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ABSTRACT

The advent of mixed reality consumer products brings about a press-
ing need to develop and improve spatial sound rendering techniques
for a broad user base. Despite a large body of prior work, the precise
nature and importance of various sound localization cues and how
they should be personalized for an individual user to improve local-
ization performance is still an open research problem. Here we pro-
pose training a convolutional neural network (CNN) to classify the
elevation angle of spatially rendered sounds and employing Layer-
wise Relevance Propagation (LRP) on the trained CNN model. LRP
provides saliency maps that can be used to identify spectral features
used by the network for classification. These maps, in addition to the
convolution filters learned by the CNN, are discussed in the context
of listening tests reported in the literature. The proposed approach
could potentially provide an avenue for future studies on modeling
and personalization of head-related transfer functions (HRTFs).

Index Terms— Spatial sound, virtual reality, HRTF personal-
ization, Deep Taylor Decomposition, acoustic feature discovery

1. INTRODUCTION

With mixed reality entering the mass consumer market, accurate ren-
dering of spatial sound for a large user base is an important problem.
Spatial sound rendering engines typically rely on acoustic models
encoding the filtering behavior of the human head, torso, and pinnae
into sound signals to create the impression of a sound source ema-
nating from a certain location. These acoustic models are referred
to as head-related impulse responses (HRIRs) in the time domain
or head-related transfer functions (HRTFs) in the frequency domain.
When measuring the HRIRs of a human subject, the captured acous-
tic cues are a direct result of the subject’s anthropometric features,
and hence highly individual. As the auditory system relies on these
cues for localization, deviations of a modelled or generic HRIR set
used in the rendering engine from the user’s own HRIRs can result
in a degraded listening experience. Therefore, identifying the audio
cues that should be preserved or modelled for accurate localization
is of continued research interest.

A large body of prior work exists on various aspects of spatial
audio perception. In this work, we focus on acoustic cues affecting
the perception of source elevation. Gardner identifies torso effects
below 3.5 kHz and pinna effects above 4 kHz as salient cues for
localization on the median plane [1]. Other studies show that the
presence of a peak or notch at specific frequencies can be associ-
ated with the perceived elevation of a source [2, 3, 4]. Searle et al.
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Fig. 1. Ipsilateral and contralateral HRTF magnitude responses (top)
at 30 degrees lateral angle for subject 154 from the CIPIC dataset,
and the corresponding saliency maps (bottom) for CNN model HP
produced via Layer-wise Relevance Propagation (LRP).

derive a mathematical localization model from the results of 40 lo-
calization studies that combines the contributions of four types of
auditory cues: interaural time delay and head shadow effects, inter-
aural pinna cues, monaural pinna cues, and shoulder reflections [5].
Kulkarni and Colburn find that extreme smoothing of the HRTF can
lead to the perception of an elevated sound source [6]. Jin et al. re-
port that both interaural spectral differences and monaural spectral
cues are useful for disambiguating source positions within a cone of
confusion [7]. Common to these studies is that they rely on listening
experiments, which can be time consuming and limited in scope.

Jin et al. propose a physiologically inspired localization model
consisting of a cochlea model front-end coupled to a time-delay neu-
ral network [8]. They show that in a localization test, the model
demonstrated qualitatively similar performance to a human subject.
A related area of active research aims to personalize generic HRTFs
given a user’s anthropometric features [9, 10, 11].

Here we propose a machine learning approach to identify salient
elevation cues encoded in the HRTFs and shared across a popula-
tion of subjects. Recently, convolutional neural networks (CNNs)
have proven successful for classic speech and audio problems [12,
13], without the need to apply feature extraction to the raw input
data [13]. Our approach is based on training a CNN to determine
the elevation angle of a virtual sound source and using layer-wise
relevance propagation (LRP) to detect the audio features learned by
the CNN. An example is shown in Figure 1. The training is per-



Fig. 2. Elevation classes in horizontal-polar coordinate system [14].

formed on multiple HRTF datasets to account for variability between
the measured subjects as well as different measurement setups, thus
forcing the CNN to learn common audio features. Experimental re-
sults indicate that the proposed network can determine the elevation
of a virtual sound source from simulated ear input signals and that
the features discovered using LRP seem to be in line with results
from the psychoacoustic literature. This indicates that the proposed
framework may be a useful tool complementary to listening experi-
ments for studying spatial audio features, with potential applications
for HRTF personalization.

