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Abstract—Sparse sensor arrays can achieve significantly more
degrees of freedom than the number of elements by leveraging
the co-array, a virtual structure that arises from the far field
narrowband signal model. Although several sparse array con-
figurations have been developed for passive sensing tasks, less
attention has been paid to arrays suitable for active sensing.
This paper presents a novel active sparse linear array, called
the Interleaved Wichmann Array (IWA). The IWA only has a
few closely spaced elements, which may make it more robust to
mutual coupling effects. Closed-form expressions are provided
for the key properties of the IWA. The parameters maximizing
the array aperture for a given even number of elements are
also found. The near field wideband performance of the array is
demonstrated numerically in a coherent imaging scenario.

I. INTRODUCTION

Sparse sensor arrays offer a cost effective alternative to
conventional filled arrays with uniformly spaced sensors. By
utilizing the degrees of freedom (DOF) provided by the co-
array [1], sparse arrays can e.g. match the point spread function
(PSF) in imaging applications, or resolve the same number of
sources in direction finding tasks as a filled array of equivalent
aperture [2], [3]. Since only O(N) physical elements are
necessary to represent O(N2) co-array elements, sparse arrays
with significantly fewer sensors and RF front ends may achieve
the same number of DOFs as filled arrays. Sparse arrays
also have fewer closely spaced elements, which can improve
performance in presence of mutual coupling [4], [5].

Sparse array design is often concerned with finding array
configurations with a desired co-array, using as few physical
elements as possible. In the case of linear arrays, the target
co-array is usually the Uniform Linear Array (ULA), which
maximizes the number of DOF in the co-array of a given
aperture, when the physical elements are constrained to a
uniform grid. A uniform co-array allows for efficient array
processing algorithms to be employed, and avoids grating
lobes in the beampattern when the virtual elements are spaced
at most half a wavelength apart. The array minimizing the
number of elements subject to a ULA co-array is called the
Minimum-Redundancy Array (MRA) [6], [7]. The MRA is
however impractical to find for large array apertures, and
lacks a closed-form expression for its sensor positions. This
has encouraged research into finding analytically tractable,
but possibly sub-optimal array configurations, such as the
Wichmann [8], Nested [9] and Co-prime arrays [10]. Many of
these configurations have a difference co-array with the ULA
property, which is desirable in passive sensing applications
like DOA estimation [9]. However, the sum co-array of these
arrays often contains holes, which may degrade performance in
active sensing tasks, such as coherent imaging [2]. The largest
known MRA with a ULA sum co-array has N = 48 elements

[11], [12]. Beyond this, other active sparse array configurations
have to be considered. The Reduced-Redundancy Array (RRA)
[7] is one solution that combines several smaller MRAs into a
larger sparse array. Unfortunately, the number of elements N
in the RRA scales linearly with aperture L, whereas N ∝

√
L

would be preferable. A modification of the Nested Array [9],
called the Concatenated Nested Array (CNA), was recently
proposed to address this problem [13]. However, the CNA
still has many closely spaced elements, which may degrade
performance when mutual coupling is considered.

This paper introduces a novel sparse active linear array con-
figuration with fewer closely spaced elements than the CNA.
The proposed Interleaved Wichmann Array (IWA) consists
of the union of a Wichmann Array (WA) [8] and its mirror
image. The facts that the difference co-array of the WA is a
ULA and the IWA is symmetric, guarantee that the sum and
difference co-arrays of the IWA are ULAs [14]. Closed-form
parametric expressions are derived for the element positions
and key properties of the IWA. Furthermore, the parameters
maximizing the array aperture for a given even number of
elements are found. Finally, the near field wideband imaging
performance of the array is demonstrated numerically.

The paper is organized as follows: Section II reviews the
active imaging signal model, and the sum co-array. Section III
presents the IWA, its properties, and a derivation of its optimal
parameters. In section IV, the IWA is compared the ULA in a
coherent imaging simulation. Section V concludes the paper.

