
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Asokan, N.; Nyman, Thomas; Rattanavipanon, Norrathep; Sadeghi, Ahmad-Reza; Tsudik,
Gene
ASSURED

Published in:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

DOI:
10.1109/TCAD.2018.2858422

Published: 01/11/2018

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Published under the following license:
Unspecified

Please cite the original version:
Asokan, N., Nyman, T., Rattanavipanon, N., Sadeghi, A.-R., & Tsudik, G. (2018). ASSURED: Architecture for
Secure Software Update of Realistic Embedded Devices. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(11), 2290-2300. Article 8493602.
https://doi.org/10.1109/TCAD.2018.2858422

https://doi.org/10.1109/TCAD.2018.2858422
https://doi.org/10.1109/TCAD.2018.2858422


ASSURED: Architecture for Secure Software Update of
Realistic Embedded Devices

N. Asokan∗

Aalto University, Finland
asokan@acm.org

Thomas Nyman†

Aalto University, Finland
thomas.nyman@aalto.fi

Norrathep Rattanavipanon
University of California, Irvine,

USA
nrattana@uci.edu

Ahmad-Reza Sadeghi
Technische Universität Darmstadt,

Germany
ahmad.sadeghi@trust.tu-

darmstadt.de

Gene Tsudik
University of California, Irvince,

USA
gts@uci.edu

ABSTRACT
Secure firmware update is an important stage in the IoT
device life-cycle. Prior techniques, designed for other com-
putational settings, are not readily suitable for IoT devices,
since they do not consider idiosyncrasies of a realistic large-
scale IoT deployment. This motivates our design of ASSURED,
a secure and scalable update framework for IoT. ASSURED
includes all stakeholders in a typical IoT update ecosystem,
while providing end-to-end security between manufacturers
and devices. To demonstrate its feasibility and practicality,
ASSURED is instantiated and experimentally evaluated on two
commodity hardware platforms. Results show that ASSURED
is considerably faster than current update mechanisms in
realistic settings.

1 INTRODUCTION
Deploying insecure Internet-of-Things (IoT) devices can have
disastrous consequences, as demonstrated by large-scale IoT
botnets, such as Mirai [2] and Reaper1. IoT devices are ideal
malware targets, for several reasons: First, Internet-connected
devices are inherently more exposed to remote exploitation.
Second, embedded systems are notoriously difficult to update,
which often leaves known vulnerabilities unpatched. Third,
many such devices operate in a mostly unattended fashion,
which means that timely discovery of compromise is unlikely.

Once an IoT device is deployed, the ability to remotely
update its device’s firmware is critical to maintaining security
over its lifetime. In many real-world scenarios, devices must
be deployed in remote or inaccessible locations, rendering
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physical (manual) maintenance impossible or prohibitively ex-
pensive. Remote "Over-the-Air" (OTA) delivery of firmware
updates allows manufacturers to deliver new features or func-
tionality, as well as to patch bugs and flaws. However, if de-
signed poorly, insecure update mechanisms may be exploited
by the adversary, causing victim devices to malfunction, cease
operation, or fall under adversarial control.

Some prior update techniques (geared for different set-
tings) meet security requirements under specific assumptions.
For example, TUF [31] is an update delivery framework re-
silient to key compromise, while its descendant Uptane [22]
extends and adapts TUF to support secure updates for au-
tomotive systems. However, both techniques requires direct
interaction between the manufacturer and the devices in
order to specify device-specific constraints on the update
process. This makes them unsuitable for large-scale IoT de-
ployments, where updates may be delivered via broadcast, or
from third-party Content Delivery Networks (CDNs). Hence,
the update mechanism can not rely on interactive protocols
or on transport-level security. Also, TUF and Uptane do not
support verification of proper update installation on target
devices.

Some proposals for secure firmware updates on resource-
constrained devices (e.g., SCUBA [32] and PoSE [30]) allow
the updater to obtain a verifiable proof of successful update.
However, they involve strong assumptions (e.g., an optimal
checksum function or strictly local communication), or lack
support for update robustness, i.e., roll-back to a previous
firmware version if the current update fails. Such issues make
them unsuitable for realistic IoT deployments. This is dis-
cussed further in Section 2 which overviews related work.
Goals and Contributions:

∙ IoT Update Ecosystem: We identify essential roles in the
IoT secure software update ecosystem and show that they
cannot be directly incorporated into state-of-the-art secure
update methods [22, 31]. We also identify objectives for an
IoT secure software update system. (Section 3)

∙ Secure Firmware Update Framework: We propose ASSURED,
which: (a) provides end-to-end security by combining an ex-
isting reliable update delivery framework (e.g., TUF) with
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an authorization mechanism that allows manufacturers to
specify update constraints, and (b) allows a local authority
to specify constraints for – and verify – successful update
deployment. (Section 4)

∙ Realization & Evaluation: We instantiate ASSURED on
two low-end security architectures: HYDRA [16] and ARM
TrustZone-M [4]. We also demonstrate its practicality via
proof-of-concept implementations on two commodity plat-
forms: I.MX6-SabreLite [8] (Section 5.1) and ARM Cortex-
M23 microcontroller prototyping system equipped with
TrustZone-M (Section 5.2). Our evaluation shows that
ASSURED improves upon current update architectures in
terms of deployability and performance in realistic IoT set-
tings. It also meets the objectives we identified for different
stakeholders in the IoT update ecosystem.