2. PROPOSED APPROACH

2.1. Sound source elevation localization using a CNN

The goal of the proposed work is to discover the audio features used
by a convolutional neural network (CNN) trained to perform sound
source localization. The localization task is posed as a simple clas-
sification problem, whereby the CNN determines which elevation
class a sound sample belongs to, as illustrated in Figure 2. The hy-
pothesis of our proposed approach is that to perform the classifica-
tion, the CNN would have to learn audio features specific to each
class.

As input data, the CNN is fed with the ear input signals a lis-
tener would perceive given a point-source in the far field in anechoic
conditions. For the described scenario, the log-magnitude spectrum
of the ipsilateral ear input signal EdB,ipsi is given as

EdB,ipsi “ 20 log10 |Fpgn ˚ hipsiq| (1)

where n is the time-domain source signal, g is a gain factor, hipsi

is the ipsilateral HRIR corresponding to the source position, F de-
notes the Fourier transform and ˚ denotes the convolution opera-
tor. The log-magnitude spectrum of the contralateral ear input sig-
nal EdB,contra is obtained analogously using the contralateral HRIR
hcontra.

A CNN training sample S is given as a Kˆ 2 matrix

S “ rEdB,ipsi EdB,contras, (2)

where K is the number of frequency bins. Each training sample is
obtained via (1) using a random 50 ms long white noise burst as the
source signal n and a pair of HRIRs randomly drawn from one of
the elevation classes shown in Figure 2. The probability of drawing a
specific HRIR pair is determined such that it ensures balancing of all
test subjects and classes as well as a uniform spatial representation
on the sphere.

conv. 1 conv. 2 conv. 3 conv. 4 # parameters

WB 25ˆ2 11ˆ1 11ˆ1 10ˆ1 2681
HP 25ˆ1 11ˆ1 11ˆ1 10ˆ2 2741

Table 1. Filter shapes (ˆ 4 per layer) and number of trainable pa-
rameters for each CNN model.

2.2. CNN architectures

Two CNN architectures are considered in this work, one for wide-
band input features in the range 0.3–16 kHz (WB) and one for high-
frequency input features in the range 4–16 kHz (HP). As illustrated
in Figure 3a, for model WB the output features of the first convolu-
tion layer are generated by (two-dimensional) interaural filters, each
combining the ipsilateral and contralateral components of the input
features. The hypothesis underlying this choice is that interaural
spectral differences contribute to the perception of elevation [7].

a)

b)

Fig. 3. Schematic diagram of (a) model WB and (b) model HP. For
simplicity, only the first and fourth convolutional layers are shown.

Model HP was trained with input features truncated below 4
kHz to force the CNN to learn monaural elevation cues associ-
ated with the pinna [1, 15]. In contrast to model WB, each of the
lower convolution layers extracts monaural features using (single-
dimension) monaural filters that are applied to both the ipsilateral
and contralateral sides. As shown in Figure 3b, the resulting high-
level monaural features from both sides are combined at the top-most
convolutional layer.

Models WB and HP both comprise four convolutional layers
with rectified linear units (ReLUs). The filter lengths and strides
along the frequency dimension are identical across these models.
Specifically, a stride of two samples was used without pooling. Each
model further comprises a fully-connected hidden layer and a soft-
max output layer. A summary of the model parameters is provided
in Table 1.

2.3. Feature discovery using LRP

To explain the classification decisions of the CNN, Deep Taylor De-
composition (DTD) [16], a variant of Layer-wise Relevance Propa-
gation (LRP) [17], is performed. DTD performs a weighted redistri-
bution of the network’s output activation for the elected class, i.e., its
relevance R, from network output and backwards, layer-by-layer, to
network input. This procedure generates a saliency map that identi-
fies the regions of the input space used by the model to arrive at the



classification decision. Here, these regions are formulated in terms
of frequency range and binaural channel. A publicly-available im-
plementation of DTD was used [19].

