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ABSTRACT 
 
Ice rubble constitutes ice ridges and rubble fields, which can exert high loads on offshore 
structures. To characterize the ice rubble, its average properties are often desired. The 
properties, such as, the critical state friction angle, rely on the continuum notion of stress. This 
study uses discrete element model for the ice rubble. We use an average stress tensor from the 
contact forces between the ice blocks and compare it to the macroscopic stress tensor yielded 
by the boundary contact forces. These stress definitions are used to evaluate the uncertainty in 
defining the stress tensor for the ice rubble, and the related uncertainty in defining the critical 
state friction angle for the rubble. 
 
INTRODUCTION 
 
To describe ice rubble properties in both natural and laboratory conditions, bulk parameters are 
often used. These parameters, such as the internal friction angle or cohesion (ISO, 2010), rely 
on the continuum notion of stress and displacement fields, or in other words, continuum 
approach. The ice rubble, however, is a granular material (consists of individual ice blocks), 
and it remains unclear, when the continuum approach can be applied for it. Here we will use 
the results from a 2D discrete element method (DEM) simulations of bi-axial compression tests 
on ice rubble, and study the error in the assumed stress state of a an ice rubble sample of given 
size. 
 
The average stress tensor is a stress measure that can be applied for granular materials having 
a large number of individual particles. This is not necessarily the case for ice rubble, as an ice 
rubble sample of interest may only consist of tens, or hundreds, of ice blocks. Here we use a 
virtual bi-axial compression test on ice rubble to study the effect of averaging-volume size on 
the averaged stress tensor. First, we will describe the stress measures and the simulation set-
up. Second, we will investigate how accurately the averaged stress tensor inside the sample 
represents the stress tensor derived from the boundary forces. We will also discuss the 
uncertainties in defining the critical state friction angle from the test results. 
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STRESS MEASURES 
 
Several definitions for the averaged stress tensor for granular media exist. Here we use a 
definition that uses a weighting function. This allows us to vary the size of averaging volume 
independently of the configuration of the particles in the sample, which further allows us to 
study the applicability of the stress tensor itself on describing the stress state of rubble samples 
of various sizes. Babic (1997) defines such an average stress tensor 𝜎 at point x in the quasi-
static case a 

               (1) 
Where 𝑓#

$%
 is the 𝑖'(  component of the contact force between blocks α and β, 𝑥,

$%
 is the 

𝑗'(	component of the vector 𝑥$%  connecting their centroids, w x, a  is a weighting function, 
𝑥$ is the position vector of the centroid of block α, and a is the side length of a square shaped 
AV. The above equation is not defined for the particles contacting the sample boundary, 
because it uses the distance between the centroids of blocks in contact (boundaries do not have 
one). For w(x, a), we use the Heaviside function that is normalized over a square domain

          (2) 
For equilibrium under uniform stress state, the average stress inside the sample can be always 
computed from the forces acting on the boundaries of the sample. These forces can be used to 
define a boundary stress tensor 𝜎3  as (Drescher and de Josselin de Jong, 1972) 

             (3) 
where V is sample volume and summation is over the sample boundary. In continuum sense, 
under uniform boundary conditions, the stress defined by Eq. 3 should be the same everywhere 
in the sample. Therefore, in our bi-axial compression tests, 𝜎 should be equal to 𝜎3, if the 
side length a of the averaging volume is large enough. 
 
SIMULATION SET-UP 
 
Our simulation tool has been validated against model- and full-scale experiments on ice-
structure interaction in Paavilainen et al. (2009) and Paavilainen et al. (2011), respectively. In 
addition it was used to model laboratory scale shear box experiments on ice rubble in Polojärvi 
et al. (2015). In the model, the ice blocks are rigid and the contact forces are calculated using 
an elastic-viscous-plastic contact force model together with an incremental coulomb friction 
model (see Hopkins (1992) and Paavilainen et al. (2009) for details). Further, there is no 
cohesion between the blocks. The block fracture is not modelled. Table 1 gives the main 
parameters of the simulations. 
 
Figures 1a and b illustrate the simulation set-up for our virtual biaxial compression experiment. 
All simulated samples consisted of 5000 uniformly sized blocks (block size was 0.3 x 0.9 m). 
We generated the initial configuration the figures illustrate by starting with a very loose and 
random blocks configuration, and by compressing it to an initial confinement 𝜎443 = 𝜎663 =
5kPa. The boundaries were rigid and frictionless.  
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During the actual virtual compression experiments, the cover of the box moved downwards 
with a strain rate of 𝜖663 = 5 ∙ 10<=𝑠<? (we defined vertical component of the strain as 𝜖663 =
Δℎ/ℎC  where Δh is the change in the specimen height and h0 is the initial height of the 
sample). Chosen strain rate was low enough to ensure a quasistatic loading as was indicated by 
the total load on the top and bottom of the box remaining virtually equal throughout the 
simulations. The location of the vertical boundaries was iterated on every simulation time step 
so that 𝜎443  remained constant. We used the confining stress  
𝜎443 = 5kPa as it is an approximate average confinement on the top of a ten meters deep ridge 
keel (if continuous rubble mass is assumed). We ran simulations with five different ice block 
configurations to account for the potential effect of the initial ice rubble configuration. 
 