2 BACKGROUND & PRIOR WORK
This section overviews several related topics.

2.1 Boot Integrity
Platform boot integrity is a fundamental requirement for any
system designed to resist copying, corruption, or compro-
mise. Secure or authenticated boot [29] mechanisms examine
integrity of the system’s software components at boot time,
thus detecting changes to the system’s trusted state.

In secure boot, each step in the boot process verifies a public
key signature on the next step in the boot chain, before it
is launched. The source of trust in the secure boot process
typically originates from a Static Root-of-Trust, such as an
immutable piece of code and a private key, imprinted (hard-
coded) by the device manufacturer. A software image must
be signed by its manufacturer before deployment, making it
impractical to verify configuration information provided by
the system administrator that controls the device during its
operation.

In authenticated boot, each step of the boot process is
measured, e.g., by computing a cryptographic hash over the
software image and platform configuration information; the
resulting measurement is stored in a way that allows it to
be securely retrieved later. Unlike secure boot, authenticated
boot permits any software component to run. However, the
securely stored measurement can be used for local access
control decisions (e.g., access to hardware-based keys), or
for producing a signed statement of the system’s state to a
remote verifier, as described in Section 2.2. Authenticated
boot relies on a Root-of-Trust for guaranteeing unforgeability
of measurements.

Secure or authenticated boot are standard features in mod-
ern PC [28] and mobile platforms [5], although their archi-
tectural realizations can differ significantly across platforms.
Boot integrity is also important for embedded platforms,
where its use has been mainly to protect against memory
corruption [13]. For instance, virtually all microcontroller
units (MCUs) check operating integrity at initialization, or
during recovery from a low-voltage condition, e.g., by com-
puting a Cyclic Redundancy Checksum (CRC) of the software

image, and comparing it with a CRC stored in persistent
storage, typically flash memory. However, CRC-based checks
do not defend against attacks on device’s boot integrity, since
an attacker who modifies the code on the device can by-
pass the CRC check via specially crafted software images,
or even by modifying the reference CRC in flash. Therefore,
modern MCU platforms employ cryptographic hash algo-
rithms (instead of CRCs) and one-time-programmable fuses
to store reference measurements used for secure boot. The
use of cryptographic algorithms for secure boot and for com-
munication in resource-constrained MCUs triggers inclusion
of cryptographic hardware accelerators, even in very small
MCUs.

2.2 Remote Attestation
Remote attestation is a process whereby a trusted entity
(verifier) remotely measures internal state of a untrusted and
possible compromised device (prover), in order to determine
whether the latter is in a benign state. Current remote at-
testation approaches can be partitioned into three groups:
hardware-based, software-based and hybrid. Hardware-based
attestation relies on security provided by dedicated hardware
features such as a Trusted Platform Module (TPM) [36] or
Intel’s SGX [12]. Such hardware features are generally not
viable for resource constrained IoT devices, such as MCUs,
due to their complexity and cost.

On the other hand, software-based attestation requires
no hardware features at all. Instead, it assumes: (1) consis-
tent timing characteristics of the measurement process on
the prover, (2) existence of an optimal (space- and time-
wise) checksum function [26, 33, 34]. Unfortunately, these
assumptions only hold when attestation is performed over
one-hop communication, along with an idealized checksum
function. Consequently, software-based methods are unsuit-
able for remote attestation in realistic settings, e.g., over the
Internet.

Hybrid remote attestation is exemplified by SMART [17]
architecture. It imposes minimal changes to existing MCUs.
SMART requires immutability of attestation code and key
by storing them in a read-only memory region. SMART also
utilizes hardwired MCU access control rules to ensure that:
(1) access to the attestation key is restricted to attestation
code, and (2) execution of attestation code is atomic, i.e.,
uninterruptible and executed as a whole. A follow-on result,
TrustLite [25], provides a more flexible way to specify these
access control rules. Access control configuration in TrustLite
can be programmed in software at compile time and enforced
by an additional feature, EA-MPU: Execution-Aware Memory
Protection Unit. Unlike SMART, TrustLite does not require
uninterruptible execution of attestation code, since its CPU
Exception Engine is modified to support secure interrupt
handling. A subsequent result, TyTan [9], extends TrustLite
to support dynamic access control configuration and real-time
guarantees.
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Figure 1: Sequence of update distribution events in TUF and Uptane. ➀ to ➂ depict the update process for TUF, while ❶ to ❻ depict the
extended update process employed by Uptane.

2.3 Secure Updates
The Update Framework (TUF)[31] is a generic security frame-
work designed to integrate with existing software repositories.
TUF adds a new layer of signed metadata, including file
sizes and cryptographic hashes of file content. Figure 1 (➀
through ➂) illustrates the sequence of events in TUF-based
update distribution. TUF clients (end-hosts) periodically poll
repositories for changes and fetch this metadata (➀), and
new software artifacts as needed (➁). By verifying the meta-
data (➂), clients detect whether files or metadata have been
manipulated.

TUF assigns responsibility of signing different parts of
metadata to different roles. In order to improve resilience
against key compromise, all roles can use one or more distinct
key-pairs and require clients to validate a threshold number
of signatures of the role’s keys. TUF defines four fundamen-
tal roles necessary to meet its security goals: root, targets,
snapshots, and timestamp.

