
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

 Bonduel, Mathias; Oraskari, Jyrki; Pauwels, Pieter; Vergauwen, Maarten; Klein, Ralf
The IFC to Linked Building Data Converter - Current Status

Published in:
CEUR Workshop Proceedings

Published: 01/01/2018

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Bonduel, M., Oraskari, J., Pauwels, P., Vergauwen, M., & Klein, R. (2018). The IFC to Linked Building Data
Converter - Current Status. CEUR Workshop Proceedings, 2159, 34-43. http://ceur-ws.org/Vol-2159/04paper.pdf

http://ceur-ws.org/Vol-2159/04paper.pdf

The IFC to
Linked Building Data Converter - Current Status?

Mathias Bonduel1[0000−0002−3313−924X],
Jyrki Oraskari, Pieter Pauwels3, Maarten Vergauwen1, and Ralf Klein1

1 KU Leuven, Dept. of Civil Engineering, Technology Cluster Construction, Ghent, Belgium
mathias.bonduel@kuleuven.be

2 Aalto University, Dept. of Computer Science, Espoo, Finland
Jyrki.Oraskari@aalto.fi

3 Ghent University, Dept. of Architecture and Urban Planning, Ghent, Belgium

Abstract. Several methods for creating building-related Linked Data graphs
exist. This paper focuses on the conversion of IFC Building Information Models
(BIM) to RDF Abox graphs using the emerging W3C Linked Building Data
(LBD) modular ontologies: BOT (building topology), PRODUCT (classification
of building elements) and PROPS (building-related properties). The existing
IFC-to-RDF converter tool, converts IFC into ifcOWL-based Abox graphs
which are rather complex and difficult to implement in software applications.
The IFC-to-LBD converter presented, is necessary to transform IFC building
models into RDF Abox graphs structured according the new LBD ontologies.
An output graph contains the relevant information of the IFC building model
related to building topology, building elements classification and building-related
properties. Additionally, the graph structure becomes more concise (minimum
83 % less triples) and significantly easier to query compared to the output of
the ifcOWL-based IFC-to-RDF converter.

Keywords: Linked Data, IFC, converter, AECO, BIM, Linked Building Data,
BOT, PROPS, PRODUCT

1 Introduction

Linked Data for the Architecture, Engineering, Construction and Operation (AECO)
domain is a research topic gaining momentum during the last decade. Besides numerous
scientific publications and dedicated conferences, a Linked Building Data Community
Group within the W3C (W3C LBD CG) and a Linked Data Working Group (LDWG)
as part of the Technical Room of buildingSMART were founded. Linked Data graphs
can be created from scratch, or by converting existing structured data available in
other formats than RDF. The presented research focuses on the conversion of existing
Building Information Models (BIM) in IFC format to modular Linked Data Abox
graphs as proposed by the W3C LBD CG [8].

? This research was funded by respectively the Research Foundation Flanders (FWO) by means
of a personal Strategic Basic research grant, and the Aalto-yliopiston tekniikan tukisäätiö

Proceedings of the 6th Linked Data in Architecture and Construction Workshop

34

1.1 BIM and IFC

Building Information Modeling or BIM is an established concept within the AECO do-
main, regarding the representation and exchange of structured building information. BIM
is implemented in object-oriented database systems with a strong focus on 3D modeling.
Different software environments apply the BIM concept and a wide variety of both open-
source and commercial software applications exist such as Autodesk Revit, Graphisoft
ArchiCAD, FreeCAD (with plugins) and Tekla Structures. Each of these software pack-
ages uses its own proprietary data schema to represent the structure of a building, the
elements it consists of and their properties. If a BIM workflow is used to exchange build-
ing information between project stakeholders, a neutral format to exchange the models
is necessary. The Industry Foundation Classes (IFC), proposed by buildingSMART
International, is a neutral and open ISO standard. The IFC standard consists of an IFC
schema (in both EXPRESS and XSD) and an IFC file format (in IFC-SPFF and ifcXML)
for BIM data [4]. BIM software developers can implement an exporter and/or importer
to convert respectively their native BIM format to the neutral IFC format, or the other
way around. Many national BIM standards strongly recommend or even impose the use
of IFC to improve the exchange of building information between project stakeholders.

