

The global impact of online advertising is multidimensional. Online advertising affects the environment by
consuming significant amounts of energy, leading to the production CO2e emissions. Hundreds of billions of ad
dollars are exchanged yearly, placing online advertising in a significant role economically. It has become an
important and acknowledged component of the online-bound society, largely due to its integration with the
Internet and the amount of revenue generated through it.

1. Introduction

In 2013, the total energy usage of the ICT technology industry was
estimated to be 1500 TWh (Mills, 2013). The aforementioned total ICT
energy usage multiplied by the German electricity mix emission factor
of 0.5656 kg CO2e/kWh (Kern et al., 2015), the CO2e emissions were
over 848 million tons. The Internet's share of the global electricity
consumption was 10% in 2014 (Mills, 2013): As a reference, the entire

global residential space heating in 2014 consumed the same amount
(International Energy Agency, 2017a). The expectation is that the
emissions will grow to 1.3 billion tons of CO2e in 2020, attributing to
2.3% of the world's CO2e emissions (IHS Technology, 2015). Online
advertising is a major social and economic driver of the information
society. First, up until today, online advertising is associated with
funding online search services, map services, and social media, to bil-
lions of users. Second, the market volume of online advertising reached
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$72.5B in the US alone in 2016 with an annual growth rate of 22%
(PwC, 2017). Third, online advertising represents a source of jobs. For
instance, recent studies have estimated that 0.9M (0.4%) direct and
5.4 M (2.5%) indirect jobs were associated with online advertising in
the EU-28 workforce in 2014 (IHS Technology, 2015). Fourth, online
advertising represents a fundamental source of income of companies
known for their technological innovations, such as Google or Facebook
(Google, 2017; Facebook, 2017). Therefore, the sustainable growth of
this industry is seen as important.

The continuous increase of digital services such as streaming video,
web browsing or data exchange over time has attracted some attention
towards the environmental impact of the Internet. Direct environmental
impact of digital services results from the energy consumption of de-
vices involved in delivering the service and from the resources con-
sumed to manufacturing and disposing of the devices (Schien and
Preist, 2014). The Internet is a collection of over 50,000 independent
networks and a large install base of routers (Gupta et al., 2015; Schien
and Preist, 2014). The Internet architecture is evolving and changing:
tablets and smartphones create new ways to access the Internet on top
of desktops and laptops, and clouds and data centers are changing the
traditional way of assessing the environmental impact of the Internet
(Bull and Kozak, 2014). The key stakeholders on the Internet include
more than 300 Tier-2 Internet service providers (ISPs), and tens of Tier-
1 ISPs and Internet exchange points (IXPs) providing locations where
multiple networks exchange traffic and routes (Gupta et al., 2015).

Malmodin et al. 2007 study found that the ICT sector produced
1.3% of the worldwide CO2 emissions and consumed 3.9% of global
energy production. Given the growth of ICT since 2007, this is a
growing percentage (Bull and Kozak, 2014). More than 80% of the
population in developed countries are heavy Internet users (Ji and
Hong, 2016). Estimates of energy intensity, kWh/GB, of the Internet,
vary significantly; in literature, we found results ranging from 136
kWh/GB (Koomey et al., 2004) to 0.0064 kWh/GB (Baliga et al., 2011),
a factor of more than 21,000. The definition of the Internet is not
constant throughout literature. Depending on the study, the Internet as
a system might include only networks, while other studies also include
data centers and all related equipment. These differences can be con-
sidered the main reason for the large variance in published results
(Coroama et al., 2015).

The impact of digitalization on the global economy is challenging to
define. Despite the positive impacts of dematerialization, dec-
arbonization, and demobilization, there is increasing concern about the
complexity and uncertainty in the environmental impact assessment
(EIA) of ICT (Salahuddin et al., 2016). Another cause of concern is
whether services moving online are sustainable development, rather
than a burden on the environment. Favorable and adverse environ-
mental impacts can be found on all system levels depending on the
depth of causal chains and the time span assumed (Hilty and Page,
2015). The ICT sector is complex, interdependent, contains un-
certainties and it is scale-dependent (Bull and Kozak, 2014). As a dy-
namic industry, it disrupts many other industries. In addition, there is a
possible rebound effect; even though the energy intensity of devices has
improved, the scale of use has increased at a rate which results to the
total increase of energy consumption (Bull and Kozak, 2014).

There is a need for a comprehensive framework for EIA of Internet
services. The framework must be modular and support many layers of
analysis to overcome the complexity of the Internet. The considerable
variability in results in previous studies and level of uncertainties in-
dicate a need for a common framework. Many of the previous studies
focus on device level analysis (Andrae and Edler, 2015; Ishii et al.,
2015; Lambert et al., 2012) rather than the services on top of them.
There are excellent research papers on methodologies of EIA (Morgan,
2017; Jones and Morrison-Saunders, 2017; Bidstrup et al., 2016;
Cardenas and Halman, 2016; Leung et al., 2015; Pope et al., 2013) and
case studies illustrating some of the Internet's pain points (Aslan et al.,
2017; Kern et al., 2015; Whitehead et al., 2015; Whitehead et al., 2014;

Bull and Kozak, 2014; Schien and Preist, 2014). The key findings from
previous literature can be formed into a general framework for asses-
sing the impact of any Internet service, including online advertising.

This research aims to determine a common framework, utilizing
best practices, for assessing the energy consumption and CO2e emis-
sions part of the EIA of the Internet or a sub-segment of it. The eco-
nomic and social impacts of the Internet are not in the focus of our
research. The second aim is to validate the results by utilizing the de-
termined framework to conduct the EIA of online advertising. The third
aim is to approximate the impact of fraudulent online advertising on
energy consumption and CO2e emissions. To the best of our knowledge,
this has not been studied previously.

Our research contributes to the ongoing discussion of methodology
in the EIA of Internet-related technologies and services. In addition, we
contribute an assessment of online advertising energy consumption and
CO2e emissions, to reveal a major consumer of energy for decision
makers and regulators. Even with uncertainties taken into account, the
energy consumption and CO2e emissions are substantial.

Section 2 defines the materials and methods that have been used.
Section 3 introduces the results and uncertainties. Section 4 discusses
the results, and finally, in Section 5, the conclusions are presented.

2. Materials and methods

In the following chapters, we present previous knowledge, our fra-
mework, and methods used for conducting the EIA of online adver-
tising.

2.1. Previous knowledge on methods

In this subsection, we present a short introduction to the main as-
sessment methods and provide the essential concepts required for any
impact assessment. Furthermore, we present some research previously
conducted on the Internet domain and introduce domain-specific as-
pects of conducting an impact assessment found in the articles. The aim
is to provide solid reasoning and theoretical background for our fra-
mework development and avoid known mistakes.

2.1.1. Main assessment methods
There are three main assessments regarding the environment: 1)

Life Cycle Assessment (LCA), 2) Impact Assessment (IA), and 3)
Environmental Impact Assessment (EIA).

LCA is a systematic and transparent method for assessing environ-
mental impacts associated with the creation, use and disposal of pro-
ducts and systems, from the cradle to the grave (Bull and Kozak, 2014;
Ji and Hong, 2016, Whitehead et al., 2015, ETSI Standard, 2015). LCA
is at a high level of abstraction (Ji and Hong, 2016). LCA has developed
over the last decades, and there are international standards and
guidelines written on it. LCA is related to a functional unit. However,
different methodological choices can be made based on the aim and the
scope of the assessment (Arushanyan et al., 2014). In practice, all LCAs
include simplifications. The impacts of the simplifications to the output
are not always well-known and explicitly addressed in the studies
(Moberg et al., 2014). The six main challenges of LCA are: defining the
functional unit, boundary selection, allocation, spatial variation, local
environments, and data availability (Bull and Kozak, 2014). There is a
need for streamlined tools, which are built on comprehensive and de-
tailed frameworks that can be used by non-experts (Whitehead et al.,
2015).

IA is defined as a technical tool for analyzing the consequences of a
planned action (Leung et al., 2015; Bond et al., 2018; Bidstrup et al.,
2016). IA reflects the positivist theory, or rationalism, implying better
data leads to better decisions (Bond et al., 2018). Characteristics of a
solid IA include: 1) aiming for the best outcome possible with given
resources and constraints, 2) providing given outcome and constraints
with the smallest resources, 3) adopting the best procedures, 4) ensures
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legal conformance, 5) includes fair judgements, and 6) can be trans-
lated into practice.

EIA is a catalyst for change (Jones and Morrison-Saunders, 2017)
and a globally established multidisciplinary tool to promote sustain-
ability (Pope et al., 2013; Loomis and Dziedzic, 2018). EIA predicts
various impacts of a project on its surroundings. Impacts include bio-
physical, social and health environments. An effective EIA follows the
following guidelines: complies with best practices, documents have
been well prepared, proper methods for impact assessment have been
chosen, influences decision-making and balances economic and eco-
logic aspects (Loomis and Dziedzic, 2018). EIA has several strengths: it
is widely acknowledged, comprehensive procedural guidance on it ex-
ists, it has an international body of practitioners, it offers different
perspectives and theoretical bases, and affects decision-making (Pope
et al., 2013). The weaknesses include capacity issues in many countries,
weak practices in alternative consideration, an expanding range of
practices, low baseline data quality, assumptions, degree of uncertainty
and low public participation. Unfortunately, EIA is not integrated into
the design process of a project proactively; rather it is preventive in
nature (Pope et al., 2013).

2.1.2. Assessment standards
There are at least two widely acknowledged standards for con-

ducting a LCA in the ICT domain: the ICT sector guidance built on the
greenhouse gas (GHG) protocol product life cycle accounting and re-
porting standard (ICT Sector Guidance, 2017) and the European Tele-
communications Standards Institute (ETSI) ES 203 199 standard for
environmental engineering; methodology for environmental LCA (ETSI
Standard, 2015).

The GHG Protocol ICT sector guidance provides methods for cal-
culating GHG emissions for ICT products with a focus on ICT services.
The primary domains included are telecommunication network ser-
vices, desktop managed services, cloud and data center services,
hardware, software and transport substitution (ICT Sector Guidance,
2017). According to the GHG protocol, LCA is more suitable for pro-
ducts than to intrinsically complex ICT services. The GHG protocol is
still in the development phase. GHG protocol suggests practitioners
should apply their expertise to determine the suitable technique or
option to use, depending on the type of assessment and the data
available. In addition, the protocol suggests matching the data collec-
tion effort for any specific process or item to the expected significance
of the related emissions (ICT Sector Guidance, 2017).

The GHG protocol gives allocation guidelines for ICT services. In
general, data traffic, number of ports used, and number of subscribers
are appropriate allocation drivers. However, for the customer domain
use stage, multi-functional goods allocation can be done by measuring
or estimating the power consumption of the device and estimating the
usage profile. Alternatively, usage-based allocation of end-user devices
to services can be estimated with a number of subscribers or amount of
peak bandwidth or mean traffic. The energy consumption of service will
have some functional dependence on the mean traffic. The allocation
can take on a variety of different calculation methods to account for the
service traffic dependence on the equipment power (ICT Sector
Guidance, 2017).

ETSI standard 203 199 for environmental engineering provides re-
quirements and methodologies for ICT LCA. At the time the present
document was published in 2015, ETSI acknowledged that meeting all
requirements is challenging and may not be possible. ETSI introduces
three layers of relevant ICT domains built on top of each other: services,
networks, and goods. ICT services inherit methods from networks and
goods. According to the ETSI standard, boundaries should not overlap
to avoid double counting when an ICT service is assessed. ICT networks
should be grouped into fixed and wireless networks. In addition, an ICT
network should consist of customer premises (terminals, terminating
goods and protectors), access network goods, and a core network. The
annual network use should be defined concerning the traffic scenario

and the different node types required to perform the intended function.
According to ETSI, the basic functionality of a mobile communication
system is the possibility to communicate with speech and data “any-
where, anytime” (ETSI Standard, 2015).

According to the ETSI standard, multi-functional devices accessing
more than one ICT network, the share of data traffic shall be used to
allocate devices to an access network. The impact of each ICT device
used should be allocated to the service based on either estimated or
measured use time or amount of data traffic (ICT Sector Guidance,
2017). When considering a data center where the ICT service is oper-
ated, the impact to the energy usage should be allocated based on the
number of subscriptions or the amount of data (ETSI Standard, 2015).

2.1.3. Structure of an impact assessment
The fundamental concepts of the impact assessment include the best

practices, boundary selection, allocation, and uncertainty analysis. The
best practices are formed by governments, professional associations,
industries, funding agencies, and researchers. The best practices have
been criticized for slowing creativity and innovations, losing contextual
information, for the loss of adaptive learning, the bias of fitting the
problem into given best practice, being a mechanistic process and de-
creasing critical thinking among practitioners (Morgan, 2017).
Boundary selection defines which devices, processes and activities are
included in the assessment. A system boundary should be implicit (Bull
and Kozak, 2014). Ideally, a system boundary is established after re-
viewing existing data and verifying specific flows are not significant to
merit inclusion (Bull and Kozak, 2014). With any complex assessment,
like with assessing the energy consumption of the Internet, plurality is
essential to gather the relevant sciences together to form an assessment
containing aspects of social, moral, economic and ecologic points of
views (Bond et al., 2018).

Allocation is a method for dividing the environmental burdens of a
multi-functional process. Allocation can be done by sub-dividing bur-
dens into sub-processes, based on physical relationships, or based on
non-physical relationships. As an alternative, the product system can be
expanded to avoid allocation altogether (Bull and Kozak, 2014). In this
study, we have combined the best practices, allocation into sub-pro-
cesses, and allocation based on the non-physical relationship of traffic
allocation.

Uncertainties to any assessment can arise from the following rea-
sons: 1) poorly measured data, 2) data gaps, 3) unrepresentative proxy
data, 4) model uncertainty, 5) unobservable data, 6) outdated data and
7) methodological choices (Bull and Kozak, 2014). Impact assessments
usually lack spatial variation and local environment data, and the ef-
fects are assumed to be global and homogenous, thus creating un-
certainties (Bull and Kozak, 2014). For the Internet, globalism is natural
as it has no national boundaries. However, when considering CO2e
emissions created by the Internet, the local grid mix is a significant
factor.