The root role acts as a Certification Authority (CA) for
the repository. It signs public keys of all other top-level roles.
TUF clients must receive the root role’s trusted public keys
out-of-band, e.g., at manufacture or install time. Since the
root role’s keys act as roots-of-trust in TUF, they should be
stored offline, physically disconnected from the Internet to
minimize the risk of compromise.

The targets role signs metadata describing software arti-
facts which can be trusted by clients. Since software may be
originated by different sources, the targets role may delegate
full or partial trust to an auxiliary role with a separate set
of key-pairs. Partial delegation limits the set of files that the
role is allowed to indicate as trusted. A role with delegated
trust can delegate this ability further.

The snapshots role signs metadata that confirms the latest
version of all other TUF metadata stored in the repository,
except the timestamp role metadata described below.

All TUF metadata is associated with an expiration time.
In addition, the timestamp role periodically signs a statement

indicating the latest version of the snapshot metadata even
if there have been no updates.
Uptane [22] is an instantiation of TUF customized for soft-
ware distribution to automotive systems. In order to manage
updates to numerous and diverse computerized components
found in modern vehicles, Uptane extends TUF with an addi-
tional director repository. This repository allows an Original
Equipment Manufacturer (OEM) more control of software
images deployed in individual ECUs.

Figure 1 (❶ through ❻) illustrates the sequence of events
in Uptane-based update distribution. Uptane designates one
Engine Control Unit (ECU) of each vehicle as primary; it
orchestrates delivery of updates between the repository and
secondary ECUs. As part of the update process, the primary
ECU reports a vehicle version manifest (containing a signed
statement from each ECU about its software configuration)
to the remote director repository, along with the Vehicle
Identification Number (VIN) (❶). The director repository
determines the correct, up-to-date software configuration
for each ECU in the vehicle identified by the VIN. It also
signs director metadata that contains instructions bound
to the unique serial number of each ECU, describing all
software artifacts each ECU must install (❷). The primary
ECU fetches and verifies all metadata and software artifacts
on behalf of secondary ECUs (❸ through ❺) and distributes
them over the vehicle’s local-area network (❻). The metadata
is broadcast to all ECUs.

To protect against compromise of the primary ECU or man-
in-the-middle attacks (MiTM) attack originating within the
vehicle’s internal network, each secondary ECU re-verifies
the metadata and software artifacts it receives from the
primary ECU. However, each secondary ECU might not be
equipped to fully verify or store all repository metadata.
To accommodate such ECUs, Uptane relaxes verification
requirements for partial verification ECUs, which only receive
and verify director’s metadata and software artifacts specified
therein for that ECU.
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2.4 Secure Update via Remote Attestation
Several prior secure update techniques use pre-existing re-
mote attestation designs. For example, SCUBA [32] can be
used to repair a compromised sensor through firmware up-
dates. SCUBA utilizes an authentication mechanism and
software-based attestation to identify memory regions in-
fected by malware and transmits the repair update to replace
these regions. However, the attestation technique based on
self-checksumming code heavily relies on consistent timing
characteristics of the measurement process the use of an op-
timal checksum function. Due to these assumptions, SCUBA
is not a suitable approach for IoT settings [11].

Perito and Tsudik [30] present a simple secure firmware
update technique using so-called Proofs of Secure Erasure
(PoSE-s). The idea is for prover to perform secure erasure
before retrieving and installing a new update, from clean
slate. Secure erasure is achieved by filling all of prover’s mem-
ory with (uncompressable) randomness chosen by verifier.
Prover then returns a snapshot of the new memory contents
to verifier as a proof of secure erasure. This proof guaran-
tees that prover is now in a benign clean state and ready
to perform an update. Subsequent work [21, 23] improved
the original method by reducing time, energy and bandwidth
overheads. However, all PoSE-based update techniques work
only in a one-hop prover/verifier setting. Furthermore, they
do not support robust updates, i.e. ability to retain previous
version(s), in case a roll-back is required, e.g., if the current
update cannot be successfully completed. Whereas, in AS-
SURED, prover can isolate untrusted software, thus secure
erasure is not needed and update robustness can be achieved.

2.5 ARM TrustZone
ARM microprocessors are RISC-based low-power processors
that can be found in many modern devices, such as smart-
phones, smart TVs, smart watches, tablets and various other
computing devices. Cortex-A series application processors
are commonly deployed in mobile devices, networking equip-
ment and other home and consumer devices. Cortex-M series
embedded processors are used in MCUs that require low cost
and energy efficiency, such as sensors, wearables and small
robotic devices.

Since 2003, ARM application processors have featured
TrustZone Security Extensions [3], a hardware feature that
aims to reduce attack surface of security-critical code by sep-
arating processor operation into two distinct states: Secure
and Non-secure. In Non-secure state, hardware-based access
control prevents less trusted software (OS and applications)
from accessing resources belonging to the Secure state. The
ARMv8-M architecture also supports TrustZone Security
Extensions in Cortex-M cores. Guarantees provided by Trust-
Zone in Cortex-M processor are similar to that by TrustZone
in Cortex-A [4], although the microarchitectural realizations
of TrustZone Security Extensions differ significantly between
Cortex-A and Cortex-M processors.

ARM-based IoT devices commonly utilize either low-end
Cortex-A processors ( < 1GHz cores typically without Trust-
Zone) or Cortex-M microcontrollers, ranging from few tens
to a few hundred MHz. The latest additions to the Cortex-
M processor family: Cortex-M232 and Cortex-M333, also
feature TrustZone Security Extensions.