RESULTS AND ANALYSIS 
 
Boundary Stress 
Figures 2a and b show the diagonal and off-diagonal components of the boundary stress 
𝜎3	(Eq. 3) as functions of strain 𝜖663 . The data in each figure are from five simulations with 
different initial configurations. Additionally, the figures show the mean of five records. As the 
figures show, 𝜎443  records are virtually equal to all configurations, but 𝜎663  records show 
some scatter. All configurations show similar behaviour: 𝜎663  first increases with high rate up 
to 𝜖663 ≈ 0.01, then continues to increase with slower rate, and finally reaches a plateau after 
𝜖663 ≈ 0.05. 
The off-diagonal stress components show random oscillations, while the mean value for 
different configurations is approximately zero (Figure 2b). The nonzero off-diagonal 
components are due to the external moments, which arise from the asymmetric boundary force 
distributions. To describe these stresses, the couple stress tensor, such as described in (Malvern, 
1969), would be needed. This is however outside of the scope of this paper. 
 

Table 1. Main simulation Parameters. Sample width and height depended on the initial 
configuration and confinement. Parameters were chosen as in Paavilainen et al. (2011) 

Normal contact stiffness 4 GPa 
Tangential contact stiffness 1.5 GPa 
Normal damping factor 0.5 
Tangential damping factor 0.25 
Poisson coefficient 0.3 
Bulk material density 900 𝑘𝑔𝑚<J 
Plastic limit in contact (𝜎K) 2 MPa 
Ice-ice friction coefficient 0.3 
Ice-boundary friction coefficient 0.0 
Block length (l) 0.9 m 
Block thickness 0.3 m 
Initial sample width ≈40 m 
Initial sample height (ℎC) ≈40 m 
Strain rate 5 ∙ 10<= 
Confining stress 5 kPPa 
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Figure 1. Virtual compression experiments: (a) simulation set-up and (b) a 5000 block sample 

in its initial configuration. The confining stress 𝜎443  was kept equal to 5 kPa and the cover 
moved down at the constant strain rate of 5×10<=𝑠<?. 

 
due to the external moments, which arise from the asymmetric boundary force distributions. 
To describe these stresses, the couple stress tensor, such as described in (Malvern, 1969), would 
be needed. This is however outside of the scope of this paper. 
 
Convergence of averaged stress to boundary stress 
In a continuum approximation, a uniform boundary stress imposes a uniform stress throughout 
the sample. This means that the average stress given by Eq. 1 should be equal to the boundary 
stress given by Eq. 3 at all material points of the sample. This will not hold if the averaging 
volume is small and only few blocks are used to compute 𝜎. However, 𝜎 should approach 
𝜎3 as the averaging volume size increases. 
 
To study the convergence of 𝜎 we first chose to study the stress state of the sample at strain 
𝜖663 = 0.15 where the component 𝜎663  is approaching an approximately constant value. (We 
note that the stress 𝜎 can naturally be computed for any given strain.) Figures 3a and b show 
𝜎44  and 𝜎66  values, which are here normalized by the corresponding boundary stress 
components, as a function of the averaging volume side length a divided by by the block 
length l. The figures clearly show that the diagonal components 𝜎##  of the average stress 
approach the corresponding components of 𝜎##3. 
 
However, in some cases, the average stress for even the largest averaging volume differs by 
 > 10%. This can be explained by non-uniform contact force distribution and the applicability 
of Eq. 1 and is described by Figure 4. The figure illustrates the contact force distributions for 
two samples at the initial state of the test 𝜖66 = 0 (only initial confinement of 5 kPa) and at 
strain 𝜖66 = 0.15 on its left and right columns, respectively. For clarity, only the forces that 
have a value of at least 20% of the maximum contact force are shown in each figure. 
 
In both cases, the contact force distribution is seen to be initially uniform (left column of the 
figure). For the configuration in Figure 4a, the distribution also remains somewhat uniform up 
to ϵ = 0.15, as the top right figure shows. The configuration in Figure 4b, however, has the 
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majority of the load carried by the blocks close to the left boundary at ϵ = 0.15. The average 
stress 𝜎  (see Eq. 1) does not apply for these blocks, since they are in contact with the 
boundaries. This leads to 𝜎 not converging to 𝜎3. We studied the convergence of 𝜎#,  for all 
time instances of our simulations, and found that about 7% of the cases behaved like this. As 
this behavior depends on the boundaries, these cases are excluded from the following analysis.  
 