II. SIGNAL MODEL

A. Active coherent imaging

Consider a linear array with N omnidirectional transceivers
at D = {d̃ · in | in ∈ Z}Nn=1, where Z is the set of
integers, and d̃ is the unit inter-element spacing (typically half
a wavelength). The array is used to image a collection of K
coherent, possibly near field, point reflectors. The scenario is
illustrated in Fig. 1 for a single transmitter (Tx), receiver (Rx),
and target. A pulse p(t) = s(t)ejωct, with carrier frequency
ωc and amplitude s(t) ∈ C, where C is the set of complex
numbers, is transmitted from the mth transmitter, and scattered
by the kth target with reflectivity γk ∈ C. The signal is then
received at the nth receiver after delay τmnk = (lmk + lnk)/c,
where c denotes the wave propagation speed. In the absence
of clutter and receiver noise, the received signal is:

xmn(t) =

K∑
k=1

γks(t− τmnk)ejωc(t−τmnk). (1)

Target reflectivity is assumed to be frequency independent.
Higher order reflections, propagation losses and mutual cou-
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Fig. 1. Active imaging in the plane. Element positions are given by di,
distances by li and target reflectivities by γk .

pling are also ignored. The distance between the nth element
of the array located at dn ∈ D, and a point with polar
coordinates (r, ϕ) is ln =

√
r2 + d2

n − 2rdn sin(ϕ). The
array is focused by delaying the received signals in (1) by
τmn(ϕ, r) = (lm(r, ϕ) + ln(r, ϕ))/c. The delayed signals are
then weighted by transmit and receive weights wt,m, wr,n ∈ C
and summed, yielding the beamformed signal:

y(t, r, ϕ) =

N∑
m=1

N∑
n=1

wt,mwr,nxmn(t+ τmn(r, ϕ)). (2)

Matched filtering of (2) with the transmitted pulse p produces
an estimate of the reflectivity at (r, ϕ). The output of the
matched filter sampled at τ = 0 is γ̂(r, ϕ) =

∫∞
−∞ p∗(t −

τ)y(t, r, ϕ)dt |τ=0. This evaluates to

γ̂(r, ϕ) =

N∑
m=1

N∑
n=1

wt,mwr,n

K∑
k=1

γke
jωc∆τmnkRss(∆τmnk), (3)

where Rss(τ) is the autocorrelation function of the baseband
signal s(t). Delay ∆τmnk = τmn(r, ϕ) − τmnk denotes the
difference between the focusing delay of the current pixel and
the round-trip delay to the kth target.

B. Sum co-array

The co-array is a virtual array structure arising from (3).
Particularly, the sum co-array emerges when the target range
rk → ∞ ∀k. In this far field case, the delay difference
simplifies to ∆τmnk = (dm+dn)(uk−u)/c, where u = sin(ϕ)
[15]. Thus (3) becomes a function of the sum co-array [2]:

CΣ = {dΣ = dn + dm | dn, dm ∈ D}. (4)

Several element pairs may contribute to the same co-array
element. Consequently, the multiplicity or natural weight-
ing of the sum co-array may be defined as υΣ(dΣ) =∑
dm,dn∈D 1(dΣ = dm + dn), where 1(·) is the indicator

function. For convenience, D is often normalized by the
unit spacing d̃ and shifted such that a set of non-negative
integers D ⊆ {0, 1, . . . , L} is obtained. It follows that CΣ ⊆
{0, 1, . . . , 2L}. The sum co-array is said to be contiguous when
it has no holes, i.e. CΣ = {0, 1, . . . , 2L}. Two arrays are co-
array equivalent when they have the same co-array support.

1) Wideband effects: The frequency dependence of the co-
array is revealed through the Fourier transform relationship
between the autocorrelation function Rss and power spectral
density (Wiener-Khinchin theorem): Rss(τ) =

∫∞
−∞ s(t)s∗(t+

τ)dt =
∫∞
−∞ |S(f)|2ej2πfτdf . Here, S(f) is the Fourier

transform of s(t). Substituting the expression into (3) yields
γ̂(r, u) ∝ ej2π(fc+f)∆τmnk . The factor (fc + f)∆τmnk deter-
mines the wideband co-array, which now clearly also depends
on the temporal frequency. In the far field (fc + f)∆τmnk =
α(dm+dn)(uk−u)/λc, where α = (fc + f)/fc and λc is the
carrier wavelength. The far field wideband co-array is thus the
union of scaled copies of the narrowband co-array in (4) [16]:

CΣ,fw =
⋃

f αCΣ. (5)

In other words, the co-array is contracted or expanded by a
scale factor α for each frequency component in the spectrum
of the transmitted pulse.