2.1.4. Assessments in the Internet domain
Most of the Internet IAs defines a functional unit around a product.

Only a few studies have been modeled around a service (Bull and
Kozak, 2014). There are four methodological approaches to assess In-
ternet energy consumption: 1) top-down, 2) bottom-up, 3) model based,
and 4) the unified method. The top-down methodology based analyses
require two distinct factors: 1) the energy consumption of the whole
system or a part of the system, and 2) the total traffic associated with
the system in question (Coroama and Hilty, 2014; Coroama et al., 2015;
Ishii et al., 2015; Aslan et al., 2017). The top-down methodology can
produce a relatively large estimation error (Ishii et al., 2015; Schien and
Preist, 2014; Aslan et al., 2017; Coroama and Hilty, 2014) as it relates
the total energy consumption of network devices to the total data vo-
lume. By addressing the entire population, the top-down methodology
provides more robust results but lacks the capability to form future
scenarios, as there is no relationship between network parameters and
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network energy consumption (Schien and Preist, 2014). The bottom-up
methodology is based on direct observations of one or more case studies
generalized into total results (Coroama et al., 2015; Coroama and Hilty,
2014; Bond et al., 2018; Aslan et al., 2017). The methodology estimates
energy intensity per network device class and aggregates results to all
network devices of the end-to-end connection (Schien and Preist, 2014;
Ishii et al., 2015). The central assumptions are average energy con-
sumption and data throughput per device class, and the number of such
devices in the end-to-end connection (Schien and Preist, 2014; Ishii
et al., 2015; Aslan et al., 2017). The model-based methodology models
parts of the Internet based on network design principles. Manufacturers'
device energy consumption data is inserted into the model leading to
total energy consumption, which is related to corresponding data
(Coroama and Hilty, 2014). Models rarely take relevant characteristics
of an actual network, such as redundancy, cooling, power transmission,
or over-provisioning, into account (Ishii et al., 2015). The unified
methodology combines the top-down and bottom-up methods. In this
methodology, the ratios are calculated top-down and results estimated
from bottom-up for each sub-process, such as end-user devices, access
networks or data centers in a reference year (Ishii et al., 2015). The
unified method evaluates energy consumption characteristics and pro-
vides forecasts based on technology trends (Ishii et al., 2015). Several
researchers have used the unified methodology (Aslan et al., 2017).

Advancements in the ICT sector emphasize the ability to generalize
from already conducted case studies. The combination of technological
development and a massive number of different ICT products makes
extrapolations and scaling from available data an interesting option
(Arushanyan et al., 2014). Based on Arushanyan et al. 2014 review
study; in the ICT domain, the manufacturing and use phases have the
most significant environmental impact. The same study suggests that in
mobile phones the raw material acquisition stage is the most dominant
stage regarding environmental impact. Furthermore, in servers, the use
stage is the main contributor to the carbon footprint, and in data cen-
ters, even in green data centers, the main impact comes from the use
stage (Arushanyan et al., 2014).

The average allocation rule is widely adopted. Equipment energy
consumption is allocated evenly among the total traffic volume over a
fixed time (Coroama and Hilty, 2014). In addition, simplified models of
the Internet have been used to overcome the complexity and scale. Such
models are sensitive to input variable assumptions and system
boundary cut-off criteria. A combination of methods can be used to
verify estimates. A guideline for Internet service impact assessment
includes: access networks are treated separately, renewal of the
equipment taken into account, transmission network is inside the
system boundary, recent references, well-justified extrapolation (Aslan
et al., 2017), and a share of energy consumption allocated to the digital
service (Schien and Preist, 2014).

2.2. Key definitions

2.2.1. The Internet
One of the main challenges in conducting an EIA for the Internet is

setting the system boundary. Fig. 1 presents the main building blocks of
the Internet ecosystem. The users use the applications through access
networks. There are two different access types: mobile- and fixed ac-
cess. Fixed access includes the Wi-Fi networks. Both access networks
are connected to the operator packet switched core (PS-Core) network.
The operator core is connected to the Internet, routing traffic to the
corresponding data center (DC), where the actual servers providing
applications and services reside. Some of the content is processed in the
operator core as CDN service. In this study, CDN is estimated to reduce
the traffic advancing to the Internet core. Each of the aforementioned
technology domains can be described to contain different configura-
tions of equipment, emphasizing the importance of where the boundary
of each subsystem is set. Ultimately these building blocks constitute the
actual system boundary topology that is being assessed. Note, there is a

difference between the Internet ecosystem, later referred to as the In-
ternet, and the Internet connectivity layer, later referred to as the In-
ternet core.

2.2.2. IP protocol suite and traffic classes
The IP protocol suite is a layered protocol stack where all protocols

on a higher level can communicate with lower level protocols through a
standard interface. There are two versions of the Internet protocol (IP),
the version 4 and the version 6. On top of the IP protocol are the two
main transport protocols, namely the transmission control protocol
(TCP) and the user datagram protocol (UDP). On top of these are the
Internet application protocols such as the hypertext transfer protocol
(HTTP), the file transfer protocol (FTP), secure socket layer (SSL) pro-
tocol, and many others. The simplified IP suite protocols are presented
in Fig. 2 (a). We have highlighted the relevant protocols for this re-
search with gray.

Fig. 2 (b) presents the idea of traffic classes. The IP protocol suite
delivers actual services. These services can be separated into different
traffic classes representing some common characteristics of individual
services. Cisco Systems defines four major traffic classes: 1) video, 2) file
sharing, 3) web, email, and data, and 4) online gaming (Cisco Systems,
2017a).

2.2.3. Online advertising and advertising fraud
In the US the online advertising revenue has risen from $26B in

2010 to $42.8B in 2013, up to $73B in 2016 (Meeker, 2017; De Haan
et al., 2016). According to Gartner, global mobile advertising revenue
grew by 92% from $10B in 2012 to $19.3B in 2013 and was expected to
rise by 100% per year until 2016 (Chen et al., 2016). Operators con-
tinue to upgrade their infrastructure to keep up with this pace and to
support extra overhead (Chen et al., 2016).

Many websites rely on online advertising as a source of revenue, and
a typical web page has multiple ads on it. Online ads use rich graphics,
animation, and video, which consume more processing and energy than
the rest of the content. HTML5 supported rich media ads are displayed
directly on end-user devices. An ad occupies a small portion of the
user's display but involves CPU intensive computing processes. The ad
format is driving the CPU use and energy consumption; in 2010 a Flash-
technology ad used from 50 to 100% of CPU capacity totaling to a 15W

Fig. 1. The main building blocks of the Internet ecosystem.
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CPU power consumption (Simons and Pras, 2010). The increasing
number of ads is counterproductive to the environment (Simons and
Pras, 2010).

Online advertising promises real-time measurements, targeting, and
optimization at scale. Every intention of every user is collected
(Dalessandro et al., 2015). Millions of ads are delivered to capitalize
few purchases. A study, done in 2015, of 58 campaigns shows over 50%
of the campaigns see less than one purchase per million ad impressions,
and this is considered as an excellent result in the advertising industry.
A model of 50 positive cases would have to have 50 million ad im-
pressions as a proof (Dalessandro et al., 2015). An advertiser, wanting
to conduct a comparison between targeting firms requires tens of mil-
lions of ad impressions to prove the performance of each firm (Chen
et al., 2016). Everything is on a massive scale.

According to a 2012 study, 10–25% of click frauds were un-
detectable (Chen et al., 2016). There are three different ways for a click-
fraud to occur: 1) use of click bots, 2) tricking users into clicking ads,
and 3) paying human clickers. Over 40% of mobile ad clicks are either
accidental or fraudulent (Chen et al., 2016). According to a 2017 study
(Botlab, 2017), based on a substantial dataset, the percentage of frau-
dulent online ad-impression with high credibility is 23% of the total
online advertising traffic.

2.2.4. Online Advertising as a contributing factor
A typical scenario is where an end-user device requests a webpage;

the webpage makes requests to dozens of data centers, some of which
keep the connection open with the end-user throughout their visit to the
page. The connection can be kept open even when the user is idling,
resulting in an always-on mobile radio. As long as the user is not
moving to the next page, or closing the browser window, the mobile
radio remains in the high-power state.

In addition to online ads, the ad industry utilizes trackers, which are
small pieces of code residing on websites (Solarwinds, 2018). They are
used to track a user's browsing behavior and deliver online ads based on
this tracked behavior data (Englehardt and Narayanan, 2016;
Solarwinds, 2018)]. According to a Solarwinds company 2018 study,
the average load time for the top 50 websites was 9.46 s with trackers
and 2.69 s without. This additional load time is energy consuming. The
same study found 298 individual trackers, out of which 225 (75%) were
associated with online ads to the website. On average, news sites have
41 different trackers and 42% of sites loaded with 30 to 49 trackers,
highest having 85 (Solarwinds, 2018). The News category of sites has
the highest number of trackers (Englehardt and Narayanan, 2016).
Each tracker increases websites download time and total payload.

A study conducted at Princeton University in 2016, consisting of an
analysis of 1 million websites, found massive amounts of hidden
trackers embedded in websites (Englehardt and Narayanan, 2016). The
reasoning for the use of such trackers is that third parties can obtain
valuable information about the visitors to a given site. The study found
over 81,000 individual third parties present in at least two websites.
Third parties responsible for trackers engage in a practice referred to as
cookie-syncing. Cookie-syncing is a technique where multiple tracking

tags are included in a single container; when the end-user loads the
container, connections are established to the data-centers associated
with all the tags inside the container (Englehardt and Narayanan,
2016). As a conclusion, online advertising increases energy consump-
tion end-to-end with four factors: 1) the amount of downloaded data
increases, 2) the varying inter-transfer interval reserves network, data
center, and end-user device resources, 3) the time required to access the
payload content or application increases, and 4) the amount of active
connections increases.

The New York Times measured in 2015 the mix of online ads and
editorial content on top 50 news websites and discovered that over half
of all downloaded data originates from online ads. For example, loading
Boston.com with ads and trackers had a download time of 30.8 s
compared to the 8.1 s of the just the editorial content without ads and
trackers. In this case, online ads and trackers created 15.4MB of data
compared to the 4MB of the editorial content. More than half of all the
data come from ads and trackers (Aisch et al., 2015).

2.2.5. Allocation principle for end-user devices
In general, the way the user is assumed to use the product is decisive

regarding its environmental impact and a source of uncertainty
(Arushanyan et al., 2014). In addition, operators have noticed the im-
portance of understanding the behavior of their users and started
gathering data from their customers. However, understanding how,
when, and where services are consumed is one of the most challenging
issues in operator data analysis (Silva et al., 2018). The collecting of
significant amounts of behavior data is challenging, since operating
systems may restrict access to information, users may have privacy
concerns, and data gathering may drain the device's battery (Silva et al.,
2018). As a concept, usage is referred to, e.g. the number of hours of use
per year, the share of non-use time the equipment is idle or completely
turned off, number of years in use, and product reuse and/or recycling
(Arushanyan et al., 2014). Usage behavior differs between individuals,
cultures, countries, age groups, as well as over time. Therefore, it is
often uncertain for a specific case. Mobile user behavior data presents a
variety of aspects such as spatial, temporal, application-specific, net-
work traffic, and contextual information. Smartphone user behavior
changes over time, space, and on their activities, making pattern mining
even more challenging. Some studies try to address these challenges by
identifying user profiles based on the applications installed (Silva et al.,
2018).

Smartphone apps are frequently used for planning the day, com-
municating with colleagues, ordering goods or entertainment and so-
cializing. A 2018 study on a large data-set from smartphones of 5342
users in Brazil suggests that the applications with the highest access
rates are WhatsApp, Facebook, and browsers. WhatsApp accounted for
60% and Facebook for 18% of the access records. The share of the total
usage time of WhatsApp was 60.19%, Facebook 16.72%, and Browsers
8.28%. The same study indicates there is activity around the clock. The
most active hours range from 4:00 to 22:00 (Silva et al., 2018). A 2015
study with a data set from 24 smartphone users suggests the top five
most used apps were SMS, Phone, Mail, Facebook, and Safari. Facebook

Fig. 2. The simplified IP protocol suite and the traffic classes.

M. Pärssinen et al. Environmental Impact Assessment Review 73 (2018) 177–200

181



and Safari were used for longer durations than the others. In the same
study, the overall average duration of a usage session was measured to
be 172.8 s, with a minimum duration of several seconds to a maximum
of 11 h. The results demonstrate strong variability in usage time for all
24 users (Jesdabodi and Maalej, 2015). A 2010 study on smartphone
user behavior, with a data set from 255 users, concludes a substantial
diversity in usage behavior, e.g. interactions can last from 30 to
500min a day and consists of 10–200 app sessions per day, while each
session can last from several minutes to an hour. In addition, the study
shows that demographic information can be an unreliable predictor of
user behavior, and usage diversity exists even when the underlying
device is identical. Along with all dimensions of the study, users differ
by one or more orders of magnitude. Bursty user interactions at short
time scales combined with diurnal patterns at longer time scales have
led to an energy consumption process with very high variance and
seemingly unpredictable. The authors emphasized strong diversity in
usage behavior (Falaki et al., 2010). As for the generalization of results,
the authors admit the results may not represent even the entire Brazi-
lian population in all regions (Silva et al., 2018). We predict that in
2016, the variation is even stronger compared to the 2010 study result.

For mobile devices, the most energy consuming hardware compo-
nents are screen and graphics processing unit, CPU, network, hard
drive, and memory (Pang et al., 2016). The applications and software
run on the mobile device influence the consumed energy. Energy con-
sumption naturally affects battery life and limits device use. Batteries in
mobile devices do not accurately report the actual energy use, and users
are seldom aware of energy consumption on their mobile device.

Products have to seamlessly enable support for multiple radio in-
terfaces for providing “always-on” Internet connectivity and higher
data rates via either 2G, 3G, 4G or WLAN. Due to requirements of high
data rates, the complexity of radio interfaces doubles every 2.5 years
(Wang, 2016). Energy consumption of a mobile device is related to the
workload characteristics and transfer size. For example, a few hundred
bytes transferred on an extended period can consume more energy than
transferring a megabyte in one shot (Balasubramanian et al., 2009).