3 SYSTEM MODEL
In this section, we identify essential stakeholders in the IoT
firmware update ecosystem. We then specify anticipated
adversarial capabilities and assumptions. Next, we describe
the requirements for ASSURED and discuss how to realize
them on a low-end device.

3.1 Stakeholders
We adopt the same stakeholder model as the one used in the
Software Updates for Internet of Things (SUIT) Working
Group4 of the Internet Engineering Task Force (IETF) [27].
It includes four types of stakeholders:
∙ Original Equipment Manufacturer (OEM ). Produces de-

vices, issues the initial firmware and releases subsequent
updates. During manufacturing, OEM can securely install
cryptographic keys on its devices 5

∙ (Software) Distributor. Essentially plays the role of a sur-
rogate in the update distribution process. Since OEMs
may not wish to build and maintain the complex infras-
tructure to support logistics of software distribution at
scale, update distribution can be outsourced to software
distributors, such as CDNs.

∙ (Domain) Controller. Responsible for the upkeep, configu-
ration, and reliable operation of devices within its admin-
istrative domain. The domain may be defined by physical
proximity, e.g., devices in the vicinity that are reachable
from Controller via local connectivity, e.g., WiFi or Blue-
tooth Low Energy. Alternatively, the domain that Con-
troller is responsible for may be defined organizationally,
e.g., in cases where Controller is operated as a cloud-hosted
service.

∙ (Connected) Device. The ultimate target of updates. We
focus on resource-constrained (low-end) connected devices,
such as: sensors, actuators, hybrids of both, or any other
embedded devices that operate under strict resource limi-
tations in terms of memory, storage and processing power.

The OEM and Controller must be able to specify constraints
on updates to be deployed on Device. For instance, OEM
might use the same signing key to sign updates for different
device variations. Thus, it needs to ensure that a particu-
lar device only installs updates for the correct variation. A
software update might also be issued to enable or disable a
2https://developer.arm.com/products/processors/cortex-m/cortex-m23
3https://developer.arm.com/products/processors/cortex-m/cortex-m33
4https://datatracker.ietf.org/wg/suit/about/
5While software itself may be produced by a third-party developer, we
assume that OEM always controls its distribution. While not incon-
ceivable, we are unaware of any cases of a software developer directly
distributing firmware and/or its updates to IoT devices from multiple
OEMs.

4
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feature for a particular subset of devices, e.g., enable debug
for a development device. Controller may wish to constrain
update deployment time, i.e., during a regular maintenance
window, or when a device is otherwise idle. Updates may
also be deployed as differential patches, i.e., updates do not
contain full software images, but only the changes between
the previous software version, and the updated version. In
such cases the OEM must be able to place constraints on the
order in which the updates are installed to ensure that each
patch applies cleanly, and the resulting software configuration
in Device remains consistent at all times.

3.2 Adversary Model
We base our adversarial model on the subset of realistic
attack types enumerated in [1]:

I Remote Adversary can compromise untrusted file servers
or cloud storage infrastructure components that store
firmware updates before they reach Device. Remote ad-
versary may also attempt to remotely exploit software
vulnerabilities, in order to infect Device with malware.

II Local Adversary is sufficiently near Device to intercept
communication and generally interfere with network
traffic between Distributor and Controller or device-to-
device communication between Controller and Device.

As in prior related literature, we consider attacks on
Device-s by so-called physical adversaries to be out-of-scope.
However, we note that physical attacks can be mitigated
via tamper-resistant techniques, or using communication-
intensive (though unscalable) absence detection [20].

3.3 Objectives
We identify several objectives for a secure and reliable up-
date framework applicable to realistic IoT devices. These
objectives also have some overlaps with the existing firmware
update requirements discussed in [27].

O1 End-to-End Security: Device must verify that a
firmware update it receives is originated by OEM , and
OEM must specify device-specific constraints on the up-
date. However, due to large numbers of devices, OEM
may not be able to directly interact with all.

O2 Update Authorization from Controller: Controller must
control which firmware updates must be installed on
Device. This implies that Device must verify whether
firmware updates are approved by Controller for instal-
lation.

O3 Attestation of Update Installation: Controller must ob-
tain a verifiable proof of successful update installation
on Device.

O4 Protection of Code & Secret Keys on Device: ensure
confidentiality and integrity of code and secret keys
used in update and attestation processes.

O5 Minimal Burden for Device: impose minimal computa-
tional and storage burden on Device.

TUF and Uptane do not satisfy all of these requirements
in realistic IoT scenarios. In particular, TUF also requires

Device itself to make policy decisions about which updates to
fetch and install, violating O5 . In addition, several security
features of TUF require multiple signature verifications using
different keys, which makes TUF computationally expensive,
further violating O5 .

Uptane overcomes these issues by introducing the director
repository to provide update decisions for each device and
limits verification requirements for resource-constrained de-
vices to only verifying director signatures. However, since the
director repository is held by OEM , Uptane implies direct
interaction between OEM and Device, which violates O1 .
TUF and Uptane do not consider the client device as part
of their threat models and simply assumes overall security
of the device, not satisfying O4 . Lastly, neither of them
specifies the need for an external entity to validate correct
update installation, which violates O3 .

