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Hanbury-Brown and Twiss 
exchange and non-equilibrium-
induced correlations in disordered, 
four-terminal graphene-ribbon 
conductor
Z. B. Tan1, T. Elo1, A. Puska1, J. Sarkar1, P. Lähteenmäki1, F. Duerr2, C. Gould2, 
L. W. Molenkamp2, K. E. Nagaev3,4 & P. J. Hakonen   1

We have investigated current-current correlations in a cross-shaped conductor made of graphene. The 
mean free path of charge carriers is on the order of the ribbon width which leads to a hybrid conductor 
where there is diffusive transport in the device arms while the central connection region displays near 
ballistic transport. Our data on auto and cross correlations deviate from the predictions of Landauer-
Büttiker theory, and agreement can be obtained only by taking into account contributions from non-
thermal electron distributions at the inlets to the semiballistic center, in which the partition noise 
becomes strongly modified. The experimental results display distinct Hanbury – Brown and Twiss 
(HBT) exchange correlations, the strength of which is boosted by the non-equilibrium occupation-
number fluctuations internal to this hybrid conductor. Our work demonstrates that variation in electron 
coherence along atomically-thin, two-dimensional conductors has significant implications on their 
noise and cross correlation properties.

Disordered graphene is an extraordinary tunable system for studying electrical conduction ranging from nearly 
ballistic transport1,2 to hopping conductivity3–8. In narrow graphene ribbon, in particular, the number of trans-
port channels can be varied significantly by tuning charge density by gate voltage and conduction can be pinched 
off fully near the charge neutrality point (CNP). The elastic mean free path can be maintained relatively large 
compared with device dimensions, while the importance of localization and Coulomb interactions can be varied 
by adjusting the charge density9–11. Disorder in graphene can lead either to increase or decrease of shot noise, 
depending on the amount and nature of scatterers12–15. Thus, in graphene nanoribbon (GNR) systems, it is pos-
sible to study physics of current-current correlations in a regime where disorder can be tuned, which makes it an 
excellent platform for investigating noise properties of disordered conductors.

Shot noise originates from the granular nature of charge carriers, and it can be used as an independent test 
for the conduction mechanism16,17. However it is difficult to distinguish between different models of noise in 
graphene using two-terminal measurements because several of them give nearby strength, on the order of 0.3–0.4, 
when compared to Poissonian noise. One of the ways to overcome this difficulty is measuring the cross-correlated 
noise in multiterminal graphene systems.

In mesoscopic conductors with purely elastic scattering, there are two fundamental sources of noise16. The 
first source are fluctuations of the occupation numbers of electron states in the reservoirs. These fluctuations 
take place if the average occupation numbers are different from zero and 1 and they account for the equilib-
rium thermal noise at a finite temperature. This noise is proportional to the conductance of the system, and it is 
nonzero even for ballistic conductors, which lack any internal scattering. Another type of fluctuations is related 
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to the scattering of particles inside the conductor, which partially reflects them back. These fluctuations are called 
partition noise, and it may be observed even at zero temperature if there is a net current through the conductor. 
This noise is typical of systems with tunneling or diffusive transport where the incoming electrons are described 
by a Fermi distribution. In our experiment, however, we have locally non-equilibrium distribution functions for 
electrons instead of Fermi distributions, which leads to clear modifications in the partitioning noise18. Hence, the 
goal of our paper is not to test the exactness of individual noise models but rather to test whether the structure 
under investigation satisfies the assumptions of a particular model.

Theoretical analysis of low frequency current-current cross correlations δ δ= −〈 〉S I Inm n m  of current fluctua-
tions Iiδ  in terminals =i n and m in a diffusive cross geometry has been performed in refs19 and20 with virtually 
equivalent findings. In the semiclassical theory20, the spectral density of noise in a diffusive system is governed by 
the local distribution function. This function is sensitive to diffusion of electrons, which is dependent on the local 
conductance and geometry of the conductor. The semiclassical theory predicts similar behavior for shot noise (i.e. 
auto correlation Snn) in all cross-shaped diffusive conductors with negligible resistance of the central region. The 
Fano factor, i.e. the ratio between the autocorrelation Snn and the Poissonian noise =S eIP n related to current In in 
terminal n, is found to remain at F 1/3= , i.e. as for a single wire, when biasing is done at terminal n and the other 
terminals are grounded. In particular, the semiclassical theory predicts additivity of cross correlations in such a 
cross-shaped conductor, which would mean the absence of Hanbury–Brown and Twiss (HBT) exchange effects19 
in our sample.

In this paper, we report and analyze experimental results on auto and cross correlations in a graphene nanor-
ibbon cross where the mean free path mfp

 of charge carriers is on the order of the ribbon width. The relatively 
long mfp

 makes this device as a hybrid conductor with diffusive transport in the device arms and ballistic propa-
gation in the central connection region. Our data on current-current correlations deviate from the multiterminal 
noise predictions for diffusive systems16,19,20, and agreement can be obtained only by taking into account contri-
butions from non-equilibrium charge carrier distributions that modify the occupation-number noise at the bor-
der of the central region connecting the arms of the cross. The presence of this additional noise contribution is 
corroborated by the observation of negative bend resistance which is a signature of ballistic propagation in the 
centre. Our experiments also reveal distinct HBT exchange correlations, the strength of which is boosted by the 
non-equilibrium occupation-number fluctuations internal to this hybrid conductor. The observed HBT effect 
varies substantially with gate voltage and it becomes very strong near the CNP.