To go into more details, in 3G, nearly 60% of the energy is con-
sumed in high power states after completion of a transfer. This is called
tail-energy consumption (Balasubramanian et al., 2009). Energy con-
sumption due to the network activity in the cellular device is dependent
on two different factors. First is the transmission distance related to
transmitting power level. The second is the radio resource control
(RRC) protocol, which is responsible for activity based channel allo-
cation and adjustment of energy consumption of the radio
(Balasubramanian et al., 2009). When the radio is not active, it is in an
idle state. When the radio is active, higher energy states, like dedicated
channel (DCH) or forward access channel (FACH), are used. DCH en-
sures high throughput and low latency but consumes more energy.
FACH is used for little traffic and is a shared channel between many
devices, and therefore consumes less energy. The idle state consumes
1% of the energy of the DCH state (Balasubramanian et al., 2009). The
current online advertising approach puts continuous pressure on the
DCH and creates bursty traffic with the result of long connection times
without user activity.

When a device is transforming from an active state to an idle state,
there is an inactivity-timer, which is set by the mobile operator. It can
vary between different geographical locations. Typically the inactivity-
timer in 3G is around 12 s. The energy consumed during the inactivity-
timer is called tail-energy, and it represents more than 60% of the total
energy consumption of transmission. In comparison, the connection
ramp up consumes 14% of total energy. The average energy consumption
varies significantly in 3G with varying inter-transfer interval. In WLAN,
energy consumption is highest in maintaining an active connection. 3G
consumes significantly more energy to download data blocks of all sizes
compared to GSM or WLAN (Balasubramanian et al., 2009).

The tail-energy effect means, although there are many idle times
between data transmissions, each idle time is still smaller than the

inactivity-timer value, and these data transmissions reset the timers
again and again. Consequently, the radio interface is always on and the
radio resource cannot be released, which consumes end-user device
energy significantly and decreases the network capacity (Zhao et al.,
2015). For example, heartbeat messages are often used by mobile ap-
plications and service backends to maintain connections between each
other and update their status. Intuitively, the more frequently the
heartbeats are sent, the better synchronization of services is. However,
frequent heartbeats are one of the causes of the limited battery life,
since the data transmission and excessive signaling keeps radio inter-
faces always active (Wang, 2016; Haverinen et al., 2007). Intuitively,
the more frequent and higher the traffic to and from a mobile device,
the higher is the energy consumption and therefore more frequent
charging is needed for a device.

As an impact of the tail-energy effect, a smartphone web browser
wastes much energy when downloading a website (Zhao et al., 2015).
Related with website visits, we conclude on the basis of the char-
acteristics of the current online advertising stack model, as outlined in
the Section Online Advertising as a contributing factor, that there are two
probable and problematic outcomes: 1) device maintains the high en-
ergy state as traffic is transmitted continuously, before the operator
inactivity-timer is exceeded, or 2) the device alternates between high
power state and idle state due to the ad trackers' continuous need for
transmitting small payloads with the end-user device. In this light, we
recommend using the traffic shares as an allocation basis, instead of
hours users spent with the device.

As the 2014 study suggests, the environmental impact of the
smartphone use stage was mainly due to the electricity used for char-
ging the phone (Moberg et al., 2014). In a 2016 report, the share of
mobile voice traffic from total mobile traffic was roughly 3%. Therefore
97% of all traffic initiated from user activity is directed to data net-
works and can be associated with services (Obile, 2016). We used these
as a baseline assumption for our allocation of user devices. The user
behavior is included in the assumption of charging the phone, laptop or
tablet, and the relevant share of activity towards the assessed Internet
service is a result of standard IP protocol share analysis. Traffic analysis
based on the IP protocol suite and traffic classes are a more reliable
source of data compared to averaging out the aggressively varying
behavior of over four billion end-user devices with hundreds of appli-
cations. Nevertheless, we have added the user device usage as para-
meters into our Python simulation whenever someone would prefer to
use it.

2.3. Method for assessing energy consumption of online advertising

Based on the previous knowledge of methods presented in Section
2.1 we created a stepwise framework for assessing the environmental
impact of the Internet service locally or globally. The framework con-
sists of eight phases, each phase containing a collection of best prac-
tices. All of the phases are utilized in some of the previous studies, but
to the best of our knowledge, have not been presented as a generic
framework before. We gather many fragmented best practices into a
general Internet service environmental impact assessment framework.
The phases are presented on a more detailed level in the following
sections together with a case study on EIA of online advertising. The
framework is presented in Fig. 3.

Our framework consists of eight phases. We have created a system
boundary, assessed energy consumption and shares of traffic with top-
down or bottom-up methodologies, extrapolated the peer-reviewed
base values to the year 2016, and analyzed the results. We have com-
pared direct energy consumption only, excluded energy supply chains
containing the supply of primary power, power plants, and grids
bringing them to devices. An average grid mix has been used when
estimating the CO2e footprint. In our study, we have included the mo-
bile Internet, as it is in an increasingly important role and its energy
consumption has been significant (Coroama and Hilty, 2014). In
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addition, we have taken content delivery networks (CDN) into account,
as they process services closer to the end users, thus have reduced the
need for higher capacity in the Internet core. Comparisons to previous
studies should be done with care, as the system boundaries vary be-
tween results (Coroama and Hilty, 2014).

The assessment is divided into four discrete analysis layers. The first
layer is the energy consumption of the system boundary infrastructure.
The second layer is the shares of access network traffic and the shares IP
protocols delivering the service. The protocols were selected, as there is
current, reliable, and measured data available. The third layer is the
traffic classes representing end-user activity. The fourth layer is the
share of individual services in each class. Each Internet service belongs
to at least one of the classes.

In this study, we utilize the bottom-up method with product based
information whenever feasible and reliable data is available. In other
cases, the top-down method is used. The data was collected from
leading documents in the industry and from scientific articles from the
years 2008 to 2017. The proxy data especially is a source of uncertainty
for this study. We aim to justify our framework and pinpoint to the
significant contributor to global energy consumption, online adver-
tising.

Our framework is aligned with the GHG protocol guidelines and the
ETSI standard. Our contribution to the protocol is the method of relying
on standard ways to carve out relevant traffic by utilizing the IP pro-
tocol stack with trusted available data. Traffic analysis is missing from
both of these standards as a key component of the use stage. In addition,
instead of changing the allocation method between different technology
domains, we maintain the data traffic as an allocation driver end-to-
end. This selection has the benefit of taking the whole data path of each
session into account and is not in conflict with either of the standards.
The user behavior is already accounted for in the average energy con-
sumption of the end device, i.e. smartphones are charged daily. Based
on our expertise, online advertising is not a typical service a user sub-
scribes to, i.e. when mobile data is used online advertising activates

without any user activity or possibility to control it. In addition, online
advertising and trackers are active even without any user interaction
with the end device. We have provided a practical and transparent
Python tool which can be utilized in future assessments with varying
aim and scope.

2.4. Phase 1: scope and high-level system boundary

Our case study is conducted on a global scope. The time boundary set
to the year 2016 and the topical boundary is set to being able to access
Internet service at any time. Internet usage involves four fundamental
high-level sub-systems: 1) the devices the users use to establish a con-
nection, 2) the connectivity connecting the users with the applications, 3)
the applications, and 4) the traffic flowing across other sub-systems. The
high-level system boundary used in our assessment of online advertising
energy consumption and CO2e emissions is presented in Fig. 4.

The device sub-system consists of four primary categories: 1)
smartphones, 2) PCs, 3) laptops, and 4) tablets. To simplify the fra-
mework, the average energy consumption of end-devices is assumed to
be entirely used to access Internet-based or related services. The con-
nectivity sub-system consists of six primary technology categories: 1) a
radio access network (RAN), 2) a PS-Core, 3) fixed line customer pre-
mises equipment (CPE), 4) an operator DC, 5) office networks and 6)
the Internet core. We included CDNs into the system boundary. CDNs
are part of operator PS-Core networks. The energy consumption of
CDNs is included in the application sub-system, as essentially CDNs are
local proxies for content. The applications sub-system consists of DCs
and servers needed to provide services to the end users. The traffic sub-
system consists of all the traffic relevant to delivering services across
the infrastructure to the end users. The IP protocol suite and traffic
classes are utilized to investigate the share of online advertising from
the total traffic.

According to Coroama and Hilty, it is useful and transparent to
estimate end-device, Internet connectivity, and application energy

Fig. 3. A framework for the EIA of the Internet service.
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consumptions separately and to add partial results up when necessary
(Coroama and Hilty, 2014). The assessment should also systematically
differentiate between access technologies. DCs should be treated sepa-
rately as valid primary data is scarce (Schien and Preist, 2014). We
follow the suggested principles.

2.5. Phase 2: system boundary

Internet communication includes masses of devices and technolo-
gies. The technical complexity of the Internet is increasing, thus
creating the need for establishing the simplified multilayer topology of
the Internet communications. We evaluated system boundary topolo-
gies, but no predefined topology suited the needs of our research. A
2015 study analyzed network energy consumption, but the system
boundary excluded DCs and end-user devices (Ishii et al., 2015). A 2014
study excluded CDNs, had an oversimplified mobile network topology
and focused on the transmission network as a system boundary (Yang
et al., 2015). Nevertheless, it supports our system boundary topology by
defining the three main components of a mobile network as mobile
devices, a RAN, and a PS-Core. None of the system boundaries found, to
the best of our knowledge, included traffic classes. Traffic distributions
between different access networks and CDNs, Internet protocols and
traffic classes form a baseline for our reasoning. Our system boundary

topology supports energy consumption assessment in layers. The ana-
lysis layers were: total infrastructure, shares of traffic, shares of pro-
tocols, shares of traffic classes and services in those classes. Fig. 5
presents the system boundary of our study.

The highest level of topology abstraction includes the following sub-
systems: devices, connectivity, applications, and traffic. Devices or user
equipment (UE) include smartphones, PCs, laptops, and tablets.
Connectivity further divides into three main parts. The first part is
mobile connectivity, including both the RAN and the PS-Core. RAN is
further divided into NodeBs, which are base stations in a modern RAN,
and controllers (RNCs). RNCs connect to the PS-Core via serving GPRS
support nodes (SGSN) and to the Internet core through gateway GPRS
support nodes (GGSN). The second part is the fixed network, including
the fixed access network devices, wireless CPE, wireless routers and
digital subscriber line access multiplexers (DSLAMs). The DSLAM is
connected to the PS-Core. In addition, the fixed network includes office
local area networks (LANs).

The CDN network servers are located in the PS-Core as proxies for
services like websites and video content. Once the content is located in
the CDN, there is no need to access the Internet core. CDN operates for
both fixed and mobile networks. The third part is the Internet core,
consisting of core routers responsible for routing traffic between net-
works. The ingress connections from the Internet core to the actual

Fig. 4. The high-level system boundary.

Fig. 5. A simplified system boundary topology of the Internet communication.
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applications residing in DCs go through a firewall (FW) and usually load
balancing has been included. The application servers are connected to
databases and form the services.

It should be noted that when a device searches for a web page with
its browser, unless the content is found in CDN proxies, the complete
end-to-end connectivity, and relevant applications are active. In Table 1
we present the main technological domains and methods used. Note
that we did not include CDN as a technology domain separately; proxy
servers process service data like servers in the centralized DCs but are
located closer to the end users.

A system boundary, in extreme cases, included all ICT equipment
connected to the Internet as a part of the Internet. According to
Coroama and Hilty, the inclusion of everything creates variability when
evaluating a specific task with a specific device (Coroama and Hilty,
2014). For our scope, none of the services can be used without devices
connected to the Internet. For example, social media is not worth
anything without the billions of participants in the network, and similar
reasoning applies to almost any web services. For our purposes, a single
user is not relevant, but masses of devices and users are. According to
the same study, if we wanted to determine the energy consumption of
watching a single video from the Internet, the system boundary should
include one user device for the duration of the video, Internet trans-
mitting the data, and a server providing that data (Coroama and Hilty,
2014). We argue many parts are missing or unclearly expressed in the
system boundary. Even though averages are used, the idea of being
informed requires more than just the exact time and place of con-
sumption; the share of idle time must also be allocated. For DCs, the
average represents the actual energy consumption well (Wahlroos et al.,
2017).

There are uncertainties related to our system boundary. The pro-
posed system boundary gives an opportunity to repeat the analysis and
increase the detail level whenever more specific device inventory and
device-specific energy consumption information is available. The same
idea applies to all layers of analysis. The system boundary topology is
not oversimplified or too detailed for our purposes when intermediate
results from previously conducted studies are extrapolated to the year
2016.

2.6. Phase 3: total energy consumption estimation of the infrastructure

The section aims to present the methods we used to calculate the
2016 total energy consumption of our system boundary.

2.6.1. End user devices
An Internet user is defined as a person with access to the Internet

from a home residence through mobile equipment or a computer
(Vlachos, 2016). In 2012, 34.3% of the global population were Internet
users (Whitehead et al., 2014). In 2017, the number of Internet users
has risen to 3.4–3.9 billion users, and it continues to grow at a nearly

flat annual rate of 10% (Vlachos, 2016; Internet World Stats, 2017).
In a 2017 study, the install base for smartphones was 400 million

devices in 2010, and 2.8 billion devices in 2016 (Meeker, 2017). The
number of annually produced smartphones is expected to grow from
around 350 million in 2010 to around 3 billion devices in 2030. With
linear growth, the annual growth rate is 37.9%. In this study, we will
use the Statista values for a number of smartphones globally (Statista,
2018a). The amount of smartphones in 2016 is 2562 million devices.
The data from Statista is publicly available. The 2016 Statista value is
8.5% lower than the Meeker 2017 report suggests (Meeker, 2017).
Therefore, we will use the 10% as a level of uncertainty in our study.

The most popular smartphones in 2016 had a battery capacity
ranging from 1810 mAh (iPhone 6) to 3000 mAh (HTC 10). The amount
of electricity needed to charge a phone battery was 6.9Wh for iPhone 6,
and 11.4Wh for HTC 10 (Canstar Blue, 2016). If we assume once a day
charging for a full year, the energy consumption of smartphones will be
in the range of 2.519 kWh to 4.161 kWh per year. We will use the
average annual energy consumption of 3.34 kWh, and extrapolate the
past and future years with energy usage improvement of 3%. Our es-
timation of uncertainty was in the range of 30%.

