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ABSTRACT  

A sea ice sheet may fail through several mechanisms when interacting with an obstacle. 

Susceptibility and mode of failure behave as functions of the physical size of a sheet. In this 

paper we compute the effective uniaxial tensile strength of an ice sheet for several different 

specimen sizes by applying a three-dimensional combined finite-discrete element approach. 

We evaluate the effect of the loading rate by using two displacement rates. Although a rate-

independent cohesive formulation is used and the displacement rates applied are low, a 

significant rate effect emerges. 

KEYWORDS: Ice; Combined FEM-DEM; Beam lattice network; Rate/size effect; Effective 

tensile strength 

INTRODUCTION 

Operating safely on ice-infested waters requires reliable knowledge of ice loads on structures. 

Information of ice-exerted loads can be obtained either through experimental campaigns or by 

using analytical or numerical methods. This paper investigates how an ice sheet modeled by 

using a three-dimensional combined finite-discrete element method (FEM-DEM) and meant to 

be used when conducting ice-structure interaction simulations, fractures while under uniaxial 

tension. We compute the effective uniaxial tensile strength of an ice sheet for several different 

specimen sizes. We evaluate the effect of the loading rate by using two displacement rates. 

Failure of an ice sheet, using similar numerical methods, has been treated in the past by for 

example Hocking (1992), Jirásek & Bažant (1995), Hopkins (1998), Sayed & Timco (1998), 

Selvadurai & Sepehr (1999), Sand (2008), Paavilainen et al. (2009), Dorival et al. (2008), 

Konuk et al. (2009), Gürtner (2009), Kuutti et al. (2013), Lu et al. (2014), Herman (2016) and 

van den Berg (2016). 

CONSTRUCTION OF THE NUMERICAL MODEL 

The modeled ice sheet consists of a network of two-noded, three-dimensional co-rotational 

Timoshenko beam elements connected with the mass centroids of the overlaid undeformable 

discrete elements, Figure 1. Mesh is constructed by using centroidal Voronoi tessellation (CVT) 

 

POAC’17 

Busan, KOREA  

Proceedings of the 24th International Conference on 

Port and Ocean Engineering under Arctic Conditions 

June 11-16, 2017, Busan, Korea 



POAC17-132 

(Du et al., 1999). Mesh consists of convex polyhedra as the discrete elements and a Delaunay-

triangulated network, or a lattice, of Timoshenko beam elements. Elasticity of an ice sheet is 

modeled solely with the beams, contacts between the broken pieces of ice by the discrete 

elements. The beam formulation follows closely Crisfield (1990,1997) while the contacts 

between the discrete elements are resolved as in Polojärvi et al. (2012). In essence, the model 

is a three-dimensional extension of our earlier two-dimensional FEM-DEM-model by 

Paavilainen et al. (2009) and was introduced by Paavilainen (2010). See Lilja et al. (2017) for 

additional details. 

Figure 1. On the left: two discrete elements connected with a Timoshenko beam element. 

On the right: a partially fractured interface. 

Description of Fracture 

We use cohesive beam elements to model fracture. Cohesive sections are located at the mid-

span of each beam element. Hooke’s linearly elastic constitutive law, with a viscous damping 

model, is followed up until the onset of damage. When the cohesive cracking starts, a rate-

independent linearly softening traction-separation law is activated and applied integration point 

wise to allow a crack to propagate along an interface between two adjacent discrete elements. 

As the constitutive model gets changed once the cohesive cracking initiates, approach is 

extrinsic (Seagraves & Radovitzky, 2010). 

Numerical treatment of the softening process follows the model by Paavilainen et al. (2009). 

In their model a crack was able to propagate only vertically due to the modeling space being 

two-dimensional. As the model here is three-dimensional a crack is able to propagate both 

horizontally and vertically. Mixed mode fracture gets introduced by using the concept of an 

effective traction vector and representation of the state of stress with respect to a failure surface 

(Schreyer et al., 2006). Stress state calculation is done as with the numerical treatment of 

softening plasticity and includes a radial return mapping algorithm. Simpson’s two-

dimensional (composite) numerical integration rule is used in integrating the internal force and 

moment resultants. 

  



POAC17-132 

Description of fracture using cohesive elements, when the crack path is not known in advance, 

is not energetically convergent with any reasonable number of elements used (Seagraves, 2013). 

If a mesh is structured, crack growth is also prone to preferred directions as the artificial 

toughness induced by the mesh varies with direction. Using a CVT-based mesh renders the 

crack growth isotropic. CVT-tessellated meshes are isotropic although the mesh induced 

toughness is still artificially high (Leon et al., 2014; Spring et al., 2014; Rimoli & Rojas, 2015). 