 
Figure 2. The diagonal (a) and off-diagonal (b) components of boundary stress tensor 𝜎#,3  as 

a function of strain 𝜖663  for five configurations and means of these configurations 
 

 
Figure 3. The diagonal stress components nomalised by the corresponding boundary stress 

components (𝜎##/𝜎##3) as a function of AV size normalised by block length (a/l) for five 
different configurations 

 
We also calculated the 𝜎#, values for random points within our sample using a number of AV 
side lengths α . The aim in this study was two-fold: (1) to study the probability and the 
magnitude of error, if the sample size is chosen after some given value, and (2) to provide a 
proof-of-concept for the applicability of our approach on approximating the macroscopic stress 
state of the sample. In addition, the study indicates whether our analysis is sensitive to the 
choice of the stress averaging point. (Above, the 𝜎#, was always calculated at the center point 
of the sample.) We calculated 𝜎#, for 100 random points for all of our samples at every 0.01 
strain increments. 
 
Figures 5a and b show histograms that respectively illustrate the distribution of the normalised 
stresses 𝜎44/𝜎443  and 𝜎66/𝜎663  for random points of the sample. The histograms illustrate that 
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in all of the cases the normalized stress values are distributed around 1.0, and that their variation 
gets smaller as averaging volume size increases. The relative standard deviations for α = 5l 
are 28 % and 27 % for 𝜎44  and 𝜎66, respectively. For averaging volumes having α = 20 l, 
the relative standard deviations are only 7 % and 9 % for𝜎44  and 𝜎66, respectively. 
 

 
Figure 4. Two different initial configurations (a) and (b); and two instances of biaxial 

compression test ε = 0 and ϵ = 0.15; the contact force vectors are shown that are ≥20% 
of the maximum contact force in the given instance 

 
Variation in critical state friction angle 
There is also uncertainty in the material parameters that are measured from the bi-axial test on 
insufficiently large sample. We demonstrate this by using the critical state friction angle 𝜙ST	In 
the bi-axial compression test, 𝜙ST is calculated using the ratio of the major (here 𝜎66) and 
minor (𝜎44) stress components as the ratio reaches a constant value (here this occurred at about 
ϵ = 0.15). The critical state friction angle is given by 

                       (4) 
Since there is a functional dependence of 𝜙ST on 𝜎66/𝜎44, the relative standard deviation of 
the latter, std[𝜎66/𝜎44]/mean[𝜎66/𝜎44], can be used to calculate the relative standard deviation 
of 𝜙ST. This is given by 
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      (5) 
 
 

 
Figure 5. Histograms describing the distributions of the ratios of averaged stress to boundary 
stress (𝜎#,/𝜎#,3 ) calculated about 100 random points for all samples at intervals of 0.01 strain 
increment: graphs of (a) show 𝜎44/𝜎443  and (b) 𝜎66/𝜎663 . The calculation was done using 
four different AV side lengths α (here a multiple of block length l) as indicated above each 

column. 
 

We again computed the stress components in 100 random points to study the variation of 
𝜎66/𝜎44 for averaging volumes of different sizes with the results shown in Figure 6. Here 
we only use data points with 𝜖663 ≥ 0.15 , since only they should be used to compute 
𝜙ST	(approximately constant stress ratio was reached with 𝜖663 ≥ 0.15). The figure shows that, 
similarly to normalized stress, the variation in 𝜎66/𝜎44  gets continuously smaller as the 
averaging volume size increases. 
 

Table 2. The relative standard deviations of the critical state friction angle 
(std[𝜙ST(𝜎66/𝜎44)/	𝜙ST(mean[𝜎66/𝜎44])] 

 
  AV size 
  5 l 10 l 15 l 20 l 
std[𝜙ST(𝜎66/𝜎44)/	𝜙ST(mean[𝜎66/𝜎44]) 30% 18% 13% 10% 
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Table 2 summarises the relative standard deviations of 𝜙ST calculated by Eq. 5. These are 30% 
and 10% for the smallest (α/l=5) and largest (α/l= 20) averaging volumes, respectively, which 
is similar to the relative standard deviations of 𝜎44 and 𝜎66. Table 2 also indicates that if a 
sample of only 10 block lengths is used to measure the critical state friction angle, even for the 
ice blocks with identical shape/size and properties, the variation in measured 𝜙ST	of 18% 
should be expected. 
 

 
Figure 6. Histograms of 𝜎44/𝜎66 ratio computed in 100 random points for all samples at 

intervals of 0.01 strain increment starting from 𝜖66 = 0.15. The calculation was done using 
four different AV side lengths α (here a multiple of block length l) as indicated above each 

column. 
 

CONCLUSIONS 
 
We studied the applicability of the continuum approach in measuring the stress state of an ice 
rubble sample in bi-axial numerical experiment. Study was based on 2D DEM. The averaged 
stresses usually converged towards the boundary stress of the sample. In about 7% of cases this 
did not occur due to boundary conditions. For the rubble samples of size 5 block lengths, the 
ratio of averaged to boundary stress had a relative standard deviation of approximately 30%. 
This fell to about 10% with samples sizes of 20 block lengths. We also studied the effect of 
stress variation on the critical state friction angle. Its relative standard deviation was similar to 
those of the ratio of average to boundary stress. 
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