The relevance Ri of the ith neuron in a lower layer is given as

Ri “
ÿ

j

aiw
`
ij

ř

i aiw
`
ij

Rj , (3)

where j andRj denote the index and relevance of a higher-layer neu-
ron, wij are the connection weights between the neurons, ` denotes
half-wave rectification, and a is the (forward-pass) activation.

Given that the input features are real-valued, the following prop-
agation rule is applied at the model’s input layer [18]:
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ÿ
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ř

i w
2
ij

Rj . (4)

The above expression can be decomposed in terms of the con-
tributions specific to each filter of the model’s first layer, allowing to
study their respective saliency maps [18].

3. EXPERIMENTAL EVALUATION

3.1. CNN model training

Experiments were carried out using a pool of five HRTF databases,
listed in Table 2. All databases except that of Microsoft are pub-
licly available [20] in the Spatially Oriented Format for Acoustics
(SOFA) [21]. The resulting pool contained approximately 0.5 mil-
lion HRIR pairs from 583 subjects and was divided into 80% training
data and 20% test data. Training was conducted using the cross-
entropy loss function and early stopping regularization under a ten-
fold cross-validation scheme. The HRIR pairs from each database
were distributed approximately uniformly across the validation folds
and test set to ensure robustness against possible database-specific
artifacts. Each measured subject was siloed into a single validation
fold or the test set to allow performance evaluation on unseen sub-
jects.

The input samples were generated via (2) using randomly gen-
erated 50 ms long white noise bursts and raw HRIR data [20] resam-
pled to 32 kHz. The noise gain g in (1) was randomly varied between
0 and -60 dB to provide model robustness to level variations.

For the WB model, frequency bins below 300 Hz were dis-
carded. The resulting spectra were weighted with the inverse of the
equal-loudness-level contour at 60 phon [22], to approximate human
hearing sensitivity. For the HP model, frequency bins below 4 kHz
were discarded, forcing the CNN to learn high-frequency cues. Both
models used 1005 frequency bins per ear up to the Nyquist limit.

Figure 2 shows the boundaries of the nine elevation classes,
given in horizontal-polar coordinates [14] as ˘ 60 degrees lateral
angle φ and polar angles θ ranging from -90 to 270 degrees.

3.2. Classification performance

Optimal classification performance was not pursued in this work [8].
Rather, compact models for HRTF-based source localisation which
generalise across human subjects were developed. It is worth men-
tioning that the performance of the trained models are comparable to
that of humans, even if achieved on a data representation that is not
physiologically accurate, e.g., in terms of the spectral resolution.

In particular, the classification error (CE) rates of the WB and
HP models on unseen test data are 27.19% and 45.05% respectively.

year # subjects # meas. # pairs

ARI˚ [23] 2010 135 1150 138000
CIPIC [24] 2001 45 1250 56250
ITA˚˚ [25] 2016 46 2304 110592
Microsoft [9] 2015 252 400 100800
RIEC [26] 2014 105 865 90825

˚ Subjects 10 and 22 as well as all subjects not measured in-ear were removed.
˚˚ Subjects 02 and 14 were removed due to SOFA meta-data inconsistencies.

Table 2. Curated HRTF databases used for training.

CE [%] RMSE [deg] MAE [deg] r

random 91.3 74.5 59.5 0.65
[15] - 25.2 - 0.85
[27] - - 22.3 0.82
[28] - - «25 -
WB 45.1 43.2 16.5 0.90

Table 3. Comparison of WB model to human localization perfor-
mance.

To put the CE rates into context, performance metrics can be derived
from the corresponding angular error rates after removing the lateral-
up and lateral-down classes and accounting for front–back confu-
sions [15]. Table 3 compares the root-mean-squared error (RMSE),
mean absolute error (MAE), and correlation coefficient (r) to human
localization performance reported in the literature. As can be seen,
the WB model performs comparably to human subjects.