3.4 Device Prerequisites
To meet aforementioned objectives, Device’s security archi-
tecture must include at least the following:
∙ Secure or Authenticated Boot: to guarantee authenticity

and integrity of trusted software at boot time. This gen-
erally requires a minimal hardware root-of-trust, e.g., as
in [17, 25].

∙ Isolated Execution: to protect trusted security-critical op-
erations on Device from being influenced by untrusted
(potentially vulnerable or malicious) code.

∙ Secure Storage: to ensure that trust anchors used for
firmware update validation and attestation are integrity-
protected and only accessible by authorized trusted soft-
ware at run-time.

These requirements can be satisfied by modern embedded
device platforms that support either (1) TrustZone Security
Extensions [3] or (2) a secure microkernel, e.g., seL4 [24]. Sec-
tion 5 discusses instantiations of our secure update framework
on these two architectures.

4 DESIGN
Our goal is to extend any update distribution scheme to allow
OEM and Controller to specify constraints on the update pro-
cess. As an example, we extend TUF with ASSURED and show
how Device can use ASSURED constraints to decide whether
to install updates it receives. ASSURED can be combined
seamlessly with TUF on Controller to benefit from TUF’s
security guarantees. As a result, besides security of TUF and
Uptane, ASSURED satisfies additional OEM requirements on
update distribution. We discuss how ASSURED satisfies the
objectives in Section 6.

ASSURED expects Device to implement the necessary mech-
anisms to meet O1 , O2 , and O3 . However, Device is not
expected to perform full verification of TUF metadata. In
Section 5, we show that, as a result, ASSURED compares
favorably to TUF in terms of computational and storage bur-
dens on Device. It is thus very suitable for IoT deployments
involving resource-constrained devices.

5
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Figure 2: Sequence of events during update distribution and delivery.

4.1 Sequence of Events
OEM prepares Software Artifacts for distribution by emitting
cryptographic authorizations that can be verified by Device
to determine if software artifacts are sanctioned by OEM .
An authorization token encodes constraints in the form of
metadata that is recognized by Device, e.g., device model or
a unique device identifier. This metadata must be validated
by Device when deciding if the software artifact should be
installed. An authorization token must always include a sig-
nature computed with the OEM ’s authorization key on the
hash of the constraints and the software artifact itself.

Figure 2 shows the sequence of events during update dis-
tribution and delivery. OEM emits an authorization token
and encapsulates authorization information together with
the corresponding software artifact in an Update Envelope
(❶). OEM uploads the resulting envelope and its metadata
to the TUF Repository (❷) where the envelope is recorded
into the repository’s TUF metadata. The TUF Repository is
then mirrored by an untrusted Distributor.

Controller, acting as a TUF client on behalf of Device,
periodically polls the repository for updates. When new up-
date envelopes appear, Controller fetches the snapshot and
targets metadata, validates them and fetches any new en-
velopes intended for Device (❸). At this point, each envelope
is validated against the corresponding record in the targets
metadata (❹). Controller can now arbitrate on local update
policies that may apply to the fetched software artifact. It
then transmits the update envelope (that it decides should be
installed) to Device over an authenticated channel (❺). This
channel serves as an implicit authorization from Controller
that it has approved the software artifact in the transmitted

update envelope. Device uses its underlying security archi-
tecture to securely validate authenticity and integrity of the
OEM’s authorization token and software artifact in the up-
date envelope. If the signature and constraints are valid, it
installs the software artifact (❻). We note that the security
architecture of Device guarantees the protection of code and
secret keys on Device. Thus, O4 is achieved in this step.
Finally, Controller attests the state of Device to ensure that
the software artifact is successfully installed (❼). The last
step allows Controller to obtain a verifiable proof when the
update process is complete, which satisfies O3 . Meanwhile,
if the update process fails (e.g., by the adversarial preventing
an update from reaching Device), Controller will be able to
detect it due to the incorrect or missing response.

4.2 Authorization Mechanism
The mechanism for authorizing software updates must satisfy
O1 and O2 . Namely, it must allow Device to authenti-

cate the source of software updates as well as let OEM and
Controller specify applicable constraints. In ASSURED, we
identify two concrete approaches for realizing authorization
tokens that meet both needs:
Extension of TUF Targets Metadata. OEM can create an
authorization token for each software artifact and embed it
into the TUF targets metadata. This allows OEM to define
update constraints for specific software artifact, as well as
allows Controller to validate update metadata of different
devices separately. As a result, metadata associated with
software artifact 𝑆𝐴 in the targets metadata can now be
encoded as:

𝐴𝑢𝑡ℎ𝑆𝐴:=[︀
ℎ𝑎𝑠ℎ

(︀
𝑆𝐴

)︀
,𝑠𝑖𝑧𝑒

(︀
𝑆𝐴

)︀
,𝐶,𝑆𝑖𝑔

(︀
𝐾𝑂𝐸𝑀 ,ℎ𝑎𝑠ℎ

(︀
𝑆𝐴

)︀
||𝑠𝑖𝑧𝑒

(︀
𝑆𝐴

)︀
||𝐶

)︀]︀
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where 𝐶 denotes constraints, e.g., device model and/or unique
device identifier.
Adoption of GP TMF. Alternatively, an authorization token
can be delivered to Device encapsulated in the Update En-
velope, using GlobalPlatform TEE Management Framework
(TMF) [18]. TMF is a security model for administration of
TEEs. GlobalPlatform-compliant TEEs based on ARM Trust-
Zone [3] are widely deployed, especially on Android devices.
TMF defines the set of administration operations available
to various parties in the administration of a TEE and its
Trusted Applications (TAs). TMF also defines a security
model that allows business relationships and responsibilities
to be mapped to a set of Security Domains, and a security
layer for the authentication and establishment of secure com-
munication channels between such parties and corresponding
security domains.