2) Near field effects: The impact of near field targets on
the co-array can be analyzed by retaining the two leading-order
terms of the Taylor expansion of the focusing delay [15]. This
yields τmn ≈ (2r− (dm+dn)u+(d2

m+d2
n)(1−u2)/(2r))/c.

The delay difference ∆τmnk for a target in range focus, i.e.
r = rk, then evaluates to [15]: ∆τmnk ≈ ((dm + dn) + (d2

m +
d2
n)(uk+u)/(2r))(uk−u)/c. Consequently, there is a coupling

between target range, direction and array geometry in the near
field. In the narrowband case, this is captured by the spatially
varying co-array [17]:

CΣ,nn ≈ {dm+dn+ 1
2r (d2

m+d2
n)(uk+u) | dn, dm ∈ D}. (6)

The more general near field wideband co-array is obtained by
combining (5) and (6), yielding CΣ,nw ≈

⋃
f αCΣ,nn.

C. Image addition

Image addition is a co-array processing technique that
enables co-array equivalent arrays to achieve the same set of
PSFs [2], [18]. The idea is that a desired co-array weighting
υ is synthesized as the sum of component co-array weightings
υq . Weighting υ replaces the natural weighting υΣ, which
might produce an unsatisfactory PSF with high side lobes. The
components υq are given by the convolution between different
sets of transmit-receive weight pairs, i.e. υ[i] =

∑Q
q=1 υq[i] =∑Q

q=1(w̃t,q ∗ w̃r,q)[i]. The number of component images Q
determines the accuracy of the synthesis, since sequences
w̃t,q and w̃r,q are sparse when the array is sparse. A perfect
synthesis is guaranteed when Q equals the number of sensors
N [18]. Fewer components may also be sufficient, depending
on υ and the desired accuracy of the synthesis. The number
of components affects the frame rate of the imaging system,
and should therefore be kept low [19].

III. INTERLEAVED WICHMANN ARRAY

This section introduces the Interleaved Wichmann Array
(IWA) and establishes some of its key properties, such as
aperture, number of elements and number of unit spacings.
Sensor positions of the IWA are given in closed-form, and the
array parameters that maximize the aperture for a given even
number of elements are derived.

The Wichmann Array (WA) is based on a pattern of
restricted difference bases first reported in [8]. Restricted
difference bases [20] are essentially the number theoretical
equivalent of Minimum-Redundancy Arrays [6] in passive
array processing. The Wichmann pattern was later rediscovered
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Fig. 2. The Interleaved Wichmann Array (IWA) is the union of a Wichmann Array (WA) [8] (dark elements) and its mirror image (light elements). Parameters
l, q ∈ N control the distance between consecutive elements in the WA (braces), and the number of times these distances are repeated (parenthesis).

and adapted to sparse sensor arrays in [21], [22]. The WA
has three desirable properties: low redundancy, few unit inter-
element spacings, and a contiguous difference co-array [23].
Unfortunately, the WA is less suitable for active sensing, since
its sum co-array contains holes. However, the IWA defined by
the union of a WA with its mirror image, has a contiguous
sum co-array. This follows from the symmetry of the IWA,
and the contiguous difference co-array property of the WA,
see Lemma 1 in [14]. Fig. 2 illustrates the structure of the
IWA. The formal definition of the IWA is:

Definition 1 (Interleaved Wichmann array (IWA)):
The element positions of the IWA are given by DIWA =
DWA ∪ DWA− , where DWA = 0 ∪ {

∑n
i=1 ∆dWA[i]}4l+q+2

n=1 ,
DWA− = 4l(l + q + 2) + 3(q + 1) − DWA and ∆dWA =
1×(l), l + 1, (2l + 1)×(l), (4l + 3)×(q), (2l + 2)×(l+1), 1×(l).
Parameters l and q are non-negative integers, i.e l, q ∈ N.

The sequence ∆dWA denotes the spacings between consecutive
elements in the WA, and the notation a×(b) is shorthand for ”a
repeated b times”. Consequently ∆dWA has 4l+ q+ 2 entries,
with a cumulative sum of 4l(l+q+2)+3(q+1), which equals
the aperture of both the WA and IWA.