SIMULATIONS 

Main goals of our simulations are: (1) to compute the effective uniaxial tensile strength of an 

ice sheet for several different specimen sizes and (2) to evaluate the effect of the loading rate. 

A set of square-shaped sheets having a size range of 1:16 was, thus, created for the tests, Figure 

2. Sheets had the side lengths of L = 10, 20, 40, 80 and 160 m and the thicknesses of h = 0.5, 

1.0 and 1.5 m. For each sheet, we used two mesh densities: a mesh with an average discrete 

element size of l = 2h and a mesh with an average discrete element size of l = 3h. Each broken 

fragment should have, thus, in minimum, a size that is comparable with actual block sizes 

measured from ridge sails (Kankaanpää, 1988; Høyland, 2007; Kulyakhtin, 2014). Ten 

randomized CVT-meshes were created for all of the sheets, excluding the sheet with L=160 m, 

h = 0.5 m and l = 2h, for which six meshes were produced. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Size range (1:16) of the ice sheets considered. From left to right: L = 10, 20, 40, 

80 and 160 m. The largest sheet on the right shows also sections of the two meshes that 

have the most and the least amount of discrete elements for that size: 29561 discrete 

elements  (h = 0.5 m, l = 2h) and 1460 discrete elements (h = 1.5 m, l = 3h). 
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Effective Tensile Strength 

Effective tensile strength was computed via a uniaxial tensile test. Each sheet was loaded under 

displacement control using two displacement rates: 𝑣 = 0.1 m/s and 0.01 m/s, as shown in 

Figure 3. Nodes on the right and on the left boundaries were pulled into the positive and the 

negative X-directions, respectively, until the sheet was completely fractured. To prevent early 

fracture near the boundaries, a linearly changing initial velocity field 𝑣𝑋 = 2𝑣𝑋 𝐿⁄  was 

applied, as described by Miller et al. (1999). No other constraints were used. Post-fracture 

contacts were not considered. 

 

 

 

 

 

 

 

 

Figure 3. Boundary conditions and the initial velocity field used in the computation of the 

effective tensile strength. 

Effective tensile strength was calculated for each sheet through 𝜎TS = 𝐹𝑋 𝐴0⁄ , where 𝐹𝑋 is 

the maximum resultant force in the X-direction and 𝐴0 = 𝐿ℎ is the initial cross-sectional area 

of each sheet. The resultant force 𝐹𝑋 was calculated for each sheet by summing up the X-

direction components of the internal nodal force vectors of the beams having nodes either on 

the right or on the left boundary. Table 1 shows the main parameters of the simulations. 

Table 1. Main parameters used in the simulations. 

Parameter Symbol Unit Value 

Young’s modulus Eb

b GPa 4 

Poisson’s coefficient ν  0.3 

Density of ice ρice kg/m3 920 

Damping constant c  critical1 

Time step Δt s 1.0×10-5…5.0×10-5 

Critical axial/shear stress σb / τb MPa 0.125 

Specific fracture energy Gf J/m2 15 

1𝑐 = √𝑚𝑒𝑓𝑓𝐸
𝑏, where 𝑚𝑒𝑓𝑓 is the average of the masses of the two discrete elements a beam connects. 

X

Y
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Results 

Figures 4 and 5 show (with the displacement rates: 𝑣 = 0.1  m/s and 𝑣 = 0.01  m/s, 

respectively) the computed effective average tensile strengths 𝜎TS  and their standard 

deviations in an order of ascending sheet size L. For each L the results are arranged in an order 

of ascending sheet thickness h and the discrete element size l (for each h). Results are the 

averages calculated using ten randomized CVT-meshes, except for the case with L=160 m, h = 

0.5 m and l = 2h, for which six meshes were used. 

With the displacement rate 𝑣 = 0.1  m/s, the effective tensile strength 𝜎TS  grows as a 

function of sheet thickness h and decreases as a function of sheet size L. For the two smallest 

sheet sizes the differences between the results, whether a discrete element size of either l = 2h 

or l = 3h is used, are large. Sheets that are smaller, thicker or meshed with a discrete element 

size of l = 3h have a higher effective tensile strength. Except for the smallest sheet size, the 

deviations are observed to be small. The ratio 𝜎TS 𝜎b⁄  between the computed effective tensile 

strength of an ice sheet and the critical axial stress as used with the beams varies from 

approximately 5.74 for the smallest and the thickest sheets (L = 10 m, h = 1.5 m, l = 3h) to an 

average of 0.97 for the largest sheets. 