The subset of TMF needed to support ASSURED authoriza-
tion is only the Update TA command [18, Section 8.4.3] and
the use of TMF’s explicit authorization [18, Section 5.2.1]
primitives. Explicit authorization allows TMF commands to
be authenticated when there is no means of establishing a di-
rect communication channel between the party that signs the
authorization, and the on-device security domain acting on
behalf of that party, such as in the case of broadcast channels
and update repositories. In the context of our framework,
OEM signs a TMF Authorization Token with associated
constraints (such as the applicable device model) and emits
a TMF Envelope that encapsulates the Software Artifact,
Update TA command, and TMF Authorization Token.

Both approaches could be realized in either TrustZone-M
and HYDRA architectures. However, since TrustZone-M is
likely to be found on low-end MCUs, implementations of
ASSURED based on concise binary encoding of update meta-
data, such as Concise Binary Object Representation [7] or
Abstract Syntax Notation One (ASN.1) are more suitable for
TrustZone-M devices compared to TUF JSON objects. TMF
is based on a subset of the ASN.1 Distinguished Encoding
Rules, and in addition provides an existing set of constraints
that can be easily extended [18, Section 5.3.2]. Alternatively,
OEM or Controller can encode 𝐴𝑢𝑡ℎ𝑆𝐴 in fixed-size formats
suitable for parsing on severely restricted devices.

5 IMPLEMENTATION
In this section we describe two proof-of-concept implementa-
tions of ASSURED.

5.1 ASSURED on HYDRA
We now overview HYDRA, discuss implementation details and
report on experimental evaluation.

5.1.1 HYDRA Overview. HYDRA implements a hybrid
(HW/SW) remote attestation design by building upon the
formally verified seL4 [24] microkernel, which provably guar-
antees process memory isolation and enforces access control
to memory regions. Using the formally proven isolation fea-
tures of seL4, access control rules can be implemented in

Figure 3: Memory organization of HYDRA-based firmware update.

software and enforced by the microkernel. Figure 3a summa-
rizes memory organization of HYDRA. HYDRA implements
secure storage for the attestation key (𝐾Att) by storing it in a
writable memory region and configuring the system, such that
no other process, besides the attestation process (PR𝐴𝑡𝑡),
can access this memory region. Access control configuration
in HYDRA guarantees strong isolated execution of PR𝐴𝑡𝑡
by enforcing exclusive access to its thread control block as
well as to its memory regions. To ensure uninterruptibility,
HYDRA runs PR𝐴𝑡𝑡 as the so-called initial user-space process
with the highest scheduling priority. As the initial user-space
process in seL4, PR𝐴𝑡𝑡 is initialized with capabilities that
allow access to all available resources.

Meanwhile, the rest of user-space processes are assigned
lower priorities and their resource access is limited by PR𝐴𝑡𝑡.
HYDRA also requires a reliable read-only clock to defend
against denial-of-service attacks via replayed, delayed or re-
ordered attestation requests [10]. Finally, hardware-enforced
secure boot feature is used to ensure integrity of seL4 itself
and of the initial process when the system is initialized.

5.1.2 Implementation Details. Figure 3b shows the imple-
mentation of ASSURED as part of PR𝐴𝑡𝑡 in HYDRA. Specif-
ically, we modify PR𝐴𝑡𝑡 to support the TMF-style authen-
tication mechanism via implicit and explicit authorization
operations.

Following TMF specifications [19], we use AES [35] and
HMAC-SHA256 [14] as the underlying cryptographic prim-
itives to ensure implicit authorization from Controller via
a secure channel. In particular, PR𝐴𝑡𝑡 derives encryption
and MAC keys (used during the setup of the secure channel)
from a pre-shared master 𝐾Att . Once established, the secure
channel between PR𝐴𝑡𝑡 and Controller yields new session
keys used to protect the transmitted update envelope.

For explicit authorization, we assume OEM ’s authoriza-
tion key (𝐾OEM ) is distributed and pre-installed on devices
out-of-band, e.g., during manufacturing. To ensure confiden-
tiality and integrity, PR𝐴𝑡𝑡 protects 𝐾OEM the same way as
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Figure 4: Total runtime of TUF and ASSURED for variable Device
clock frequencies (I.MX6-SabreLite). Controller clock frequency is
fixed at 3.4GHz.

𝐾Att . Elliptic Curve-based signature scheme, ED25519 [6]6,
is ported to seL4 and serves as the underlying signature
scheme to provide explicit authorization operation in PR𝐴𝑡𝑡.