Besides the clear advantages regarding BIM software interoperability, IFC also has
some limitations as indicated in [4]. First of all, the EXPRESS and XSD languages lacks
methods for defining formal semantics, making it difficult to apply generic reasoning and
querying methods on IFC building models. Secondly, developers can propose extensions
for the IFC schema to buildingSMART, but the technology does not allow to extend the
IFC schema on-the-fly in an user-friendly way. Thirdly, fine grained linking of building
information stored in an IFC file to related data on the web (e.g. regulations of local
authorities, geographic information, general knowledge, building product information,
etc.) is not possible. Finally, the IFC schema is large - the most recent IFC schema,
IFC4 Add2, contains about 1200 classes - and rather complex, making it a challenge
to implement correctly in software.

1.2 The ifcOWL Ontology and IFC-to-RDF Converter

To overcome the first three limitations imposed by the usage of the IFC standard,
researchers investigated the potential of Semantic Web Technologies such as web
ontologies, the SPARQL query language and reasoning engines. Before developing tools
to convert individual BIM models to RDF Abox graphs, a shared data structure or
ontology (Tbox) had to be decided upon by the research community [1]. Over the
years, several ontologies for the IFC schema were presented, resulting in a recommended
ifcOWL ontology endorsed by buildingSMART [4]. The ifcOWL schema was designed
to be as equivalent as possible to the original IFC EXPRESS schema, with the idea of
backwards compatibility in mind. Following the development of the ifcOWL ontology, an
IFC-to-RDF converter tool was developed 4. The application converts an IFC building
model to an RDF Abox graph structured according to ifcOWL, i.e. sets of RDF triples
that contain assertions between individual RDF resources.

4 https://github.com/jyrkioraskari/IFCtoRDF-Desktop

Proceedings of the 6th Linked Data in Architecture and Construction Workshop

35

https://github.com/jyrkioraskari/IFCtoRDF-Desktop

1.3 BOT-PROPS-PRODUCT Ontologies

The ifcOWL ontology and the IFC-to-RDF converter made it possible to apply Semantic
Web technologies such as standardized querying (SPARQL) and reasoning methods,
on IFC building models. Having IFC files available as RDF graphs also facilitates fine
grained linking to other RDF datasets. The last limitation of IFC mentioned in Section
1.1 however, remains unsolved. The ifcOWL schema was developed as a Linked Data
counterpart of the original IFC EXPRESS schema, resulting in one monolithic and com-
plex ifcOWL ontology (Tbox). Converted IFC building models (Abox) are structured
according to ifcOWL, so they too are large and complex. As a result, query writing is neg-
atively influenced, making it hard to use the building data in Linked Data applications.

Alternatives, such as IfcWoD (an extension of ifcOWL)[2] and simpleBIM (a tool
to simplify ifcOWL Abox graphs)[3], were proposed to overcome the above limitation
of ifcOWL. Although these alternatives made query writing easier and even proved
to reduce query execution times, a more generic approach using modular ontologies
and RDF graphs is seen as a necessity for real industrial applications [7]. The Building
Typology Ontology (BOT)[6] was developed within the W3C LBD CG as a central and
modular ontology for the AEC industry, followed by the emergence of subgroups devel-
oping a whole range of other modular ontologies for building products, building-related
properties, geometry, etc.

BOT is developed to allow defining a building’s topology, by using dedicated BOT
classes (bot:Site, bot:Building, bot:Storey, bot:Space and bot:Element) and specific BOT
relations between them (e.g. bot:containsElement). The PRODUCT ontology is designed
to classify individual building objects, e.g. as a p4bldg:Wall, while the PROPS ontology
is used to assign properties to building-related elements. As the PROPS ontology is
still in conceptual design phase, no ontology (Tbox) is available yet. The current early
proposal for the PROPS ontology structure includes three levels of complexity 5, as
demonstrated in Listing 1. Grouping (L2 or L3) and versioning of properties (L3) is
only possible when using the more complex structures.