In 2010, the growth of the PC install base was estimated to be 10%
annually (Koomey et al., 2011). In a more recent 2015 study, the
quantity of desktops is expected to decline in the future (Yang et al.,
2015; Pickavet et al., 2008). Desktop computers are rarely turned off
when they are not in use (Minovski et al., 2016). On the other hand,
transitioning to laptops and tablets has a positive impact on average
energy consumption (Pickavet et al., 2008). The install base of desktops
in 2012 was 326 million devices, and the amount has not increased by
2016, instead, the development has been flat at 325 million devices
(Statista, 2018b). The number of laptops is expected to increase from
200 million devices in 2010 to 548 million devices in 2016, reaching up
to 780 million devices in 2020 (Andrae and Edler, 2015). We will use
the 10% as a level of uncertainty for the number of PCs, laptops, and
tablets in our study.

A 2014 study investigated the energy consumption of desktops and
laptops (Van Heddeghem et al., 2014). In 2007, an office desktop on
average consumed 149 kWh (137 kWh in 2012), and a household
desktop on average consumed 231 kWh of energy (213 kWh in 2012). A
desktop computer requires a monitor, and a LCD monitor on average
consumed 70 kWh of energy in 2007 (the same in 2012). Taking the
average consumption of a desktop and a LCD monitor, we ended up
with 2007 average energy consumption of 260 kWh (245 kWh in 2012).
Extrapolating the 2007 and 2012 energy consumption values, we ended
up with an average of 233 kWh for 2016, and an annual decrease of
approximately 1%. Our estimation of uncertainty was in the range of
30%. Another study estimated that desktops in idle mode consumed
45W (394 kWh/year) in 2010 (Kern et al., 2015). The expected annual
energy consumption improvement is 3% from 2011 to 2030 (Andrae
and Edler, 2015).

In 2007, an office laptop on average consumed 46 kWh (39 kWh in
2012), and a household laptop on average consumed 70 kWh of energy
(59 kWh in 2012). The average of energy consumed by a laptop in 2007
was 58 kWh (49 kWh in 2012). Extrapolating the 2007 and 2012 energy
consumption values, we ended up with an average of 41.8 kWh, and an
annual decrease of approximately 4% (Van Heddeghem et al., 2014).
Our estimation of uncertainty was in the range of 30%.

The install base of the three largest tablet platforms, Android, iOS
and Microsoft Metro, has increased from 15.9 million devices in 2010 to
741 million devices in 2016 (TekCarta., 2018). The install base of
desktops was 326 million devices in 2012, and it was at the same level
in 2016, at 325 million devices (Statista, 2018b). Combining the pre-
sented 2016 device numbers, we reach 1614 million desktops, laptops,
and tablets. This is close to the 2016 Ericsson report, where laptops and
tablets have leveled to 1.7 billion devices (Obile, 2016).

A 2016 test investigated the energy consumption of iPad Air2
(www.zdnet.com, 2016). In the test, the iPad was charged overnight

Table 1
Technology domains and used methods.

Technology domain Method used for evaluation

Devices
Smartphone total energy Bottom-up
PC total energy Bottom-up
Laptop total energy Bottom-up
Tablet total energy Bottom-up

Connectivity
RAN Top-down
PS-CORE Top-down
Fixed line CPE Top-down
Operator DC Top-down
Office networks Top-down
Internet core Top-down

Applications Top-down
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and the energy consumption measured. The energy consumption was
35.3Wh during an overnight charge. Over a 365 day period, the energy
consumption amounts to 12.9 kWh. For 2016, we will use a value of
12.9 kWh for energy consumption and extrapolate the past and future
years with energy usage improvement of 3%. Our estimation of un-
certainty was in the range of 30%.

2.6.2. Mobile access network
Mobile networks provide connectivity via base stations to the core

network routers. Core routers direct traffic between multi-tiered net-
works towards the destination (Schien and Preist, 2014). Mobile access
networks consist of 2G, 3G, 4G and 5G (Andrae and Edler, 2015). Go-
zalvez estimated 85% coverage for 3G by 2017 and 50% 4G coverage of
global population (Gozalvez, 2012). In a mobile network, only 10% of
the energy consumed is customer end-point related. The most energy-
hungry parts of a mobile network are the RAN and DC (Fettweis and
Zimmermann, 2008; Koutitas and Demestichas, 2010). The factors af-
fecting energy consumption in mobile networks are cooling, capacity,
coding, and workload scheduling.

In a 2015 study, 2–5G RANs are estimated to consume 200 TWh of
energy in 2010 and decrease to 100 TWh by 2020, assuming a 22%
energy efficiency improvement annually (Andrae and Edler, 2015). For
2016 RAN, energy consumption is estimated to be 140 TWh. We will use
the estimations above as our base values because operating different
generation RANs at the same time is taken into account. Running dif-
ferent generation RANs simultaneously represents a realistic situation in
the network operator business. For earlier years, we estimate lower en-
ergy efficiency improvement, as macro cells were dominating the con-
figuration. Thus the capacity need was lower (Badic et al., 2009).

Results from other researchers indicate the total global energy
consumption of telecom operator networks in 2007 was estimated to be
160 TWh, and in 2012 260 TWh/year, with an annual growth rate of
10.2% (Lambert et al., 2012). An older 2008 study estimated energy
consumption growth rate to be 16–20% annually (Fettweis and
Zimmermann, 2008; Badic et al., 2009). According to a 2011 study,
(Han et al., 2011) RAN consumes 57%, PS-Core 35% and DC 7% of the
energy consumed by a typical mobile network. We will use the division
above when evaluating the energy consumption of PS-Core and op-
erator DC. A 2012 study approximated the energy consumption of
global RANs to be 105 TWh, and another 2013 study for the same
system estimated 125 TWh (Korotky, 2013; Andrae and Edler, 2015).
Based on these previous studies, we will use an uncertainty level of 20%
in our estimation.

Sources of uncertainty are: 1) energy efficiency improvement per-
centages, 2) inherent uncertainties of our references, 3) the system
boundary of the previous studies, 4) the pace at which operators take
new generation RANs into use, and 5) the removal of the legacy sys-
tems. Some of the incumbent operators are operating 2–5G RAN si-
multaneously, which is highly inefficient from the energy consumption
perspective.

2.6.3. Fixed access network
Access networks dominate the energy consumption of ICT with in-

creasing access rates (Coroama and Hilty, 2014; Koutitas and
Demestichas, 2010). Fixed access networks consist of fixed access wired
and fixed access wireless networks (Andrae and Edler, 2015). Net-
working equipment wastes energy because the energy proportionality is
low (Heller et al., 2010). Improvement of data rates in optical networks
improves the overall transport network energy efficiency. At the same
time, the total fixed access traffic is expected to increase from 320 EB in
2010 to 1900 EB in 2020, and to rise to 13,000 EB in 2030 (Andrae and
Edler, 2015).

According to a 2015 study, the fixed access infrastructure will
continue to expand, and its energy consumption improvement is esti-
mated to be 10% per year. In the same study, 2012 energy consumption
was estimated to be 196 TWh for fixed access wired and 51 TWh for

fixed access wireless networks (Andrae and Edler, 2015). We will use
the 2012 estimation as a base value, and extrapolate the past and future
years' energy consumption with a 10% annual improvement percen-
tage. Energy consumption in 2016 was estimated to be 162 TWh. The
2012 base value was selected because both the wireless and wireline
networks are included. In addition, the study is relatively recent and
peer-reviewed.

Caroma et al., argue that energy consumption of access networks
should be allocated by time used and not data, as the amount of elec-
tricity used does not vary with data (Aslan et al., 2017). For this paper,
we will not use the time used as an allocation key, as being online
requires connectivity even if services are not used all the time.

In 2013, Alcatel-Lucent estimated average power consumption of
fixed access networks to be 31.9 GW (279 TWh) (Andrae and Edler,
2015). This estimation is 20.5% higher compared to our estimation of
222 TWh in 2013. Therefore, we will use an uncertainty of 20% in our
uncertainty analysis. We have recognized the yearly energy consump-
tion improvement percentages and the use of referenced intermediate
results as uncertainties.

2.6.4. Operator PS-cores and DCs
Operator DCs operate servers needed to run operator key func-

tionalities such as network management, charging systems, and other
business support systems. The operator DCs are not part of the service
core DCs running the actual applications for end users. An operator PS-
core network connects RANs to the Internet core. A 2011 study suggests
that a PS-Core consumes 35% and an operator DC 7% of the total en-
ergy consumption of an operator (Han et al., 2011). We calculated the
PS-Core and operator DC base values from the same 2015 study, which
was used in defining the energy consumption of RANs (Andrae and
Edler, 2015). In 2016, PS-Core consumed 146.7 TWh and operator DC
29.3 TWh of energy. For the annual energy consumption growth rate,
we will use 12% (Pickavet et al., 2008).

In a 2008 Ericsson study, an estimation of 60 TWh of energy was
consumed in RAN backhaul networks (Fettweis and Zimmermann,
2008). Our estimation of energy consumption of PS-core in 2008 was 55
TWh. There is an uncertainty of 10%. In the same year, the Environ-
mental Protection Agency (EPA) estimated a 14% annual growth rate
for networking equipment (Taylor and Koomey, 2008). There is an
uncertainty of 15% in the growth rate. Combining these uncertainties
we use the 25% total uncertainty when calculating PS-Core and op-
erator DC energy consumption.

We have recognized the energy consumption growth percentages and
the assumption of energy consumption shares between a RAN, operator
DCs and a PS-Core as uncertainties. The justification for using the same
energy consumption growth percentages for a PS-Core and operator DCs
is founded on the evidence of reduced energy intensity in networking
devices and on virtualization of servers and growth of data in both.

2.6.5. Office networks
An inventory based study done in 2006 estimated office networks to

consume 7.2 TWh of energy (Taylor and Koomey, 2008). According to
another 2008 inventory based study (Pickavet et al., 2008), networking
equipment globally consumes approximately 25 GW (219 TWh). We
will use a more recent 2012 study, suggesting office network energy
consumption of 27.8 TWh in 2007 and 42.4 TWh in 2012 (Lambert
et al., 2012). The estimation included office switches, routers, en-
terprise WLANs and security devices. The extrapolated 2016 energy
consumption of office networks is 49.7 TWh. We estimate the same 25%
uncertainty rate as with PS-Core.

The growing data transmission rate and more energy-hungry device
generations lead to increased energy consumption. We have recognized
the old references for base values and many years of extrapolation as
uncertainties.
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2.6.6. The Internet core
According to a 2008 study, the energy intensity of Internet data

transfers decreases by 30% yearly (Coroama and Hilty, 2014). System
boundaries have a significant impact on energy consumption estima-
tions (Aslan et al., 2017). Internet energy consumption, excluding ac-
cess networks and end devices, was 85 TWh in 2006 (Taylor and
Koomey, 2008). Lantizera et al., in a 2012 study included network
equipment in their top-down analysis and estimated 50.8 TWh to be the
global energy consumption of the Internet core, and 67.3 TWh for all
network equipment (Ishii et al., 2015). We will use the peer-reviewed
reference value of 85 TWh from 2006 as our base value for the Internet
core, as it has a system boundary excluding access networks and end
devices. In addition, with a 10% annual energy efficiency improvement,
it is very close to Lantizera's 2012 result. The 2016 energy consumption
of the Internet core was 29.64 TWh. We note the 2014 study, with an
estimated annual energy consumption of the Internet core at 7.8 TWh
(Schien and Preist, 2014), which is almost less than a tenth of the en-
ergy consumption of Koomey et al., results. For this reason, we estimate
a high uncertainty rate of 40%.

The energy consumption of the Internet core has decreased due to
the use of CDNs and the popularity of direct peering arrangements
between operators and IXPs. We have recognized the significant var-
iance between reference base values and many years of extrapolation
with a fixed growth rate as uncertainties.

2.6.7. Data centers
A DC is defined as space housing ICT assets, such as racks, servers,

switches, and storage, with controlled environmental conditions such as
temperature, humidity, and dust (Ebrahimi et al., 2014; Whitehead
et al., 2014). DCs induce a power overhead such as cooling and lighting
(Coroama and Hilty, 2014). DCs have the fastest growing carbon foot-
print and energy consumption across the whole ICT sector (Fettweis
and Zimmermann, 2008; Whitehead et al., 2014; Ebrahimi et al., 2014;
Andrae and Edler, 2015; Salahuddin et al., 2016; More and Ingle,
2017). DCs vary in size, from single rack closets to massive server farms
(Whitehead et al., 2014; Valliyammai et al., 2014). In a 2017 study, the
total workload energy consumption inside a DC is divided between
servers at 70%, access switches at 15%, distribution switches at 10%,
and core switches at 5%. Servers are further divided into 43% CPU, 4%
discs and 12% memory. Similarly, switches are divided into chassis at
36%, line cards at 53%, and port transceiver at 11% (More and Ingle,
2017; Koomey, 2007). Energy proportionality of servers is still low. The
majority of servers operate at a utilization rate below 0.20, consuming
60–100% of the maximum power available (Ebrahimi et al., 2014).
Even at 10% CPU utilization, power consumption was more than 50%
of the maximum (Valliyammai et al., 2014).

In a 2011 study, a projection of a slow-down in DC energy con-
sumption growth rate was introduced. The reduction was due to energy
efficiency improvements, the recession, and virtualization. As a result,
worldwide DC energy consumption grew from 70.8 TWh in 2000 to
152.5 TWh in 2005, and 301.1 TWh in 2010 (Koomey, 2008; Koomey,
2011). With similar assumptions, energy consumption in 2015 was
estimated to be 371.1 TWh (Whitehead et al., 2014). In this study, we
used the aforementioned base values, as they have the same system
boundary across the period, and extrapolated the 2016 DC energy
consumption of 385.04 TWh.

In a 2008 study, a yearly average of 29 GW (254 TWh) and a growth
rate of 12% were estimated for DC power consumption (Pickavet et al.,
2008). Another 2008 study estimated energy consumption of 180 TWh
(Fettweis and Zimmermann, 2008). Alcatel-Lucent approximated that
in 2015 DCs used 325 TWh annually (Alcatel-Lucent, 2015; Andrae and
Edler, 2015). There is a shift in energy usage from consumer devices
onto networks and DCs (Andrae and Edler, 2015). According to a 2016
article in The Independent, applications, with required hardware run-
ning, in DCs consume 416.2 TWh of electricity on a global scale (The
Independent, 2016). From these results, we conclude an uncertainty

rate of 25% for DC energy consumption in 2016.
We have recognized the old reference for base value and many years

of extrapolation between base values as uncertainties. There are some
key trends that support the increase in DC energy consumption: 1) the
energy used per unit for all product types is higher as a function of time
(Koomey, 2007; Koomey et al., 2011), 2) performance is more im-
portant than energy efficiency (Jagroep et al., 2017), and 3) application
energy efficiency and energy consumption is not well known (Pickavet
et al., 2008).