5.1.3 Evaluation. We compare performance of ASSURED
and TUF in terms of code size and runtime on a popular
commercially available platform: I.MX6-SabreLite [8]. We
chose TUF as a point of comparison since it (and its variants)
is currently the only established secure update standard
relevant to IoT [15].
Code & Metadata Size. As shown in Table 2, ASSURED adds
around 6.7𝐾 lines of C code to HYDRA’s code-base, while
overall size of PR𝐴𝑡𝑡 executable increases by 9KB. About
67% of code overhead is due to ED25519 code. In order to
minimize runtime from parsing metadata, we encode AS-
SURED’s metadata in a fixed-size format instead of JSON.
An ASSURED update envelope carries 188 bytes of metadata,
while the size of TUF metadata is estimated to be around
940 bytes. (See Table 1 for more details.)
Runtime Overhead. Table 1 shows the runtime comparison
between ASSURED and TUF implemented on top of HYDRA.
Recall that we use ED25519 [6] as the signature scheme for
both methods. In a typical scenario, full verification of all
TUF metadata takes much longer (∼ 5.7 times) on Device,
for two reasons. First, since TUF metadata is encoded in
JSON format, parsing it on Device as part of the update
process consumes a non-negligible amount of time. In our
experiments, this takes around 1𝑚𝑠 or ∼ 6% of total run-
time. However, the major reason for this significant increase
is because TUF full verification requires at least 6 public key
operations. In contrast, ASSURED offloads these operations to
Controller, and Device only performs lighter-weight compu-
tation, i.e., validating an OEM authorization token received
from Controller via an authenticated channel. Figure 4 shows
that Controller performs TUF full verification in 2.2𝑚𝑠.

6ED25519 is chosen because it is shown to run faster than other existing
signature schemes while still providing the same security guarantees.

Next, we assess runtime performance of the entire AS-
SURED process, i.e., combined runtime of ASSURED in both
Device and Controller, and compare it to runtime for De-
vice to perform full TUF verification. Results in Figure 4
show that ASSURED is still considerably faster than TUF
and the difference becomes more significant as Device’s clock
frequency drops. This clearly serves as a motivation to offload
this computationally expensive task to Controller.

5.2 ASSURED on ARM Cortex-M23
We now describe a proof-of-concept implementation of AS-
SURED on a Cortex-M23 MCU and report on its experimental
evaluation.

5.2.1 ARM Cortex-M23 Overview. As described in Sec-
tion 2.5 ARM Cortex-M23 MCU is equipped with TrustZone
Security Extensions that allow partitioning the system into
secure (trusted) and non-secure (untrusted) execution en-
vironments. (Sometimes these are referred to as separate
secure and non-secure "worlds") separated from each other
by hardware.) A context switch between them is performed
by the hardware processor logic when specific conditions are
met. The processor logic ensures that code in the non-trusted
execution environments can enter trusted code only at spe-
cific entry points, and that non-trusted code remains strongly
isolated from resources (e.g., memory and interrupt lines)
belonging to the trusted execution environment.

At system boot, the MCU starts execution in the trusted
execution environment. Although the boot flow might vary
between specific Systems-on-Chip (SoCs), it typically begins
from bootstrap code stored in secure ROM that validates
and starts a trusted bootloader, e.g., based on a trust root
for verification, often reflected in the hash of a code signature
verification key stored in one-time-programmable fuses.

The trusted bootloader configures access control rules for
memory partitioning to separate trusted code and data from
their non-trusted counterparts. Secure storage can be realized
by simply storing sensitive keys (or other data) in memory
allocated to the trusted execution environment. The trusted
bootloader can also adjust interrupt priorities and interrupt
line assignments to ensure that trusted code receives priority
when deciding which interrupt handler routines are invoked
to service processor events.

To ensure that non-trusted code can not change device’s
software configuration, persistent storage used as code mem-
ory (e.g., internal flash) can be configured to be only writable
by trusted code. Code re-programming support may be ex-
posed to non-trusted code via APIs provided by trusted
software. These APIs can implement authentications to de-
cide if re-programming of code is allowed.

5.2.2 Implementation Details. We implemented ASSURED
as part of the trusted bootloader on PR𝐴𝑡𝑡. In this variant, we
only support explicit authorization via a pre-configured trust
root for verification in the form of a public authorization key
(𝐾OEM ), which is embedded into the trusted bootloader soft-
ware image placed on Device during manufacturing. 𝐴𝑢𝑡ℎ𝑆𝐴
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TUF
ASSURED

Expl. Auth. Impl. Auth. Total

Verification Time (ms) 14.57 2.46 0.1 2.56
Metadata Size (bytes) 940 136 52 188

Table 1: Performance comparison between ASSURED and TUF on I.MX-SabreLite @ 800MHz. Verification of TUF metadata is performed using
TUF-recommended threshold values: 2 for root and targets roles, and 1 for others. TUF metadata size is estimated assuming only one target file
in the targets role.

HYDRA
ASSURED ED25519 Impl.Attestation Net. & Libs.

Code Size (KLOC) 12 94 2.2 4.5
Executable Size (KB) ——— 250.6 ——— ———– 9.4 ———–

Table 2: Code and executable sizes of PR𝐴𝑡𝑡 on I.MX6-SabreLite.

TUF ASSURED
Verification Time (ms) 10723 1816
Attestation Response Time (ms) N/A 517
Metadata Size (bytes) 940 136

Table 3: Performance comparison between ASSURED and TUF on ARM V2M-MPS2+ configured as a Cortex-M23 @ 25MHz. Verification of
TUF metadata is performed using the same parameters as in Table 1.

Bootloader ASSURED ED25519 Impl.