Listing 1: Currently proposed levels of complexity in the PROPS ontology, demonstrated
here for the case when the actual property value is a literal

#PROPS level of complexity 1 (L1)
inst:slab_A props:phaseCreated_simple "New Construction" .

#PROPS level of complexity 2 (L2)
inst:slab_B props:phaseCreated inst:property_B .
inst:property_B schema:value "New Construction" .

#PROPS level of complexity 3 (L3)
inst:slab_C props:phaseCreated inst:property_C .
inst:property_C seas:evaluation inst:state_C .
inst:state_C a opm:CurrentState ;

schema:value "New Construction" ;
prov:generatedAtTime "2018-01-03T13:35:23Z" .

5 https://github.com/w3c-lbd-cg/lbd/blob/gh-pages/presentations/props/
presentation LBDcall 20180312 final.pdf

Proceedings of the 6th Linked Data in Architecture and Construction Workshop

36

https://w3id.org/bot#Site
https://w3id.org/bot#Building
https://w3id.org/bot#Storey
https://w3id.org/bot#Space
https://w3id.org/bot#Element
https://w3id.org/bot#containsElement
https://w3id.org/product/BuildingElements#Wall
https://github.com/w3c-lbd-cg/lbd/blob/gh-pages/presentations/props/presentation_LBDcall_20180312_final.pdf

1.4 IFCtoLBD Converter

Ontologies (Tbox) in the Semantic Web domain are mainly used to allow instantiating
them into RDF data instances (Abox). As stated before, such RDF graphs can be made
from scratch or by converting other data, such as conventional BIMs, into RDF. It is for
example possible to develop a dedicated plugin for existing BIM software environments
to convert proprietary BIM data in RDF graphs, as demonstrated in [5] for the BOT
ontology and Revit BIM authoring tool. On the other hand, correctly exported IFC
files from different proprietary BIM systems can also be converted to RDF graphs. The
IFC-to-RDF converter translates IFC to RDF Abox graphs according to the ifcOWL
ontology. In this paper, a similar approach is used to convert IFC to modular Linked
Building Data (LBD) graphs, aiming initially at the BOT, PROPS and PRODUCT
ontologies. Relevant information from IFC building models is extracted and transformed
into effective and simple Abox RDF graphs suited for usage in Linked Data applications.
All URI prefixes mentioned in this paper are assembled in Listing 2.

Listing 2: Used URI prefixes in this paper

@prefix inst: <https://example.com/> . # demo namespace for node instances
@prefix bot: <https://w3id.org/bot#> .
@prefix props: <https://w3id.org/props#> .
@prefix p4bldg: <https://w3id.org/product/BuildingElements#> .
@prefix schema: <http://schema.org/> .
@prefix seas: <https://w3id.org/seas/#> .
@prefix opm: <https://w3id.org/opm#> .
@prefix prov: <https://www.w3.org/TR/prov-o/#> .
@prefix express: <https://w3id.org/express#> .
similar for other ifcOWL versions:
@prefix ifcowl: <http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#>.

2 The Current State of the IFCtoLBD converter

2.1 Implementation Details

The IFCtoLBD converter is an open-source project written in Java using the well known
Jena framework, and is available on Github 6. The proposed converter can handle IFC
files from all actively used IFC schemas, from IFC2x3 TC1 till IFC4 Add2. An IFC
building model can be converted to one RDF file combining all selected LBD Abox mod-
ules (BOT, PROPS and/or PRODUCT) or to multiple separate RDF files per selected
LBD module (Abox). Using such Abox modules, which can be used independently
from each other, it becomes easier to understand the structure of the combined graph.