2.6.8. Summary of the energy consumption
The energy consumption of our infrastructure system boundary is

presented in Appendix A Table A.1. For further analysis, we will use the
subset of Table A.1, 2016 values, as presented in Table 2.

2.7. Phase 4: Internet protocol distribution

The methods for estimating future traffic can be classified into
forecasts and projections. Forecasts are predictions with initial condi-
tions and varying future values. Projections are expectations based on
extrapolation or semi-empirical relationships with a lower number of
variables and transparency. Widely adopted best practices for pro-
jecting trends in IP traffic include regression analysis, neural networks,
extrapolations and curve fittings (Vlachos, 2016). These projections
must be based on Internet traffic generated by all connecting devices
(Vlachos, 2016). Relevant IP traffic measurement points include In-
ternet eXchange Points (IXPs), ISPs and major backbones. Common
traffic metrics include incoming and outgoing traffic from IXPs and
peak flows from traces (Vlachos, 2016).

An Internet traffic classification method is a process of identifying
shares of network protocols, applications on top of them, and in-
vestigating the corresponding traffic per traffic class (Wang et al., 2014).
There are two main specifications for classification: 1) identify applica-
tion protocols, and 2) classify network traffic into a range of common
groups of applications such as file transfer, web browsing, and email
(Wang et al., 2014). There are 14 main applications identified in the
Wang et al., substantial data sets: HTTP, HTTPS, BitTorrent, SSH, Razor,
POP3, FTP, IMAP, DNS, SMTP, MSN, SMB, XMPP and SSL (Wang et al.,
2014). We first investigate the total IP traffic on a global level and
subdivide it into two different access technologies and a CDN. Second,
we use the IP protocol suite to identify the share of traffic related to
HTTP(S) traffic, which is the relevant part of the traffic for our further
analysis purposes. Third, we divide the HTTP traffic into four traffic
classes. Fourth, we estimate the share of online advertising in each traffic
class and extrapolate the 2016 energy consumption of online advertising.

Globally IP traffic is increasing, but the growth rate has been slowing
down towards 2014 (Vlachos, 2016). Cisco Systems is a leading body
delivering estimations of global traffic (Lee and Lee, 2013; Vlachos,
2016). The total IP traffic included fixed network traffic, mobile data

Table 2
ICT energy consumption 2016 breakdown with the system boundary.

2016

Devices (TWh)
Smartphone total energy 8.6
PC total energy 75.7
Laptop total energy 22.9
Tablet total energy 9.6

Connectivity (TWh)
RAN 140.0
PS-CORE 146.7
Fixed line CPE 162.1
Operator DC 29.3
Office networks 49.7
Internet core 29.6

Applications (TWh) 385.0
Total Energy Consumption (TWh) 1059.1
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traffic and managed IP traffic (Cisco Systems, 2017a). We have included
fixed network traffic and mobile data traffic in our assessment. We have
scoped out managed IP traffic generated by traditional commercial TV
service providers. This traffic remains within the footprint of a single
service provider; therefore, it is not considered relevant IP traffic for our
assessment. Thus it is included in the total IP traffic.

CDNs have become a dominant method for delivering video-
streaming content (Cisco). A large proportion of Internet video traffic will
cross CDNs, but it is not additional traffic. Therefore it is not included in
the total IP traffic. The share of IP traffic passing CDN is utilized for
assessing the share of traffic passing to the Internet core network.

According to a Cisco 2017 study (Cisco Systems, 2017b), the total
global IP traffic is 1200 EB in 2016. In 2016, fixed line dominated the IP
traffic, but wireless is growing at a fast pace. The total traffic was dis-
tributed between the fixed network (68.63% of the total traffic), man-
aged IP traffic (23.85% of total traffic) and mobile network IP traffic
(7.5% of the total traffic) (Cisco Systems, 2017a).

In 2016, CDN traffic represented 39.9% of the total IP traffic, and it
has increased to a level of 38.340 EB/month with a compound annual
growth rate of 44% (Cisco Systems, 2017a). According to a 2013 study,
CDN traffic amounts to more than 50% of all web traffic, and it is ex-
pected to increase as video traffic increases (Frank et al., 2013). In ad-
dition, mainstream applications are increasingly exchanged through
application-specific peering to further avoid transit costs (Gupta et al.,
2015). Online advertising is often delivered through CDNs (Pujol et al.,
2014). We estimate the uncertainty of 10% to all traffic amounts as the
references are quite recent and from widely cited sources.

In 2013, IPv4 constituted 99.4% of traffic (Czyz et al., 2014). In
2014, IPv6 accounted for 1% (Pujol et al., 2014) - we estimate a slow
increase to 1.5% in 2016 and an uncertainty of 20%. In 2013, TCP's
share of traffic, according to a dataset from two exchange IXPs, two
transit ISPs, one content ISP, and a CDN server provider, on average
was 85.27% (range 73.87% to 97.22%) and UDP's 14.73%. We expect a
slight yearly increase of 1.5% in TCP traffic until hitting 89.77% in
2016, as HTTP based applications are increasing in number. HTTP(S)
dominates the application mix in all parts of the network measured
using any methodology. We estimate the uncertainty of 0.5% for IPv4
and 5% for TCP.

The HTTP protocol is a standard interface for videos, social net-
working, e-commerce, and software delivery. These applications are
often supported by advertisements, which are also delivered via HTTP
(Pujol et al., 2014). In 2013, the share of HTTP(S) was more than 69.2%
(Czyz et al., 2014). The share of HTTPS is increasing. We expect a
pessimistic increase to a 74.2% HTTP(S) share in 2016. All the rest are
small shares of traffic (Czyz et al., 2014). In the 2014 data sets (Pujol
et al., 2014), the share of HTTP(S) out of the TCP traffic ranged from
64.58% to 95% with an average of 81.38%. Therefore, we estimate the
uncertainty of 10%.

As the size of the networks and the amount of devices increases and
their performance improves, it has become a challenge for ISPs to
collect and analyze massive sets of raw data, flow records, activity logs,
and SNMP metrics (Yang et al., 2015). Predicting facts before they
happen is challenging. Therefore projections always have uncertainties
(Korotky, 2013; Vlachos, 2016). Some of the key uncertainties are: 1)
traffic remaining within a service provider, 2) peering traffic, 3) di-
versity of traffic monitoring, 4) capturing techniques (Vlachos, 2016),
and 5) models (Korotky, 2013). With proper prediction models, the
uncertainty can be as low as 5–10% (Vlachos, 2016). According to
Cisco, the uncertainty level decreased from 20% in 2006 to 3% in 2011,

the average uncertainty being 11.56% (Vlachos, 2016). Between 2012
and 2014, the average uncertainty was 4.12% (Vlachos, 2016). Cisco's
2008 prediction for fixed IP traffic in 2012 was 31.339 EB/month,
while the measured value was 31.338 EB/month, leading to a low value
of uncertainty (Vlachos, 2016). A summary of the shares of Internet
traffic and the IP protocol suite is presented in Appendix A Table A.2
and A.4.

2.8. Phase 5: the share of service related traffic in traffic classes

Several studies have been conducted to define the share of different
applications from total IP traffic. In a 2014 study, the top applications
of 2010 for fixed networks have the following shares of application
traffic: streaming over HTTP at 25%, file hosting at 2–10%, and social
networking at 5% (García-Dorado et al., 2012). For mobile Internet in
2015, the top applications were social networks at 55.65%, search
engines at 14.27% and e-commerce at 7.53% (Yang et al., 2015).

We will utilize the Cisco Visual Networking Index (VNI) results
(Cisco Systems, 2014–2017a) to present shares of traffic classes from
total IP traffic. Cisco has conducted the VNI results from several years,
and it has been used in most of the traffic-related studies as a reference.

Cisco defines four traffic classes: 1) video, 2) file sharing, 3) web,
email, and data, and 4) online gaming (Cisco Systems, 2017a). The video
traffic class consists of an online video that is downloaded or streamed
for viewing on a device. Video streaming has been growing at a sig-
nificant rate due to popularity and the availability of high-quality video
streams (García-Dorado et al., 2012). Major contributors in fixed line
video traffic are: 1) Netflix at 35%, 2) YouTube at 17%, 3) Amazon
video at 4%, and the rest at 44% (Meeker, 2017). File sharing includes
traffic from P2P applications and another web-based file sharing. The
web browsing, email, instant messaging, and data traffic -class includes
web, email, instant messaging, and other data traffic (excludes file
sharing). Online gaming includes casual online gaming, networked con-
sole gaming, and multiplayer virtual-world gaming.

According to a Cisco 2017 report (Cisco Systems, 2017a) in 2016,
video traffic represented 61.48% of the total worldwide mobile IP
traffic. The second most significant contributor to mobile traffic was the
web, email, and data traffic class with a share of 38.01%. The file sharing
(0.49%) and online gaming (0.02%) traffic classes played a minor role. In
the fixed network, the video traffic class represented a share of 72.84%
of the total consumer IP traffic. The file sharing had 12.53%, and the
web, email, and data traffic class had 12.90% share of the traffic. Online
gaming represents a share of 1.74% of the total IP traffic in fixed net-
works. All of the shares above are from consumer users. Consumer
traffic represents an 81.46% share of the total IP traffic (Cisco Systems,
2017a). The results are presented in Appendix A Tables A.3 and A.5.

We utilized these intermediate results and calculated the energy
consumption of all traffic classes. We utilized the traffic shares and
divided the shared technology domains accordingly. As an example of a
100% mobile traffic related technology domain, we used the following
Eq. (1) for calculating the RAN energy consumption share of the web,
email, and data traffic class:

= ∗ ∗ ∗ ∗ Mobile trafficE E %IPv4 %TCP %HTTP %web,email,and data,RAN RAN web,email,and data

(1)

The Internet core is an example of a component sharing traffic from
fixed and mobile networks. We used the following Eq. (2) for calcu-
lating the Internet core energy consumption share of the web, email, and
data traffic class:

= ∗ − ∗ ∗ ∗ ∗

+ ∗ ∗ ∗ ∗ ∗

− ∗ ∗ ∗ ∗ ∗ ∗

+ ∗ ∗ ∗ ∗ ∗ ∗

Fixed traffic

Mobile traffic

Fixed traffic

Mobile traffic

E (E %Fixed line traffic %IPv4 %TCP %HTTP % )

(E %Mobile traffic %IPv4 %TCP %HTTP % )

((E %CDN %Fixed line traffic %IPv4 %TCP %HTTP % )

(E %CDN %Mobile traffic %IPv4 %TCP %HTTP % ))

web,email,and data,Internet core Internet core web,email,and data

Internet core web,email,and data

Internet core web,email,and data

Internet core web,email,and data (2)
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A summary of the calculations is presented in Table 3 below:
As expected, video traffic consumes the most energy with nearly 380

TWh per year out of all HTTP based traffic. The impact of CDNs is
mostly in reducing both the service latency and the need to invest in
expensive Internet core and transit capacity, for example, underwater
transatlantic capacity. CDNs do not take away the need for server
processing. HTTP protocol-based services consume nearly 600 TWh of
energy per year.

2.9. Phase 6: energy consumption of online advertising

To analyze the share of energy consumed by online advertising with
our framework, we need to investigate the proportion of the total traffic
related to online advertising. We estimate the share of online adver-
tising in each HTTP based traffic class. No direct shares of online ad-
vertising were found in any references. We estimate the shares of online
advertising by first introducing the online advertising and its char-
acteristics. Secondly, we present the concept of effectiveness in ad
impressions. Thirdly, we investigate mobile and video ad character-
istics.

The main difference between online and offline advertising is the
cost of targeting (Goldfarb, 2014). In a 2011 study, it has been observed
that 12% of all HTTP requests consist of ad-related traffic and the
percentages tend to rise with market growth (Ihm and Pai, 2011). Any
ad space on a website must be sold in 100ms. Otherwise, a blank space
is shown to the end user, and a revenue loss will occur (Chen et al.,
2016). Therefore, real-time bidding (RTB) is needed. RTB is the tech-
nology performing the massive aggregation and ad space bidding sup-
ported by targeting algorithms (Chen et al., 2016; Pujol et al., 2014).
When RTB is used, a visit to a website generates a large number of
background connections from that website (Pujol et al., 2014).

The effectiveness of an ad impression depends on a person's history
data (Braun and Moe, 2013). There are several techniques to increase
the effectiveness of an ad impression: 1) content integration, 2) search
engine advertising, 3) display advertising (De Haan et al., 2016), 4)
classified advertising and 5) tracking (Goldfarb, 2014). In content in-
tegration, the advertising is integrated into the content of the website
(De Haan et al., 2016). A search is a statement or intent; in search
engine advertising ads can be targeted effectively precisely when po-
tential customers are looking for something. Display advertising in-
cludes banner ads, plain text ads, media-rich ads, video ads, and typical
ads seen on Facebook for example. Classified advertisements are ads
residing on websites that do not provide other media content or algo-
rithmic search (Goldfarb, 2014). Tracking users at scale is not techni-
cally challenging (Chen et al., 2016). One website can contain as much
as seven different trackers. Some trackers capture over 20% of a user's
browsing behavior (Roesner et al., 2012). All of the techniques above

are used on a massive scale: we claim the techniques are generating
substantial network traffic end-to-end. Therefore, we estimate an ad-
vertising share of 50% for the traffic class web, email, and data in 2016,
with an uncertainty range of [25%–75%]. The share is the same for
both mobile and fixed traffic.

Unlike fixed-line online ads, mobile ads integrate with free appli-
cations. According to a Guardian 2016 article, up to 79% of data
transferred is ads, and almost half of the data downloaded to smart-
phones were ads (The Guardian and Jackson, 2016). In September
2016, 73% of mobile applications were free. Ad-supported free apps
receive 50 times more downloads and generate ten times the revenue
compared to ad-free paid apps. Free apps cost more to end users than
ad-free paid apps due to the notably higher advertising traffic (Chen
et al., 2016). Therefore, we estimate the share of mobile video ads,
including the free-apps advertising to be 14% in 2016, with an un-
certainty range of [3%–25%]. The share of online ads was considered to
be 10% for fixed network video, with an uncertainty range of
[2%–18%]. The share of video traffic from global IP traffic is over 67%.
We claim our estimation of the share of online advertising in video
traffic is in the right magnitude, with the range of uncertainty taken
into account.