A. Properties of IWA

It can be seen from Fig. 2 that only 2(l + 1) elements
of the two Wichmann sub-arrays DWA and DWA− overlap. By
definition, the number of elements N in the IWA is even and
≥ 4, or more precisely:

N = 2(3l + q + 2). (7)

The array aperture remains the same as for the WA, that is:

L = 4l(l + q + 2) + 3(q + 1). (8)

Furthermore, the number of unit spacings in the IWA is:

υ∆(1) =

{
q + 3, when l = 0

2l + 2, otherwise.
(9)

This is slightly higher than for the WA which has υ∆(1) = 2l
when l ≥ 1, and υ∆(1) = 1 when l = 0. The proofs of (7)
and (9) are provided in [24] due to lack of space here.

B. Optimization problem

Maximizing the DOF provided by the IWA is equivalent
to finding parameters l, q ∈ N that maximize the aperture
L ∈ N in (8) for a given even number of elements N ≥ 4.
This requires solving the following constrained optimization
problem:

maximize
l,q∈N

4l(l + q + 2) + 3(q + 1)

subject to q = N/2− 3l − 2. (P1)

Note that the objective function of (P1) remains the same in the
case of the WA, but the constraint is replaced by q = N−3−4l
[23]. Therefore, the optimal IWA does not necessarily consist
of an optimal WA. (P1) is nevertheless a non-convex integer
program, which appears challenging to solve. However, the
problem admits a closed-form solution, as is shown next.

C. Relaxed solution

Solving (7) for q and substituting the result into (8) yields
the new objective function:

L = −8l2 + (2N − 9)l + 3
2N − 3. (10)

Maximizing (10) subject to the relaxed constraint that l, q ∈
R+, where R+ is the set of non-negative real numbers, results
in a concave unconstrained optimization problem with the
solution l̃? = (2N − 9)/16. Substitution into (7) yields
q̃? = (2N − 5)/16. It follows that l̃? /∈ N when N is even.
Even if l̃? ∈ N, then clearly q̃? = l̃?+1/4 /∈ N. Consequently,
l̃? and q̃? must be projected to the set of integers in order to
obtain a feasible solution to (P1), as is done next.

D. General solution

Since (10) is concave when l ∈ R+, the optimal integer-
valued parameter pair solving (P1) is

l? = b(2N − 9)/16e (11)
q? = N/2− 3l? − 2, (12)

where b·e denotes rounding to the nearest integer. Note that q?
is always a non-negative integer. The integer property follows
directly from the fact that N is even. The non-negativity is
less obvious, but easily verifiable from (11) and (12). Due to
the rounding operation in (11), the optimal l becomes

l? = (N/4− α)/2, (13)

where α depends on the value of N (proof in [24]):

α =


1, when N = 4 + 8m

3/2, when N = 6 + 8m

2, when N = 8 + 8m

1/2, when N = 10 + 8m,

(14)

and m ∈ N. Substituting (13) into (10) yields the optimal
aperture of the array, L? = (N2 + 3N − β)/8, where
β = {4, 6, 16, 10} depends on the value of α in (14). A lower
bound on number of elements is obtained by setting β = 4 and
solving for N , yielding N? ≥ (

√
32L+ 25−3)/2 = O(

√
8L).

For comparison, the CNA also achieves N = O(
√

8L) [13].
Similarly, substituting (13) into (9) yields the number of unit
spacings: υ?∆(1) = N/2 + 1, when N ≤ 8, and N/4 + ζ
otherwise. Again, ζ depends on N as α and β, and assumes



values ζ = {1, 1/2, 0, 3/2}. Note that this is only half of the
number of unit spacings in the CNA with υ∆(1) ≈ N/2 [13].