If the user selects the PROPS module, he or she can choose one of the three PROPS
levels of complexity (see Listing 1). If PROPS L2 or L3 is selected, the user can choose
to define the in between property instance nodes (L2 and L3) and/or the state instance
nodes (L3) as blank nodes or instances with a stable URI. If the above nodes do not have
a stable URI, they are not unique outside the database or file they reside in, making
it impossible to connect them to other resources outside their original environment. On

6 https://github.com/jyrkioraskari/IFCtoLBD

Proceedings of the 6th Linked Data in Architecture and Construction Workshop

37

https://github.com/jyrkioraskari/IFCtoLBD

the other hand, using blank nodes can decrease the file size of the exported RDF and
increase the human readability of the Turtle file. As the PROPS ontology is still in a
conceptual phase, specific datatype and object properties are not defined there. For the
moment, the converter creates these properties on-the-fly based on the IFC property
name. If the property value is a literal and the user selects PROPS L1, the suffix
simple is added at the end of the URI of the generated predicate. In this way, there is a
distinction between e.g. props:phaseCreated in PROPS L2 and L3 (an owl:ObjectProperty)
and props:phaseCreated simple in PROPS L1 (an owl:DatatypeProperty).

2.2 The Conversion Process

The IFCtoLBD converter first uses the existing IFC-to-RDF converter internally to
transform the original IFC file to a temporary ifcOWL Abox graph (Figure 1). That
graph is converted incrementally to one or multiple LBD Abox graphs, according to
the settings of the user. By first converting the IFC file to an ifcOWL-based Abox
graph, the overall conversion process becomes slightly slower and there is an extra
dependency on the ifcOWL ontology. However, by implementing this intermediate
step, using the well-tested IFC-to-RDF converter and the reliable ifcOWL ontology,
it becomes possible for the converter to query RDF patterns directly. When converting
very large IFC building models, a connection with a RDF database system is necessary,
but implementing this requires only minor changes to the current application.

When the intermediate ifcOWL Abox graph is available, the converter iteratively cre-
ates new LBD nodes starting from the relevant ifcOWL nodes, followed by corresponding
LBD edges between these new nodes (Figure 1).The converter follows the controlled
graph traversal using path templates: it starts from the IfcSite instance node and
traverses the ifcOWL-based graph towards its IfcBuilding instance nodes, while simulta-
neously looking for the IFC properties of the IfcSite instance. The search is not started
from the IfcProject instance, since there is no corresponding class in the BOT ontology.
In a successive phase, it queries all instances of IfcBuildingStorey of the previously found
IfcBuilding instances, together with the properties of these same IfcBuilding instances.
This approach is executed until all IFC building elements and their properties are found.

Graph nodes By using the corresponding classes between the ifcOWL and the LBD
modular ontologies (BOT, PRODUCT, PROPS) displayed in Table 1, the newly
created instance resources get the right LBD OWL classes assigned. If PROPS L2
or L3 is selected, new instance nodes for properties are created. Unique property set
(pset) instances do exist in the ifcOWL-based Abox graphs and as such, they can be
converted directly into new instances of props:PsetGroup. In the case of PROPS L3,
also new instance nodes for property states are made for each property. The URIs
of the new building element instance nodes are constructed as <base URL><human
readable label>_<GUID>. The human readable label is derived from the PRODUCT
class or - if it is not a bot:Element - from the corresponding BOT class. The GUID
is always the IFC GUID of the corresponding IFC object in hexadecimal notation.

Instantiated property nodes (PROPS L2 and L3) have URIs in the form of <base
URL><propertyName>_<GUID>, where the GUID is identical to the one of the con-
nected BOT resource. In the case of property set instance nodes (PROPS L2 and
L3), the URIs are constructed as <base URL>psetGroup_<psetName>. Similarly, the

Proceedings of the 6th Linked Data in Architecture and Construction Workshop

38

https://w3id.org/props#phaseCreated
https://www.w3.org/2002/07/owl#ObjectProperty
https://w3id.org/props#phaseCreated_simple
https://www.w3.org/2002/07/owl#DatatypeProperty
https://w3id.org/props#PsetGroup
https://w3id.org/bot#Element

Fig. 1: Implemented IFCtoLBD conversion process regarding BOT

URIs of attribute group instances follow the <base URL>attributeGroup struc-
ture. Finally, the state instances (PROPS L3) have URIs in the form of <base
URL>state_<propertyName>_<GUID>_<timestamp>. An extra filter was implemented
in the code to exclude redundant properties, i.e. properties that contain no value, an
empty string value or a string value that is identical to the property name.