For the file sharing and online gaming traffic classes, in both fixed and
mobile networks, we will use 10% as an estimation of the share of ad
traffic out of the total traffic, with an uncertainty range of [1%–19%].
Table 4 presents the shares of online advertising in each traffic class in
2016.

All of the estimations contain uncertainty. The actual shares of
online advertising are not known precisely. In addition, the amount of
uncertainty is not known. We will use larger ranges for uncertainty than
the UNIDO method for uncertainty suggest, changing key parameters
within the range of −20% to +20% (Berens and Havranek, 1995).

Generally, studies regarding online advertising contain

Table 3
The energy consumption of each HTTP traffic class in 2016.

Video File sharing Web, email, and data Online gaming Total Note

Devices (TWh)
Smartphone 3.45 0.03 2.13 0.001 5.61 100% mobile traffic relater
PC 36.19 6.22 6.41 0.86 49.68 100% fixed line traffic related
Laptop 10.95 1.88 1.94 0.26 15.03 100% fixed line traffic related
Tablet 4.57 0.79 0.81 0.11 6.28 100% fixed line traffic related

Connectivity (TWh)
RAN 56.47 0.45 34.92 0.02 91.85 100% mobile traffic relater
PS-CORE 52.54 8.31 11.26 1.15 73.25 68.63% fixed line +7.5% mobile traffic related
Fixed line CPE 77.44 13.32 13.72 1.85 106.33 100% fixed line traffic related
Operator DC 10.51 1.66 2.25 0.23 14.65 68.63% fixed line +7.5% mobile traffic related
Office networks 23.74 4.08 4.20 0.57 32.59 100% fixed line traffic related
Internet core 6.38 1.01 1.37 0.14 8.89 68.63% fixed line +7.5% mobile - 39.92% CDN * (68.63% fixed line +7.5%

mobile)
Applications (TWh) 137.93 21.81 30.38 3.01 193.14 68.63% fixed line +7.5% mobile
Total 380.53 53.31 100.85 7.33 597.31

Table 4
The share of online advertising in each traffic class.

Online ad share Uncertainty Reference

Fixed network
Video 10.00% [2%–18%] Estimation
File sharing 10.00% [1%–19%] Estimation
Web, email, and data 50.00% [25%–75%] Estimation
Online Gaming 10.00% [1%–19%] Estimation

Mobile network
Video 14.00% [3%–25%] Estimation
File sharing 10.00% [1%–19%] Estimation
Web, email, and data 50.00% [25%–75%] Estimation
Online Gaming 10.00% [1%–19%] Estimation
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uncertainties: 1) external validity issues, 2) variable bias, 3) isolation
difficulties of a single effect over multiple variables (Goldfarb, 2014),
and 4) the flow of an ad through infrastructure is challenging to predict
(Taylor and Koomey, 2008). Nevertheless, according to Koomey 2008,
most Internet advertising flows can be well-represented by averages
(Taylor and Koomey, 2008). Thus markets demand more reliable
measurements (Wang et al., 2014).

We used the above information together with previous results and
calculated the online advertising energy consumption for each traffic
class separately. All the results presented in Table 3 were multiplied by
the online advertising share percentages for each traffic class presented
in Table 4. The energy consumption of fraudulent advertising is 23%
(Botlab, 2017) of the total online advertising energy consumption.

2.10. Phase 7: calculating the carbon footprint

There is a direct link between Internet usage and CO2e emissions.
The grid mix is an essential factor when defining CO2e emissions. About
80% of the energy generated in the OECD countries is done using non-
renewable sources, resulting to an increase in CO2e emissions
(Salahuddin et al., 2016). Globally, the emissions from coal as a source
of energy form more than 50% of the total emissions. In developing
countries, the percentage is even higher (Li and Lin, 2017). Lambert
et al., assumed CO2e conversion to 500 g of CO2e is produced per kWh
(Lambert et al., 2012). The standard German electricity mix emission
factor has been identified to be 0.5656 kg CO2e/kWh (Kern et al.,
2015). The latter result is used as a multiplying factor when we con-
verted energy consumption of online advertising to CO2e emissions on a
global scale. It should be noted; the emission factor is context-, time-,
and spatially-specific, as environmental characteristics and significance
vary across countries over time (Del Campo, 2017). The emission factor
is a source of uncertainty.

2.11. Phase 8: uncertainties in environmental impact assessment of online
advertising

Uncertainty is a situation in which there is not sufficient informa-
tion available to describe a situation being observed. EIA has guidelines
to consider uncertainty and to point out sources of incomplete knowl-
edge and a lack of data (Cardenas and Halman, 2016). Nevertheless,
there is no common underlying conceptual framework for conducting
uncertainty analysis (Leung et al., 2015). Uncertainty considerations
are essential to ensure the quality of any impact assessment (Leung
et al., 2015) and required in all stages of a decision-making process
(Cardenas and Halman, 2016).

When investigating Internet energy consumption, there is a risk of
relying more on assumptions than real data (Bull and Kozak, 2014).
There are devices whose energy consumption scales with traffic, and
devices that do not scale. This creates a methodological problem and is
a source of uncertainty (Coroama and Hilty, 2014). Many of the studies
conducted on the Internet domain assume a product as a functional
unit, not the services the products are enabling. Used services reflect
consumer behavior better than product-based analysis (Bull and Kozak,
2014). Internet energy intensity results vary significantly, depending on
the assumptions, system boundary selection and the estimation of en-
ergy efficiency improvements (Schien and Preist, 2014). Due to the
uncertainty and variability of results, the need for uncertainty analysis
is widely acknowledged (Groen and Heijungs, 2017).

Top-down methods suffer from higher use phase estimations com-
pared to the bottom-up or model-based approaches. This uncertainty
can be reduced by smart system boundary selection (Schien and Preist,
2014). Models are inherently incomplete, as it is implausible that they
fully encompass all relevant factors and their interconnected nature
(Cardenas and Halman, 2016). In most impact assessment case studies
that include uncertainty propagation, the correlation between the input
parameters is ignored, even though the effect is unclear (Groen and

Heijungs, 2017).
In our case study, uncertainties are found on all levels. The collec-

tion of Internet primary data is challenging, creating uncertainties
(Schien and Preist, 2014). The year of the references and the amount of
extrapolation are important sources of uncertainty. The ICT sector is
evolving rapidly, and the equipment is becoming more energy efficient
(Coroama and Hilty, 2014). Therefore, the energy consumption of de-
vices provides uncertainty, as only average data is available (Schien and
Preist, 2014).

Sensitivity analysis is used for assessing the interconnection be-
tween output and input variables (Cardenas and Halman, 2016). There
are three ways to perform sensitivity analysis: 1) analyze a system or
region characteristics which are influenced by change, 2) analyze re-
sulting impacts, and 3) analyze the exposure, sensitivity, and interac-
tions between components. In EIA, the aim is to identify areas with a
high risk of being influenced by change (Del Campo, 2017).

We conducted an uncertainty and a sensitivity analysis to our re-
sults. First, we estimated the uncertainty of the infrastructure energy
consumption. The uncertainty percentages of all the different tech-
nology domains are based on the reference years and the variation
between previous studies results. As a rule of thumb, recent references
result in smaller uncertainties. Then we calculated the impact of the
minimum and maximum values in TWh to the output and summed up
the percentages to get the total uncertainty impact to output. The re-
sults are presented in Appendix A Table A.5.

Similarly, we conducted an uncertainty analysis of the shares of
traffic and the shares of online advertising in each traffic class.
Uncertainty estimations for established protocols such as IPv4, TCP,
and HTTP contain relatively small uncertainties as they are known from
specific measures. The highest uncertainty is in the estimation of the
shares of online advertising in each traffic class. The results are pre-
sented in Appendix A Table A.6. We calculated the effect of increasing
every input factor by 1% on the corresponding output; the results can
be found in Appendix A Fig. A.1. The share of the fixed network traffic
class web, email and data with 1.77% increase for each percentage in-
crease in the input, and the share of ads in the fixed network traffic class
video with 3.22% increase have the highest impacts on the output.
Overall, the uncertainty in the share of ads in each traffic class provides
the highest impact on the output.

The sensitivity of the output value to the input factors was in-
vestigated with a Monte Carlo simulation. We created the simulation
with Python. The source code of the simulation is available at GitHub
(2018). All input factors with uncertainties were simulated. All input
variables in our Monte Carlo simulation are random variables. Expected
values are calculated by utilizing references and extrapolation. All un-
certainties are symmetrical, independent and identically distributed
(IID). Probability theory states a sequence of random variables is IID, if
each random variable has the same probability distribution as the other
variables, and all variables are mutually independent. The variables in
our assessment simulation fulfill these preconditions and are therefore
assumed normally distributed random variables. An exception is the
share of traffic classes in mobile and fixed networks. There are three
input variables, whose expected value is close to zero, but still contain
uncertainty to the extent that would result in a pessimistic scenario
negative percentage values for traffic class share, if symmetrical un-
certainty was used, which is not an intellectual scenario. Therefore, we
have utilized triangular distribution on all traffic class share variables.
When utilizing triangular distribution, the parameters for the random
pick are minimum, maximum and peak value. The peak value is as-
sumed to be the expected value. The simulation input factors and dis-
tributions are presented in Appendix A Table A.7. The central limit
theorem states that the distribution of the sum or an average of many
IID variables will be approximately normal, regardless of the under-
lying distribution (Siegrist, 2017). The simulation follows the calcula-
tion of online advertising energy consumption as described in previous
sections. Each input factor with uncertainty is divided into 200 steps of
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unique values being randomly picked for each round. This results in a
massive amount of permutations. The simulation was run for million
rounds, and the resulting distribution has 200 bins. We simulated the
total infrastructure energy TWh and online advertising energy TWh.

3. Results

The total energy consumption of online advertising, without un-
certainties, for each traffic class has been calculated according to the
methods presented in Section 2. The results are presented in Table 5.

With our framework, system boundary, base value estimations, and
assumptions: online advertising energy consumption in 2016 was
106.59 TWh. Web-browsing was the dominant source of online adver-
tising and therefore consumed the highest amount of energy.

There are uncertainties in our estimation. Uncertainty analysis in-
dicates the most influential infrastructure energy consumption input
factors were application-, RAN-, and PC energy consumptions.
Similarly, the most influential input factors for traffic were: share of ads
in the fixed and mobile video traffic class, the share of ads in the fixed
and mobile web, email and data traffic class, share of TCP, and the share
of HTTP. We wanted to investigate the output of online advertising
energy consumption when the input factors are randomly picked from
the range of uncertainty for each input factor. We conducted a Monte
Carlo simulation of the framework, with one million simulated rounds,
and the distributions of results are presented in Fig. 6.

The online advertising energy consumption distribution (a) is a

normal distribution; therefore, the mean value is also the expected
value. The distribution for the total infrastructure energy consumption
(b) is also normally distributed. The probability is more concentrated
around the mean value in online advertising distribution, compared to
the total infrastructure energy consumption.

As a summary, we calculated the online advertising energy con-
sumption and the total infrastructure energy consumption with un-
certainties. The simulated results show 5 TWh higher mean values for
online advertising, compared to the calculated results, because of the
simplifications of the framework made in the simulation. The whole
distribution is within the range of calculated results as expected. The
results are presented in Table 6.

The results must be viewed with uncertainties taken into account.
As a result, in 2016, online advertising consumed 20–282 TWh of en-
ergy. In the same year, the total infrastructure consumption was from
791 to 1334 TWh. With extrapolated 2016 input factor values without
uncertainties, online advertising consumed 106 TWh of energy and the
infrastructure 1059 TWh. We calculated the carbon emissions of online
advertising and found it produced 60 Mt CO2e (between 12 and 159 Mt
of CO2e when considering uncertainty). The share of fraudulent online
advertising traffic was 13.87 Mt of CO2e emissions (between 2.65 and
36.78 Mt of CO2e when considering uncertainty).

Using the emission factor simplifies the calculation but at the same
time creates uncertainties, as the grid mix varies between different
geographical locations and as a function of time (there can be changes

Table 5
The energy consumption of online advertising without uncertainties.

Video File sharing Web, email,
and data

Online
gaming

Total

Devices (TWh)
Smartphone 0.48 0.003 1.07 0.00 1.55
PC 3.62 0.62 3.20 0.09 7.53
Laptop 1.09 0.19 0.97 0.03 2.28
Tablet 0.46 0.08 0.40 0.01 0.95

Connectivity
(TWh)

RAN 7.91 0.04 17.46 0.00 25.41
PS-CORE 5.43 0.83 5.63 0.11 12.01
Fixed line CPE 7.74 1.33 6.86 0.18 16.12
Operator DC 1.09 0.17 1.13 0.02 2.40
Office networks 2.37 0.41 2.10 0.06 4.94
Internet core 0.66 0.10 0.68 0.01 1.46

Applications
(TWh)

14.26 2.18 15.19 0.30 31.93

Total (TWh) 45.11 5.96 54.70 0.82 106.59

Fig. 6. Online advertising energy consumption TWh distribution (a), and total infrastructure energy consumption TWh distribution (b).

Table 6
The online advertising energy consumption and CO2 footprint.

Simulated results Mean Min value Max value Median Standard
deviation

Total infra energy
TWh

1057.76 838.96 1278.44 1057.79 66.95

Ad energy TWh 111.82 36.138 222.4 110.98 23.44

Calculated results Expected Min value Max value

Total infra energy TWh 1059.15 791.01 1334.29
Ad energy TWh 106.59 20.38 282.75

Ads energy consumption TWh expected [min, max] 106.59 [20.38,
282.75]

Ads CO2 (million tons CO2e.) emissions expected [min,
max]⁎

60.28 [11.53,
159.93]

Advertising fraud CO2 (million tons CO2e) emissions
expected [min, max]⁎⁎

13.87 [2.65, 36.78]

⁎ Emission factor 0,5656 kg CO2e/kWh (Kern et al., 2015).
⁎⁎ Advertising fraud percentage 23% (Botlab, 2017).
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in the grid mix daily). For our purposes the average is sufficient. Online
advertising CO2e emissions are 10% of the total infrastructure emis-
sions and therefore a significant contributor to the environmental im-
pact of the Internet ecosystem. Advertising fraud can be considered a
total waste of resources, both economically and environmentally. Our
framework-based EIA of online advertising contains significant un-
certainties but even with uncertainties included, the range of values
indicates our results are significant.