IV. COHERENT IMAGING EXAMPLE

Next, the performance of the IWA is demonstrated in a
coherent imaging application. Both far and near field targets,
as well as narrow and wideband signals are considered. ”Near
field” is understood as the Fraunhofer diffraction limit rf =
L2/λc [25], where L is the physical aperture of the array.
The aperture is set to L = 22 · λc/2, and thus the Fraunhofer
limit evaluates to rf = 11L. Fig. 3 shows the IWA with N =
12 elements, and the ULA of equivalent aperture with N =
23 elements. ”Wideband” refers to a square pulse of length
Tp = Ncycλc/c, where Ncyc is the number of cycles of the
carrier. The relative 3 dB bandwidth of such a signal is Brel =
B/fc ≈ 0.88/Ncyc [25]. The number of cycles is set to Ncyc =
10, yielding Brel ≈ 0.088. This could correspond to a 3 GHz
microwave carrier with 264 MHz bandwidth, or a 1.5 MHz
ultrasound carrier with 132 kHz bandwidth.

Fig. 3. Array configurations with aperture L = 22 · λc/2. The IWA has
N = 12 elements compared to the ULA with N = 23 elements.

A triangular co-array weighting is selected. This window
is achieved naturally by the ULA with unit gain transmit and
receive weights. Fig. 4 shows the PSF obtained by the IWA
using image addition. Side-lobes are over −20 dB for a single
component image, whereas the desired PSF is achieved with
Q = 8 component images.

Fig. 4. Point spread function of IWA. Image addition with a single component
(Q = 1) does not suppress the grating lobes of the sparse array. The desired
PSF is achieved by increasing the number of components to Q = 8.

Fig. 5 shows the reflectivity estimate (3) of a single target
with reflectivity γ = 1 in range focus of the array. Using image
addition (Q = 8), the IWA is able to perfectly match the target
PSF in the far field narrowband case shown in Fig. 5(a). In
Fig. 5(b), the beampattern no longer has deep nulls due to the
wideband co-array (5). However, the main lobe width and side
lobe levels remain unaltered. In the near field, Fig. 5(c) and
5(d), the effects of the spatially varying co-array (6) become
dominant. Image addition is unable to fully compensate for the
grating lobes, although the performance is significantly better
than with a single component image (Fig. 4).

Next, three near field targets are imaged with both the ULA
and IWA. The target parameters are r = {109, 121, 133}λc,

(a) Far field, narrowband (b) Far field, wideband

(c) Near field, narrowband (d) Near field, wideband

Fig. 5. IWA response to single target at boresight. In (a), the desired PSF is
perfectly matched under far field narrowband conditions. In (b), the wideband
signal smears out the nulls, but do not degrade side lobe levels or main lobe
width. In (c) and (d), near field effects dominate and produce grating lobes.

ϕ = {−π/4, 0, π/4} and γ = {1, 1, 1}. The SNR of a
single receiving sensor in additive white Gaussian noise is 30
dB. Fig. 6 shows results after image addition with a single
component image for the ULA and eight components for the
IWA. The IWA shows close similarity with the ULA close to
the targets, whereas side lobes appear further away, as expected
based on Fig. 5(d). Since the IWA has fewer elements than the
ULA, it also has a lower array gain. The SNR loss of the IWA
compared to the ULA is ≈ −30 log(12/23) ≈ 8.5 dB [14].

(a) ULA (b) IWA

Fig. 6. Image of three targets located at a distance of 10−12 array apertures
from the array baseline. The (a) ULA and (b) IWA have identical responses for
small angular deviations around the target, whereas image addition is unable
to suppress grating lobes when the angle becomes too large. The IWA has
50% fewer elements than the ULA, and as a consequence, lower image SNR.

V. CONCLUSION

This paper introduced the Interleaved Wichmann Array
(IWA), a sparse linear array for active sensing. The optimal
sensor placements of the array were derived, and relevant
properties were established. The IWA halves the number of
unit spacings of the recently proposed Concatenated Nested
Array, whilst retaining approximately the same number of
elements. Consequently, the IWA may be less sensitive to
mutual coupling. Additionally, the IWA is both difference and
sum co-array equivalent with the uniform linear array (ULA)
of equal aperture. This property enables the IWA to match the
point spread function of the ULA in the far field, while only
suffering an inevitable SNR loss due to having fewer elements.
Grating lobes resulting from the non-uniform element spacing
limit the performance of the array in the near field. Further
research into co-array processing is required to address this
issue. In future work, it would also be interesting to investigate
symmetric sparse arrays based on other geometries than the
Wichmann array. Furthermore, exploring non-trivial extensions
of the IWA with an odd number of elements could be relevant.
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