Graph edges At the moment of writing, the converter simplifies seven different
ifcOWL Abox triple patterns into seven corresponding direct BOT relation (see Table
2), depending on the type of start node. The bot:adjacentZone relations are not yet
implemented as no clear property path between such IFC elements was found. The
pattern P1 for finding the IfcBuilding from the respective IfcSite is given in Listing
3 using the SPARQL language.

Proceedings of the 6th Linked Data in Architecture and Construction Workshop

39

https://w3id.org/bot#adjacentZone

Table 1: Corresponding ifcOWL and LBD classes

ifcOWL classes BOT classes

IfcSite Site
IfcBuilding Building
IfcBuildingStorey Storey
IfcSpace Space
IfcElement / IfcFurnitureType Element

ifcOWL classes categorized as bot:Element PRODUCT classes

IfcWall / IfcWallStandardCase Wall
IfcDoor Door
... ...

ifcOWL classes PROPS classes (L2 and L3)

IfcPropertySet PsetGroup

Table 2: ifcOWL property paths and corresponding LBD relation or property path

ifcOWL
property paths

ifcOWL class
of start node

Corresponding LBD
property or property path

P1 IfcSite bot:hasBuilding
P1 IfcBuilding bot:hasStorey
P1 / P2 IfcBuildingStorey bot:hasSpace
P3 / P4 IfcBuildingStorey bot:containsElement
P3 IfcSpace bot:containsElement
P5 IfcSpace bot:adjacentElement
P6 / P7 IfcWall / IfcRoof / ... bot:hostsElement
P1 IfcStair / ... bot:aggregates
P8a, P8b and P8c
(properties part of psets)

(any building
element found above)

PROPS L1 / L2 / L3
(see Listing 1)

P9 + specific property paths
(IFC attribute properties)

(any building
element found above)

PROPS L1 / L2 / L3
(see Listing 1)

Listing 3: Property path P1 query to find the IfcBuilding instances of a known IfcSite

SELECT ?building WHERE {
inst:IfcSite_38274 ^ifcowl:relatingObject_IfcRelDecomposes ?relJoin .
?relJoin ifcowl:relatedObjects_IfcRelDecomposes ?building . }

Regarding the building-related properties, a distinction between IFC properties stored
in property sets and IFC attribute properties is made. Attribute properties do not reside
in property sets but are directly attached to its building element in IFC. In the first
case, three triple patterns from the ifcOWL Abox graph are needed (Listing 4): one for
finding the properties in property sets of a building element (P8a), one for the property
name (P8b) and one for the property value of such a property (P8c). In the second case,
the general rule (path P9) is to list all attributes that have a String, Integer, Double, or
Boolean data type. This approach only retrieves tag IfcElement (the BIM Autoring Tool

Proceedings of the 6th Linked Data in Architecture and Construction Workshop

40

ID or batid), globalId IfcRoot (the IFC GUID), name IfcRoot, objectType IfcObject,
refElevation Ifcsite and longName IfcSpatialStructureElement, while for example IfcMa-
terial, IfcPresentationLayer, country IfcPostalAddress, etc. are not covered by this path.
Specific property paths will be necessary to convert these other attribute properties.

Listing 4: Property paths P8a, P8b and P8c for finding property sets of a certain
building element and the properties (values and property names) they contain

SELECT ?psets ?propNames ?propValues WHERE {
path P8a: properties of property sets of a know element
inst:IfcSlab_37864 ^ifcowl:relatedObjects_IfcRelDefines ?relJoin .
?relJoin ifcowl:relatingPropertyDefinition_IfcRelDefinesByProperties
?psets .