3.3. Subject-specific saliency map

To analyze the cues learned by the CNN the saliency map of a spe-
cific subject is computed. Figure 4 shows the confusion matrices
for subject 154 of the CIPIC database. Given the high classifica-
tion performance for this subject, the HRIRs are expected to present
structures representative of the elevation cues learned by the models.
Given input samples generated using randomly-drawn HRIR pairs
via (2), 1-D saliency maps can be obtained using DTD. Averaging
and stacking the 1-D maps of successful classifications according to
their polar angle produces the 2-D saliency map shown in Figure 1
for model HP.

Fig. 4. Confusion matrix for subject 154 from the CIPIC dataset for
model WB (left) and HP (right).



Fig. 5. Interaural transfer function [4] at 30 degrees lateral angle for subject 154 (top left); filters of the first convolution layer from model
WB (top row) and their corresponding saliency contributions (bottom row); combined saliency map (bottom left).

3.3.1. Model WB

As shown in Figure 5, the filters of the first convolution layer in
model WB are readily interpretable. Filters 1 and 2 form a com-
plementary pair of falling and rising spectral edge detectors. Filter-
specific saliency maps are shown in Figure 5. These maps indicate
that model WB uses filter 2 to extract ripples in the range from 0.3 to
4 kHz caused by shoulder and torso reflections [15]. One limitation
of the datasets used in this study is that the dependence of shoulder
reflections on head orientation [29] is not accounted for. Training
the model on variable shoulder reflections might potentially lower
the contribution of these cues.

Filters 1 and 3 appear to contribute to the classification espe-
cially at low elevations. Filter 3 implements interaural differentia-
tion and thus provides robust features to the upper layers of the net-
work that are invariant to changes in the frequency composition of
the sound source. Interaural cues are shown to enhance localization
of sound sources in elevation [7]. At low elevations, these might be
due to torso shadowing [30].

3.3.2. Model HP

Figure 1 illustrates that model HP relies on spectral notches as a pri-
mary cue for detecting sound sources located in frontal directions
(i.e. ‘front-down’, ‘front-level’ and ‘front-up’). Spectral notches
varying as a function of elevation have been identified as impor-
tant localization cues for humans [7]. As can be seen, the center
frequency of the notch varies progressively from 6 kHz to 9 kHz
as the polar angle increases, which is consistent with pinna mod-
els from the literature [31, 32]. Human pinnae typically produce
several spectral notches resulting from reflections off various pinna
features. In the example shown in Figure 1, the model seems to
rely on the lowest-frequency notch, presumably stemming from the
largest pinna feature, which might indicate that this feature is more
consistent across the population than finer pinna details.

Other features visible in Figure 1 include:

• a relatively extended low-magnitude region above 10 KHz
that seems to be indicative of class ‘up’;

• a sharp spectral notch in the the 15 kHz region that seems to
be indicative of class ‘back-up’; and

• a shadowing of the ipsilateral ear in the 4-7 kHz range that
seems to be indicative of classes ‘back-level’ and ‘back-
down’ [33].

Further work is required to determine exactly what type of feature
was used by the model, and if these are relevant in a psycho-acoustic
sense. In particular, it is doubtful that an adult subject would rely on
features lying at the upper frequency limit of the hearing range, as in
the example of the 15 kHz notch.

4. CONCLUSIONS

Experimental results indicate that a convolutional neural network
(CNN) can be trained to achieve a classification performance com-
parable to that of humans in a simple sound localization task while
being robust to inter-subject and measurement variability. The model
seems to learn features from the input data, consisting of noise bursts
convolved with measured head-related impulse responses (HRIRs),
that are common to the tested population. Applying Deep Taylor De-
composition (DTD), a variant of Layer-wise Relevance Propagation
(LRP), to the output of the trained model and stacking the resulting
saliency maps as a function of polar angle provides an intuitive vi-
sualization of the features the CNN relies on for classification. The
features illustrated by the saliency maps, as well as the convolution
filters learned by the network, seem to be in line with results from
the psychoacoustic literature. This indicates that the proposed ap-
proach may be useful for discovering or verifying spatial audio fea-
tures shared across a population and possibly open avenues for better
modeling and personalization of HRIRs. Future work includes train-
ing the network using non-white sound samples [8].
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