4. Discussion and recommendations

Growing energy consumption is a global problem. The ICT industry
enables substantial energy savings in many industries through auto-
mation, for example. Nonetheless, the ICT industry should also reduce
its energy consumption and CO2e emissions. Electricity price is pre-
dicted to rise, as it has risen for decades. It will be interesting to observe
at which price point the ICT industry becomes more enthusiastic about
energy efficiency.

According to Cisco, data flows of the Internet are expected to grow
by 42% annually until 2020 (Aslan et al., 2017). In addition, leading
OECD countries are funding Internet rollouts with billions of dollars to
increase the Internet use and digitalization (Salahuddin et al., 2016).
The growth of energy consumption in ICT is increasing despite tech-
nological disruptions such as cloud computing, high connection speeds,
wireless access, and smartphones and tablets (Salahuddin et al., 2016).
A 2012 study estimated an increasing need for more powerful and en-
ergy consuming infrastructure to support the steeply expanding amount
of traffic (Gosselin et al., 2012). Meilson et al. present results of 20%
annual energy efficiency improvement, and a more recent 2014 study
done by Tamm et al., indicates the improvement rate has leveled to
10% per annum (Schien and Preist, 2014). Cisco and Juniper report
overall capacity increments of 54% per annum for core routers, with
annual energy efficiency improvement of 18% (Schien and Preist,
2014).

We created a framework for assessing energy consumption and
CO2e emissions for the EIA of the Internet service. We scoped out
economic and social impact analysis. As a justification of our frame-
work, we utilize the framework to assess online advertising energy
consumption and suggest that a substantial portion of HTTP traffic is ad
related. Even with uncertainties taken into account, online advertising
consumes vast amounts of energy.

All traffic classes presented in this paper include online advertising
to some extent. In the web, email, and data traffic class the amount of
online advertising ranges from 25 to 75% of the traffic, being sig-
nificantly less in other classes. The impact of the share of online ad-
vertising creates the most significant systemic uncertainties, which is
not surprising, as it is in the highest level of abstraction on top of the
infrastructure, protocols and traffic classes. The results can be repeated
easily and changing any of the input parameters is possible, including
the percentage of online advertising for each traffic class. We also
created a Python simulation, which allows future researchers to in-
vestigate any Internet service by changing the input parameters. The
source code of the simulation is available at GitHub (GitHub, 2018).

The main factors affecting the output results are: 1) share of online
advertising in each traffic class 2) uncertainty based on the base value
year, and 3) the inclusion of DCs and end devices in the system
boundary. We have added CDNs into our system boundary, as they have
technologically reduced the network resource consumption of favorite
sites. CDNs ensure content is downloaded from a server (cache) close by
to the end-user and therefore also improve the end-user experience. At
the same time, CDNs reduce the need for expensive Tier-1 transit ca-
pacity needed for intercontinental traffic.

The share of ICT energy consumption from the total energy con-
sumption has been studied during the last few decades. A 2008 study

indicates a conservative estimate of 3% of the total global energy
consumption for the ICT, with the system boundary of cellular, PSTN
and the Internet core, without DCs (Fettweis and Zimmermann, 2008).
The share of global energy consumption of ICT has increased from 3.9%
(2007) to 4.6% (2012) (Salahuddin et al., 2016; Aslan et al., 2017).
According to the IAE report, the total global electricity consumption in
2015 was 24,344 TWh (International Energy Agency, 2017b). The 2016
figures were not available, therefore as an indicative result, we used the
2015 global electricity consumption value and calculated the shares
with our results. The results were in the range of 3.2–5.4% of the total
global consumption (the results were somewhat lower with the 2016
figures, as global electricity consumption is increasing).

When analyzing the results, it should be taken into account that
many of the most widely used Internet services are free, as the business
logic is based on advertising, rather than pay-as-you-use. Changing this
business model would increase energy efficiency, but at the cost of
lower adaptation level for services. According to a web publication
(Venturebeat and Protalinski, 2015), Netflix's share of the total down-
stream traffic in America is 37.05%. Let's assume this is their global
share. If Netflix changed its business model to that of Spotify, which is
free to use if the user accepts advertisements, the effect on the Internet
energy consumption would be substantial. If an additional 10% is as-
sumed as the advertising video traffic, based on our framework, on a
global level additional 42.02 TWh of energy would be consumed, and
23.76 million tons of CO2e emitted (without taking uncertainties into
account).

Our recommendations for future research include applying in-
ventory-based bottom-up analysis to all technology domains, to in-
crease the accuracy of results, and to remove uncertainties as much as
possible. The same applies to traffic classes. The role of software in
energy efficiency improvement initiatives should also be investigated
further. There are reference models for greener software (Kern et al.,
2015). They are not widely applied. In addition, the trend towards
smartphones, smart TVs, and clouds shift computing and storage to
service provider data centers, therefore potentially decreasing energy
consumption through scale and resource utilization rate improvement.
None of the energy consumption improvements happen by accident;
instead, they are a result of systematic energy efficiency improvement
initiatives at all levels of the ICT industry.

5. Conclusions

The Internet consumes vast amounts of energy and creates CO2e
emissions of global significance. The exact figures are challenging to
calculate due to the enormous complexity of the Internet. Our frame-
work is sufficient to conclude that improving the energy efficiency of
the Internet is a relevant matter. By utilizing our framework, we aimed
to identify the part of energy consumption related to online advertising,
and the amount consumed by fraudulent online advertising.

Reducing online advertising traffic will improve the energy effi-
ciency of the Internet. The impact will not manifest immediately, but
somewhat gradually. While the impact of invalid online advertising
significantly affects the advertising economy in monetary terms, it also
consumes lots of energy and has a hefty carbon footprint. The current
trend of the CO2e emissions will continue to grow over time in many
industries. It is essential industries leveraging the Internet technologies
take the necessary steps to stop this trend and to ultimately decrease the
CO2e emissions as early as possible. Awareness of the problem is the
first step towards more concrete actions.

Our framework contributes to the discussion of EIA assessments of
Internet services. It is a collection of best practices and methods joined
together into a layered and modular structure and fits into any level of
detail or abstraction locally or globally across technologies.
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Appendix A. Appendix

Table A.1
Total energy consumption.

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Reference

Internet users (millions) 1024 1151 1365 1561 1751 2019 2224 2594 2705 2937 3173 3555 3758 3929 4086 4229 (Vlachos, 2016)

Growth% 12.40 % 18.59 % 14.36 % 12.17 % 15.31 % 10.15 % 16.64 % 4.28 % 8.58 % 8.04 % 12.04 % 5.71 % 4.55 % 4.00 % 3.50 %

Devices

Smartphone devices (millions) 90 150 190 237 304 431 687 1031 1457 1850 2222 2562 2890 3150 3402 3640 (Meeker, 2017; Sta�sta, 2018a)

Growth% 66.67 % 26.67 % 24.74 % 28.27 % 41.78 % 59.40 % 50.07 % 41.32 % 26.97 % 20.11 % 15.30 % 12.80 % 9.00 % 8.00 % 7.00 %

Smartphone avg energy / device (kWh) 4.62 4.49 4.36 4.23 4.11 3.99 3.87 3.76 3.65 3.54 3.44 3.34 3.24 3.14 3.05 2.96 (Canstar Blue, 2016)

Growth% -3.00 % -3.00 % -3.00 % -3.00 % -3.00 % -3.00 % -3.00 % -3.00 % -3.00 % -3.00 % -3.00 % -3.00 % -3.00 % -3.00 % -3.00 % (Andrae and Edler, 2015)

Smartphone total energy (TWh) 0.42 0.67 0.83 1.00 1.25 1.72 2.66 3.88 5.32 6.56 7.64 8.56 9.36 9.90 10.37 10.76

Growth% 61.81 % 22.98 % 21.10 % 24.53 % 37.65 % 54.75 % 45.70 % 37.20 % 23.27 % 16.61 % 11.94 % 9.42 % 5.73 % 4.76 % 3.79 %

PC devices (millions) 493 440 400 370 349 336 329 326 322 322 325 325 322 319 315 312 (Sta�sta., 2018b)

Growth% 12.00 % 10.00 % 8.00 % 6.00 % 4.00 % 2.00 % 1.00 % -0.5 % -1.23 % 0.00 % 0.93 % 0.00 % -1.00 % -1.00 % -1.00 % -1.00 %

PC avg energy / device (kWh) 266 263 260 257 254 251 248 245 242 239 236 233 230 227 224 221 (Van Heddeghem et al., 2014)

Growth% -1.13 % -1.14 % -1.15 % -1.17 % -1.18 % -1.20 % -1.21 % -1.22 % -1.24 % -1.26 % -1.27 % -1.29 % -1.30 % -1.32 % -1.34 %

PC total energy (TWh) 131.04 115.68 103.96 95.15 88.72 84.30 81.66 79.87 77.92 76.96 76.70 75.73 74.00 72.31 70.64 68.99

Growth% -11.72 % -10.13 % -8.48 % -6.76 % -4.98 % -3.13 % -2.19 % -2.44 % -1.24 % -0.34 % -1.27 %

Laptop devices (millions) 20 30 45 80 135 200 258 316 374 432 490 548 606 664 722 780 (Andrae and Edler, 2015)

Growth% 50.00 % 50.00 % 77.78 % 68.75 % 48.15 % 29.00 % 22.48 % 18.35 % 15.51 % 13.43 % 11.84 % 10.58 % 9.57 % 8.73 % 8.03 %

Laptop avg energy / device (kWh) 61.6 59.8 58.0 56.2 54.4 52.6 50.8 49.0 47.2 45.4 43.6 41.8 40.0 38.2 36.4 34.6 (Van Heddeghem et al., 2014)

Growth% -2.91 % -3.01 % -3.10 % -3.20 % -3.31 % -3.42 % -3.54 % -3.67 % -3.81 % -3.96 % -4.13 % -4.31 % -4.50 % -4.71 % -4.95 %

Laptop total energy (TWh) 1.23 1.79 2.61 4.50 7.34 10.52 13.11 15.48 17.65 19.61 21.36 22.91 24.24 25.36 26.28 26.99

Growth% 45.63 % 45.49 % 72.26 % 63.35 % 43.25 % 24.59 % 18.14 % 14.01 % 11.10 % 8.93 % 7.22 % 5.82 % 4.64 % 3.61 % 2.69 %

Tablet devices (millions) 16 61 147 276 427 585 742 889 1021 1133 1224 (TekCarta., 2018)

Growth% 281.13 % 142.08 % 88.07 % 54.69 % 37.16 % 26.70 % 19.91 % 14.76 % 11.00 % 8.00 %

Tablet avg energy / device (kWh) 15.4 15.0 14.5 14.1 13.7 13.3 12.9 12.5 12.1 11.8 11.4 (www.zdnet.com, 2016)

Growth% -3.00 % -3.00 % -3.00 % -3.00 % -3.00 % -3.00 % -3.00 % -3.00 % -3.00 % -3.00 % (Andrae and Edler, 2015)

Tablet total energy (TWh) 0.24 0.91 2.13 3.89 5.84 7.78 9.57 11.13 12.39 13.34 13.97

Growth% 270.03 % 135.03 % 82.59 % 50.19 % 33.17 % 23.01 % 16.32 % 11.32 % 7.67 % 4.76 %

Connec�vity (TWh)

RAN 245 235 225 215 205 200 190 180 170 160 150 140 130 120 110 100 (Andrae and Edler, 2015)

Growth% -4.08 % -4.26 % -4.44 % -4.65 % -2.44 % -5.00 % -5.26 % -5.56 % -5.88 % -6.25 % -6.67 % -7.14 % -7.69 % -8.33 % -9.09 %

PS-CORE 38 43 48 55 63 71 81 92 104 117 131 146.7 164 184 206 231 (Han et al., 2011)

Growth% -12.00 % -12.00 % -12.00 % -12.00 % -12.00 % -12.00 % -12.00 % -12.00 % 12.00 % 12.00 % 12.00 % 12.00 % 12.00 % 12.00 % 12.00 % (Pickavet et al., 2008)

Fixed line CPE 481 438 398 362 329 299 272 247 222 200 180 162 146 131 118 106 (Andrae and Edler, 2015)

Growth% 10.00 % 10.00 % 10.00 % 10.00 % 10.00 % 10.00 % 10.00 % -10.00 % -10.00 % -10.00 % -10.00 % -10.00 % -10.00 % -10.00 % -10.00 % (Andrae and Edler, 2015)

Operator DC 8 9 10 11 13 14 16 18 21 23 26 29.3 33 37 41 46 (Han et al., 2011)

Growth% -12.00 % -12.00 % -12.00 % -12.00 % -12.00 % -12.00 % -12.00 % -12.00 % 12.00 % 12.00 % 12.00 % 12.00 % 12.00 % 12.00 % 12.00 % (Pickavet et al., 2008)

Office networks 22.9 25.4 27.8 30.2 32.7 35.1 37.5 40.0 42.4 44.8 47.2 49.7 52.1 54.5 57.0 59.4 (Lambert et al., 2012)

Growth% 10.59 % 9.58 % 8.74 % 8.04 % 7.44 % 6.93 % 6.48 % 6.08 % 5.73 % 5.42 % 5.14 % 4.89 % 4.66 % 4.46 % 4.27 %

Internet core 93.50 85.00 76.50 68.85 61.97 55.77 50.19 45.17 40.66 36.59 32.93 29.64 26.67 24.01 21.61 19.45 (Taylor and Koomey, 2008)

Growth% 10.00 % -10.00 % -10.00 % -10.00 % -10.00 % -10.00 % -10.00 % -10.00 % -10.00 % -10.00 % -10.00 % -10.00 % -10.00 % -10.00 % -10.00 % -10.00 % (Schien and Preist, 2014)

Applica�ons (TWh) 152.50 182.22 211.94 241.66 271.38 301.10 315.10 329.10 343.10 357.10 371.10 385.04 398.90 412.67 426.31 439.82 (Koomey et al., 2011b; Whitehead et al., 2014)

Growth% 19.49 % 16.31 % 14.02 % 12.30 % 10.95 % 4.65 % 4.44 % 4.25 % 4.08 % 3.92 % 3.76 % 3.60 % 3.45 % 3.31 % 3.17 %

Total Energy Consump�on 1173 1135 1105 1084 1072 1073 1060 1053 1048 1048 1052 1059 1069 1083 1101 1123

Peer-reviewed base values

Es�ma�on

Table A.2
Traffic shares.