With the displacement rate 𝑣 = 0.01 m/s, the effective tensile strength 𝜎TS decreases as a 

function of sheet size L. For the sheets with L = 10 m or L = 20 m, the effective tensile strength 

grows as a function of sheet thickness h. The sheets with L = 40 m produce (practically) equal 

results for all of the cases. For the sheets with L = 80 m or L = 160 the tensile strength decreases 

as a function of sheet thickness h. Except for the smallest sheet size, the deviations are observed 

to be small. The ratio 𝜎TS 𝜎b⁄  varies from approximately 1.18 for the smallest and the thickest 

sheets to an average of 0.81 for the largest sheets. 

Although a rate-independent cohesive formulation is used and the displacement rates applied 

are low, a significant rate effect emerges. Ratio between the maximum effective tensile 

strengths of the smallest and the thickest sheets, for the two displacement rates considered, is 

approximately 4.9 and reduces to an average value of approximately 1.2 for the largest sheets. 

As an example, a fractured ice sheet with L = 160 m, h =0.5 m, l = 2h (29561 discrete elements), 

and loaded with a displacement rate 𝑣 = 0.1 m/s, is shown in Figure 5. Broad areas become 

cohesive and are highlighted in purple. Several fully grown cracks appear and are highlighted 

in gray. Areas remaining elastic are highlighted in blue. Cracks tend to branch, bridge and have 

a tortuous pattern. 
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Figure 4. Effective tensile strength 𝜎TS as a function of sheet size L, sheet thickness h and 

discrete element size l. Displacement rate used: 𝑣 = 0.1 m/s. Critical axial stress 𝜎b, as 

used with the beams, is highlighted with a red horizontal line.  

Figure 5. Effective tensile strength 𝜎TS as a function of sheet size L, sheet thickness h and 

discrete element size l. Displacement rate used: 𝑣 = 0.01 m/s. Critical axial stress 𝜎b, as 

used with the beams, is highlighted with a red horizontal line. 
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Figure 6. A fractured ice sheet with L = 160 m, h =0.5 m and l = 2h (29561 discrete 

elements). Completely fractured beams are highlighted in gray, partially fractured 

(cohesive) beams in purple and elastic beams in blue. Sheet was loaded in tension in the 

horizontal direction with a displacement rate 𝑣 = 0.1 m/s. 
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CONCLUSIONS 

We computed the effective uniaxial tensile strength of an ice sheet modeled by using a three-

dimensional FEM-DEM approach for several different specimen sizes. Model consists of rigid 

discrete elements combined with co-rotational, viscously damped, cohesive Timoshenko beam 

elements. Centroidal Voronoi tessellation (CVT) was used to create the meshes. Effect of the 

loading rate was evaluated by using two displacement rates: 𝑣 = 0.1 m/s and 𝑣 = 0.01 m/s. 

With the displacement rate 𝑣 = 0.1 m/s the effective tensile strength 𝜎TS grows as a function 

of sheet thickness h and decreases as a function of sheet size L. For the smallest sheet size the 

differences between the results, whether a discrete element size of either l = 2h or l = 3h is used, 

are large. Sheets that are smaller, thicker or meshed with a discrete element size of l = 3h have 

a higher effective tensile strength. The ratio 𝜎TS 𝜎b⁄  between the computed effective tensile 

strength and the critical axial stress as used with the beams varies from approximately 5.74 for 

the smallest and the thickest sheets (L = 10 m, h = 1.5 m, l = 3h) to an average of 0.97 for the 

largest sheets. 

With the displacement rate 𝑣 = 0.01 m/s the effective tensile strength 𝜎TS decreases as a 

function of sheet size L. For the sheets with L = 10 m or L = 20 m, the effective tensile strength 

grows as a function of sheet thickness h. The sheets with L = 40 m produced (practically) equal 

results for all of the cases. For the sheets with L = 80 m or L = 160 the effective tensile strength 

decreases as a function of the sheet thickness h. The ratio 𝜎TS 𝜎b⁄  varies from approximately 

1.18 for the smallest and the thickest sheets to an average of 0.81 for the largest sheets. 

Although a rate-independent cohesive formulation is used and the displacement rates applied 

are low, a significant rate effect emerges. Ratio between the maximum effective tensile 

strengths of the smallest and the thickest sheets, with the two displacement rates considered, is 

approximately 4.9 and reduces to an average value of approximately 1.2 for the largest sheets. 
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