Code Size (LoC) 959 5448 4322
Executable Size (KB) —— 48 —— 17

Table 4: Code and executable sizes of PR𝐴𝑡𝑡 on ARM V2M-MPS2+.

is encoded in a fixed-size format. As in ASSURED on HYDRA,
we use ED25519 as the signature scheme.

𝐾Att is established with Controller during enrollment and
stored in secure memory. 𝐴𝑢𝑡ℎ𝑆𝐴 is stored in persistent
storage on PR𝐴𝑡𝑡, and used during Device boot to validate
non-trusted software artifacts (𝑆𝐴s). If Device has sufficient
memory to store both the current software artifact 𝑆𝐴𝑛 and
the next update 𝑆𝐴𝑛+1, 𝐴𝑢𝑡ℎ𝑆𝐴𝑛+1 is validated before 𝑆𝐴𝑛

is reprogrammed with 𝑆𝐴𝑛+1. However, if Device can not
store both 𝑆𝐴𝑛 and 𝑆𝐴𝑛+1 simultaneously, 𝑆𝐴𝑛 is overwrit-
ten by 𝑆𝐴𝑛+1 and only then validated. In the latter case, if
𝑆𝐴𝑛+1 validation fails, a replacement 𝑆𝐴 must be obtained
from Controller. We recommend that a back-up copy of the
trusted bootloader is kept when updating the trusted boot-
loader itself to ensure that the update process remains robust.
Hence, it is important to minimize the impact of ASSURED
on the trusted bootloader code size.

5.2.3 Evaluation. We assess performance – in terms of
code and size and runtime – of ASSURED for resource-
constrained MCUs on ARM Versatile Express Cortex-M

Prototyping System MPS2+ FPGA (ARM V2M-MPS2+)7

configured as a Cortex-M23 MCU running at 25 MHz.
Code & Metadata Sizes. Table 4 shows the impact of ASSURED
on trusted bootloader code size. Most of the increase in code
size is attributed to the ED25519 implementation – ≈ 80%.
The size of 𝐴𝑢𝑡ℎ𝑆𝐴 is a mere 136 bytes.
Runtime Overhead. To compare ASSURED with TUF, we
adapted the TUF implementation from Section 5.1 to run
on ARM Cortex-M23 MCU. As before, we used ED25519
as the signature scheme for both ASSURED and TUF. TUF
uses a fixed-size encoding for its metadata. Table 3 shows the
runtime comparison between ASSURED and TUF on Cortex-
M23. Our assessment of runtime performance of ASSURED
includes validation 𝐴𝑢𝑡ℎ𝑆𝐴 and 𝑆𝐴 on Device, compared
with full TUF verification. We also measured the time for
Device to generate its attestation response.

The evaluation shows that ASSURED outperforms TUF
(when using full metadata verification) by a factor of 4.5
in terms of total time spent for metadata verification and
attestation response generation.

7https://www.keil.com/boards2/arm/v2mmps2/
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6 MEETING STATED OBJECTIVES
We use descriptions of ASSURED design and realization (in
Sections 4 and 5, respectively) to informally argue that AS-
SURED satisfies all objectives stated in Section 3.3.

O1 End-to-End Security: ASSURED requires OEM to in-
clude an authorization token in each update envelope.
End-to-end security with constraints between OEM
and Device is thus guaranteed, since the token repre-
sents explicit authorization from OEM , which can be
validated by Device without the need to establish a
direct communication channel with OEM .

O2 Update Authorization from Controller: ASSURED re-
quires Controller to transmit an update envelope to
Device through an authenticated channel. This serves
as implicit authorization by Controller that it has ap-
proved the software artifact contained in the envelope.

O3 Attestation of Update Installation: At the end of AS-
SURED’s sequence of events, Device must reply to Con-
troller with an attestation result that reflects its current
software state. This allows Controller to determine
whether the update has been correctly installed on
Device.

O4 Protection of Code & Secret Keys on Device: The un-
derlying HYDRA architecture provides secure storage
for secret keys using capability-based access control
configuration, and isolated execution of critical code
guaranteed by seL4. Also, our specific hardware plat-
form (SabreLite) provides hardware-enforced secure
boot of seL4. In ARM Cortex-M23, this property is
satisfied similarly by: (1) TrustZone Security Exten-
sions that allow partitioning for a secure environment
and (2) a secure boot chain anchored in ROM-resident
bootstrap code. Therefore, both implementation of AS-
SURED (on HYDRA and ARM Cortex-M23) satisfy all
Device requirements and meets this objective.

O5 Minimal Burden for Device: As experimental results
show, ASSURED considerably lowers computational bur-
den on Device, by off-loading heavy computational
tasks to Controller. However, we do not claim that the
incurred overhead is truly minimal.

7 CONCLUSION
This paper motivates the need for, and constructs ASSURED
– a secure firmware update framework for the large-scale IoT
setting with resource-constrained devices. ASSURED extends
TUF – the popular state-of-the-art secure update mechanism.
ASSURED takes into account realistic stakeholders in large-
scale IoT deployments while providing end-to-end security
with enforceable constraints between device manufacturers
and IoT devices. ASSURED offloads heavy computational op-
erations to more powerful entities and places minimal burden
on IoT devices. Practicality of ASSURED is demonstrated
via two prototype implementations on HYDRA and ARM
TrustZone-M architectures. Experimental evaluations show
that ASSURED incurs very low overhead, particularly for
end-devices.
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