?psets ifcowl:hasProperties_IfcPropertySet ?propSingleVal .

path P8b: property names
?propSingleVal ifcowl:name_IfcProperty ?propNameJoin .
?propNameJoin express:hasString ?propNames .

path P8c: property values
?propSingleVal ifcowl:nominalValue_IfcPropertySingleValue ?propValJoin .
?propValJoin express:hasString | express:hasBoolean | express:hasDouble

| express:hasInteger | express:hasLogical ?propValues . }

2.3 Duplex House IFC case study

The current IFCtoLBD converter was tested on the IFC file of the Duplex apartment
benchmark model (Duplex A 20110907.ifc), published by NIBS 7. The initial IFC
building model in SPF format (IFC2x3 TC1) of 2.3 MB is converted into an RDF graph
using the existing IFC-to-RDF converter (ifcOWL) and compared with the results of
the new IFCtoLBD converter (BOT-PROPS-PRODUCT). The conversion with the
IFCtoLBD converter was executed three times, with different settings for the PROPS
level of complexity. In the case of PROPS L2 and L3, all property and state instance
nodes are converted into a stable URI instead of using blank nodes.

Reduced graph size The results of the conversion to LBD Abox graphs are presented
in Table 3. The ifcOWL Abox Turtle file counts 227,143 triples (17428.0 KB file size).
First of all, there is a clear decrease in number of triples, because all geometry-related
triples from the ifcOWL-RDF are excluded: [3] noted a reduction in triples of about
38 % only by removing the IFC geometry-related triples. The number of property
steps between building-related elements (e.g. spaces and storeys) decreased from two
steps to one by applying the BOT ontology properties. Building-related properties are
handled now as is typically done in a Semantic Web environment, leaving out redundant
intermediate nodes. In this way, the number of steps/relations between a building element
and a property value is reduced from five to one, two or three steps depending on the
selected PROPS level of complexity. The element’s property name is now modeled as a
datatype/object property (L1) or object property (L2 and L3), instead of a string literal.

7 https://www.nibs.org/?page=bsa commonbimfiles

Proceedings of the 6th Linked Data in Architecture and Construction Workshop

41

https://www.nibs.org/?page=bsa_commonbimfiles

In total, a decrease of 83% in the overall number of triples (80% in file size) is
demonstrated when all three modules are exported to one file with PROPS L3 selected,
compared to the ifcOWL Abox graph of the same IFC building model. When other
PROPS levels are selected, or other Abox modules are left out, the file size and number
of triples can even be further reduced. The use of Abox modules make it easier to share
and study specific parts of the converted LBD graph. Regarding the PROPS module,
users can select the most appropriate level of complexity they need for their project.

Table 3: IFCtoLBD converter output results per module

BOT PRODUCT PROPS TOTAL

PROPS L1
397.7 KB 441.2 KB

(6099 triples) (7091 triples)
45.5 KB 18.8 KB

PROPS L2
1665.3 KB 1708.4 KB

(729 triples) (263 triples) (19831 triples) (20823 triples)

PROPS L3
3399.0 KB 3442.4 KB

(38128 triples) (39120 triples)

Simplified queries As the original ifcOWL Abox graph reduced significantly in num-
ber of triples by applying the LBD ontologies, the resulting Abox graph structure becomes
simpler while the information in the graph is equivalent to the one in the ifcOWL-based
Abox graph. As a logical consequence, query writing also becomes more clear and shorter,
as shown in Listing 5 for BOT (find the bot:Building instances of a specific bot:Site) and
Listing 6 for PROPS (find the loadBearing property value of a specific element). These
queries can be compared with the earlier presented queries for the ifcOWLAbox graph, re-
spectively in Listing 3 and Listing 4. In the first case, the number of intermediate steps be-
tween both objects drops from two to one. In the second case, the amount of intermediate
steps between a property value and the object is reduced from five to one (PROPS L1).

Listing 5: SPARQL query on the output of the IFCtoLBD converter (all instances
of bot:Building of a known site)

SELECT ?site ?buildings WHERE {
BIND(inst:site_7b7032cc-b822-417b-9aea-642906a29bd7 AS ?site)
?site bot:hasBuilding ?buildings . }

Listing 6: SPARQL query on the output of the IFCtoLBD converter (the loadBearing
property value of a certain slab; the property is of PROPS L1)

SELECT ?propValue WHERE {
BIND(inst:slab_982f59b0-f2e1-485f-8ce1-c9f6117b70a9 AS ?slab)
?slab props:SlabCommon_loadBearing_simple ?propValue . }