Traffic in Exabytes (EB) 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Reference

IP Traffic 29.11 47.90 77.16 119.12 172.97 242.36 329.80 522.84 614.02 749.74 852.00 1152.65 1460.33 1810.92 2237.44 2737.30 (Vlachos, 2016; Cisco Systems, 2017a)

Growth% 64.55 % 61.07 % 54.39 % 45.20 % 40.12 % 36.07 % 58.53 % 17.44 % 22.10 % 13.64 % 35.29 % 26.69 % 24.01 % 23.55 % 22.34 %

Fixed network IP traffic 24.66 40.07 62.63 91.67 128.11 179.15 247.61 376.06 419.42 505.43 606.05 791.09 1000.45 1235.52 1524.10 1861.45 (Vlachos, 2016; Cisco Systems, 2017a)

Growth% 62.48 % 56.30 % 46.37 % 39.76 % 39.84 % 38.21 % 51.88 % 11.53 % 20.51 % 19.91 % 30.53 % 26.47 % 23.50 % 23.36 % 22.13 %

Share of total IP traffic 84.71 % 83.64 % 81.17 % 76.95 % 74.07 % 73.92 % 75.08 % 71.93 % 68.31 % 67.41 % 71.13 % 68.63 % 68.51 % 68.23 % 68.12 % 68.00 %

Mobile network IP traffic 0.01 0.05 0.18 0.46 1.10 3.07 7.16 10.62 17.76 30.98 52.04 86.41 134.20 199.75 290.64 412.58 (Vlachos, 2016; Cisco Systems, 2017a)

Growth% 344.44 % 275.00 % 153.33 % 142.11 % 178.26 % 133.20 % 48.24 % 67.23 % 74.46 % 67.97 % 66.04 % 55.30 % 48.85 % 45.50 % 41.96 %

Share of total IP traffic 0.04 % 0.10 % 0.23 % 0.38 % 0.64 % 1.27 % 2.17 % 2.03 % 2.89 % 4.13 % 6.11 % 7.50 % 9.19 % 11.03 % 12.99 % 15.07 %

CDN IP traffic NA NA NA NA NA NA NA NA 158.10 209.86 284.44 460.08 646.66 874.72 1171.63 1521.52 (Vlachos, 2016; Cisco Systems, 2017a)

Growth% NA NA NA NA NA NA NA NA NA 32.74 % 35.54 % 61.75 % 40.55 % 35.27 % 33.94 % 29.86 %

Share of total IP traffic NA NA NA NA NA NA NA NA NA 27.99 % 33.38 % 39.92 % 44.28 % 48.30 % 52.36 % 55.58 %

Peer reviewed value

Es�ma�on
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Table A.4
Traffic share by protocol.

Traffic share by protocol 2010 2011 2012 2013 2014 2015 2016 Reference

IP

IPv4 NA NA NA 99.40 % 99.00 % 98.75 % 98.50 % (Czyz et al., 2014; Pujol et al., 2014)

IPv6 NA NA NA 0.60 % 1.00 % 1.25 % 1.50 % (Czyz et al., 2014; Pujol et al., 2014)

TCP 80.77 % 82.27 % 83.77 % 85.27 % 86.77 % 88.27 % 89.77 % (Pujol et al., 2014)

UDP 19.23 % 17.73 % 16.23 % 14.73 % 13.23 % 11.73 % 10.23 % (Pujol et al., 2014)

HTTP(S) 64.20 % 65.87 % 67.53 % 69.20 % 70.87 % 72.53 % 74.20 % (Czyz et al., 2014)

Fixed network

Video NA NA NA 60.39 % 64.93 % 68.65 % 72.84 % (Cisco Systems, 2014; Cisco Systems, 2015; Cisco Systems, 2016; Cisco Systems, 2017a)

File sharing NA NA NA 21.68 % 19.16 % 15.10 % 12.53 % (Cisco Systems, 2014; Cisco Systems, 2015; Cisco Systems, 2016; Cisco Systems, 2017a)

Web, email, and data NA NA NA 17.71 % 15.91 % 16.04 % 12.90 % (Cisco Systems, 2014; Cisco Systems, 2015; Cisco Systems, 2016; Cisco Systems, 2017a)

Online Gaming NA NA NA 0.22 % 0.003 % 0.21 % 1.74 % (Cisco Systems, 2014; Cisco Systems, 2015; Cisco Systems, 2016; Cisco Systems, 2017a)

Mobile network

Video NA NA NA 53.24 % 55.56 % 58.01 % 61.48 % (Cisco Systems, 2014; Cisco Systems, 2015; Cisco Systems, 2016; Cisco Systems, 2017a)

File sharing NA NA NA 3.45 % 2.24 % 0.73 % 0.49 % (Cisco Systems, 2014; Cisco Systems, 2015; Cisco Systems, 2016; Cisco Systems, 2017a)

Web, email, and data NA NA NA 43.31 % 42.20 % 41.23 % 38.01 % (Cisco Systems, 2014; Cisco Systems, 2015; Cisco Systems, 2016; Cisco Systems, 2017a)

Online Gaming NA NA NA 0.00 % 0.0 % 0.033 % 0.02 % (Cisco Systems, 2014; Cisco Systems, 2015; Cisco Systems, 2016; Cisco Systems, 2017a)

Peer-reviewed value

Es�ma�on

Table A.5
The uncertainty of infrastructure energy consumption.

2016
TWh

Share of
total

Ref.
Year

Uncertainty Min Max Min
value

Max
value

Min
impact

Max
impact

Devices (TWh)
Smartphone devices
(millions)

2562 2017 10 % 2306 2818 106.43 106.74 -0.155 0.155

Smartphone avg. kWh /
device

3.34 2016 30 % 2.34 4.34 106.12 107.05 -0.466 0.466

Smartphone total energy
(TWh)

8.56 0.81 % 106.01 107.25 -0.575 0.668

PC devices (millions) 325 2018 10 % 293 358 105.83 107.34 -0.753 0.753
PC avg. kWh / device 233.00 2014 30 % 163.10 302.90 104.33 108.85 -2.260 2.260
PC total energy (TWh) 75.73 7.15 % 103.80 109.82 -2.787 3.239
Laptop devices (millions) 548 2015 10 % 493 603 106.36 106.81 -0.228 0.228
Laptop avg. kWh / device 41.80 2014 30 % 29.26 54.34 105.90 107.27 -0.683 0.683
Laptop total energy (TWh) 22.91 2.16 % 105.74 107.57 -0.843 0.980
Tablet devices (millions) 742 2018 10 % 668 816 106.49 106.68 -0.095 0.095
Tablet avg. kWh / device 12.90 2016 30 % 9.03 16.77 106.30 106.87 -0.285 0.285
Tablet total energy (TWh) 9.57 0.90 % 106.23 106.99 -0.352 0.409

Connectivity (TWh)
RAN 140.00 13.22 % 2015 20 % 112.00 168.00 101.50 111.67 -5.082 5.082
PS-CORE 146.65 13.85 % 2011 25 % 109.99 183.32 103.58 109.59 -3.002 3.002
Fixed line CPE 162.06 15.30 % 2015 20 % 129.65 194.47 103.36 109.81 -3.224 3.224
Operator DC 29.33 2.77 % 2011 25 % 22.00 36.66 105.99 107.19 -0.600 0.600
Office networks 49.67 4.69 % 2012 25 % 37.25 62.09 105.35 107.82 -1.235 1.235
Internet core 29.64 2.80 % 2008 40 % 17.78 41.49 106.00 107.17 -0.583 0.583

(continued on next page)
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Table A.5 (continued)

2016
TWh

Share of
total

Ref.
Year

Uncertainty Min Max Min
value

Max
value

Min
impact

Max
impact

Applications (TWh) 385.04 36.35 % 2014 25 % 288.78 481.30 98.60 114.57 -7.984 7.984
Total 1059 100.00 % -26.266 27.005

Table A.6
The uncertainty of traffic shares.

2016 Reference
year

Uncertainty
%

Uncertainty in
value

Min Max Min
value

Max
value

Min
impact

Max
impact

Fixed network IP
traffic
Share of total IP
traffic

68.63 % 2017 10 % 6.86 % 61.77 % 75.50 % 102.63 110.54 -3.951 3.951

Mobile network IP
traffic
Share of total IP
traffic

7.50 % 2017 10 % 0.75 % 6.75 % 8.25 % 105.76 107.41 -0.829 0.829

CDN IP traffic
Share of total IP
traffic

39.92 % 2017 10 % 3.99 % 35.92 % 43.91 % 106.68 106.49 0.097 -0.097

IP
IPv4 98.50 % 2014 0.5 % 0.49 % 98.01 % 98.99 % 106.05 107.12 -0.533 0.533

TCP 89.77 % 2014 5.0 % 4.5 % 85.28 % 94.26 % 101.46 111.71 -5.129 5.129
HTTP(S) 74.20 % 2014 13.4 % 10.0 % 64.22 % 84.18 % 95.93 117.24 -10.659 10.659

Fixed network⁎

Video 72.84 % 2017 4.12 % 3.00 % 69.84 % 75.84 % 108.47 104.71 1.884 -1.880
File sharing 12.53 % 2017 23.95 % 3.00 % 9.53 % 15.53 % 108.47 104.71 1.884 -1.880

Web, email,
and data

12.90 % 2017 23.26 % 3.00 % 9.90 % 15.90 % 100.94 112.23 -5.645 5.649

Online
Gaming⁎⁎

1.74 % 2017 173 % 3.00 % 0.00 % 4.74 % 107.68 104.71 1.092 -1.880

Mobile
network ⁎

Video 61.48 % 2017 4.88 % 3.00 % 58.48 % 64.48 % 107.06 105.45 0.479 -1.136
File

sharing⁎⁎
0.49 % 2017 715.83 % 3.00 % 0.00 % 3.49 % 106.70 105.91 0.112 -0.676

Web, email,
and data

38.01 % 2017 7.89 % 3.00 % 35.01 % 41.01 % 105.21 108.00 -1.378 1.417

Online
Gaming⁎⁎

0.02 % 2017 17959 % 3.00 % 0.00 % 3.02 % 106.59 106.22 0.003 -0.369

Online ad share
Fixed network
Video 10.00 % Estimate 80 % 8.00 % 2.00 % 18.00 % 79.17 134.00 -27.419 27.419
File sharing 10.00 % Estimate 90 % 9.00 % 1.00 % 19.00 % 101.28 111.89 -5.305 5.305

Web, email,
and data

50.00 % Estimate 50 % 25.00 % 25.00 % 75.00 % 91.41 121.76 -15.174 15.174

Online Gaming 10.00 % Estimate 90 % 9.00 % 1.00 % 19.00 % 105.85 107.32 -0.736 0.736
Mobile

network
Video 14.00 % Estimate 78.57 % 11.00 % 3.00 % 25.00 % 98.07 115.10 -8.517 8.517
File sharing 10.00 % Estimate 90 % 9.00 % 1.00 % 19.00 % 106.53 106.64 -0.055 0.055

Web, email,
and data

50.00 % Estimate 50 % 25.00 % 25.00 % 75.00 % 94.41 118.76 -12.174 12.174

Online Gaming 10.00 % Estimate 90 % 9.00 % 1.00 % 19.00 % 106.58 106.59 -0.002 0.002

⁎ Total sum must be 100%, in Min/Max Impact the reduced or added percentages are divided equally to other classes.
⁎⁎ Min value with uncertainty cannot go below zero.
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Figure A.1. One percentage increase in input effect on online advertising TWh output percentage.

Table A.7
Monte Carlo simulation input factors and uncertainties.

Simulation input factor Value Uncertainty Unit Distribution

Infrastructure factors
smartphone_dev_millions 2565 0.1 Millions Normal
smartphone_avg_energy 3.34 0.3 kWh Normal
pc_dev_millions 325 0.1 Millions Normal
pc_avg_energy 233 0.3 kWh Normal
laptop_dev_millions 548 0.1 Millions Normal
laptop_avg_energy 41.8 0.3 kWh Normal
tablet_dev_millions 742 0.1 Millions Normal
tablet_avg_energy 12.9 0.3 kWh Normal
ran 140 0.2 TWh Normal
ps_core 146.65 0.25 TWh Normal
fixed_line_cpe 162.06 0.2 TWh Normal
operator_dc 29.33 0.25 TWh Normal
office_network 49.67 0.25 TWh Normal
internet_core 29.64 0.4 TWh Normal
applications 385.04 0.25 TWh Normal

Traffic share factors
fixed_ip 0.6863 0.1 % Normal
mobile_ip 0.075 0.1 % Normal
cdn_ip 0.3992 0.1 % Normal

Smartphone usage factor
smarphone_usage 1 0 % Normal
pc_usage 1 0 % Normal
laptop_usage 1 0 % Normal
tablet_usage 1 0 % Normal
Protocol factors
ipv4 0.985 0.005 % Normal
tcp 0.8977 0.05 % Normal

(continued on next page)
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Table A.7 (continued)

Simulation input factor Value Uncertainty Unit Distribution

http 0.742 0.1 % Normal

Traffic class factors
fixed_video⁎ 0.7284 0.03 % Triangular
fixed_file⁎ 0.1253 0.03 % Triangular
fixed_web⁎ 0.129 0.03 % Triangular
fixed_gaming⁎ 0.0174 0.03 % Triangular
mobile_video⁎ 0.6148 0.03 % Triangular
mobile_file⁎ 0.0049 0.03 % Triangular
mobile_web⁎ 0.3801 0.03 % Triangular
mobile_gaming⁎ 0.0002 0.03 % Triangular

Ads share factors
fixed_video 0.1 0.8 % Normal
fixed_file 0.1 0.9 % Normal
fixed_web 0.5 0.5 % Normal

⁎ Uncertainty +/- value, Min value cannot go below zero.
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