Proceedings of the 6th Linked Data in Architecture and Construction Workshop

42

https://w3id.org/bot#Building
https://w3id.org/bot#Site
https://w3id.org/bot#Building

3 Conclusion

The IFCtoLBD converter facilitates the conversion of IFC building models to modular
LBD Abox graphs structured according the BOT, PROPS and PRODUCT ontologies
designed within the W3C LBD CG. The resulting Abox graphs are more user-friendly
than previous ifcOWL Abox graphs, because the graph structure is simplified and closer
to what would be expected in a SemanticWeb environment. As a consequence, the output
graphs are smaller in size and SPARQL queries become significantly shorter and easier to
understand, as demonstrated with the Duplex house use case. Users can test the three dif-
ferent PROPS levels as currently proposed in theW3C LBDCG, and provide crucial feed-
back to the PROPS ontology subgroup. By using PROPS L3, it becomes possible to do -
with little extra implementation effort - versioning of properties in IFC building models.

Future research includes more elaborate use cases for the converter and a detailed
analysis of the improved query execution times compared to ifcOWL Abox graphs.
The conversion of IFC unit information using the Custom Datatype properties (CDT)
ontology and a feasibility study regarding ifcOWL property paths corresponding to
bot:adjacentZone relations and bot:adjacentElement relations between bot:Storey and
bot:Element instances will be addressed. The conversion of all relevant IFC attribute
properties will also be documented and implemented in future versions of the converter.

References

1. Beetz, J., Van Leeuwen, J., De Vries, B.: IfcOWL: A case of transforming EXPRESS schemas
into ontologies. Artificial Intelligence for Engineering Design, Analysis and Manufacturing:
AIEDAM 23(1), 89–101 (2009). https://doi.org/10.1017/S0890060409000122

2. Mendes de Farias, T., Roxin, A.M., Nicolle, C.: IfcWoD, Semantically Adapting IFC
Model Relations into OWL Properties. In: Proc. of the 32nd CIB W78 Conference 2015,
27th-29th October 2015, Eindhoven, The Netherlands. pp. 175–185 (2015)

3. Pauwels, P., Roxin, A.: SimpleBIM : From full ifcOWL graphs to simplified building
graphs. In: Christodoulou, S., Scherer, R. (eds.) eWork and eBusiness in Architecture,
Engineering and Construction (ECPPM). pp. 11–18. CRC Press, Limassol, Cyprus (2016)

4. Pauwels, P., Terkaj, W.: EXPRESS to OWL for construction industry: Towards a
recommendable and usable ifcOWL ontology. Automation in Construction 63, 100–133
(2016). https://doi.org/10.1016/j.autcon.2015.12.003

5. Rasmussen, M.H., Hviid, C.A., Karlshøj, J.: Web-based topology queries on a BIM model
(2017), presented at 5th LDAC workshop. Dijon, France

6. Rasmussen, M.H., Pauwels, P., Hvidd, C.A., Karlshøj, J.: Proposing a Central AEC
Ontology That Allows for Domain Specific Extensions. In: LC3 2017: Proceedings of the
Joint Conference on Computing in Construction. pp. 237–244. Heraklion, Greece (2017)

7. Terkaj, W., Pauwels, P.: A Method to generate a Modular ifcOWL Ontology. In:
Proceedings of the 8th Workshop Formal Ontologies Meet Industry, Joint Ontology
Workshops 2017, CEUR Workshop Proceedings. vol. 2050. Bolzano, Italy (2017)

8. Terkaj, W., Schneider, G.F., Pauwels, P.: Reusing Domain Ontologies in Linked Building
Data : the Case of Building Automation and Control. In: Proceedings of the 8th Workshop
Formal Ontologies Meet Industry, Joint Ontology Workshops 2017, CEUR Workshop
Proceedings. vol. 2050. Bolzano, Italy (2017)

Proceedings of the 6th Linked Data in Architecture and Construction Workshop

43

https://w3id.org/bot#adjacentZone
https://w3id.org/bot#adjacentElement
https://w3id.org/bot#Storey
https://w3id.org/bot#Element
https://doi.org/10.1017/S0890060409000122
https://doi.org/10.1016/j.autcon.2015.12.003