The basic assumption of diffusive transport theory is that the mean free path � � L Wmin { , }mfp  compared 
with the length L and width W  of the sample. The latter condition, however, is not well fulfilled in a narrow GNR, 
such as our sample illustrated in Fig. 1a. Deviations from finite size effects are estimated in ref.19, which predicts 
a small positive HBT exchange term on the order of 

 L G eV( / )mfp 0  for a metallic diffusive cross, where G0 is the 
average arm conductance of the cross. This prediction turns out to have an opposite sign with respect to our 
experimental results, which are more in line with the behavior of a multiterminal chaotic quantum dot with inter-
nal ballistic transport21. Our measurements do reveal non-local conductance, which indicates that � � Wmfp , and 
that the transport over the central area of the cross for many charge carriers is ballistic. Our results show that the 
noise properties of the system can be accounted for by the standard Langevin theory provided that the central 
region is considered as a distinct four-terminal ballistic conductor with nonequilibrium electron distributions fi

c 

Figure 1.  Left: False color scanning electron micrograph of the measured GNR sample; green color marks 
graphene and blue denotes the silicon oxide substrate. Terminals 1 and 3 were employed for cross correlation 
while bias was supplied via 2 and 4 in the HBT experiments. The white scale bar corresponds to 100 nm. The 
overlaid arrows define the straight and bent carrier paths with conductances of Gp and Gt in the central region, 
respectively, for electrons coming from terminal 1; the same definition of Gp and Gt repeats for electrons coming 
from each terminal. Right: Schematic illustration of our theoretical model with its most essential features: G0 
denotes the average arm conductance, G describes the transport in the semiballistic central region, fi

c and ϕi
c 

mark the non-equilibrium distribution and the local voltage at the contact point between the diffusive arm and 
the central region, and f E( )0  denotes the Fermi distribution. In the diffusive arm, the distribution function 
varies as ( )f x E f E eV f E( , ) 1 ( ) ( )i

x
L i

x
L i

c
0= − − + . For details, see text.
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at the internal terminals (see Fig. 1b), which also contributes to the noise through the occupation-number fluctu-
ations of incident electrons18.

We investigated current-current cross correlations in a disordered cross-shaped graphene conductor. The 
length and the nominal width of the arms amount to L 240∼  nm and W 50∼  nm, respectively. A scanning elec-
tron micrograph of the actual measured sample is displayed in Fig. 1a. Figure 1b outlines the main features of the 
Langevin circuit model employed in our analysis. G is a symmetric conductance matrix (see Eq. 5), which is 
composed of direct transmission with conductance Gp through the central region and sideways transmission with 
conductance Gt (left and right symmetric). The non-equilibrium distribution function fi

c at the contact point 
between the diffusive arm and the central region are calculated self-consistently using circuit analysis, and they 
govern the non-standard partition noise caused by the central region. In the diffusive arm, the distribution func-
tion varies as ( )f x E f E eV f E( , ) 1 ( ) ( )i

x
L i

x
L i

c
0= − − +  where L is the length of the arm and Vi  is the applied 

voltage to the arm i.

Theoretical Results
In contrast to ref.19 in which full quantum coherence was presumed over the system, we estimate that the coher-
ence length is on the order of c  = 100–200 nm, which is based on weak localization experiments of ref.22 yielding 
 200c ∼  nm on similarly-fabricated micron-sized samples; our smaller estimate for c is due to enhanced edge 
scattering in our 50-nm-wide GNRs, which leads to a decrease of the diffusion coefficient in the sample23. 
Consequently, c is smaller than the length of the arms of the cross but larger than the size of its central region. 
This allows us to employ semiclassical circuit theory with Langevin noise generators for calculating incoherent 
noise contributions which originate from different parts of the graphene nanoribbon sample. Details of our 
Langevin model for a hybrid conductor (diffusive and ballistic transport in different parts) are presented in 
Methods section. In addition to regular ingredients of the diffusive Langevin formulation, our hybrid-conductor 
Langevin model (HCL model) contains a conductance matrix G for the semiballistic central region (see Eq. 5), as 
well as separate potentials ϕi

c and distribution functions at the contact points of terminals i to the central region. 
As we assume incoherent transport, the different noise contributions can be incoherently added. For the cross 
correlation S13 biased by Vb from terminal 1 with all the other terminals grounded we find

( )S I I
G G G G G G

G G
eV

2 12 21 32

3( 4 )
,

(1)

p p p

p
b13 1 3

0
2

0
2

0
2

0
4δ δ= −〈 〉 =

+ +

+

where we have set G Gt p=  for simplicity as this corresponds to our experimental case. In the limit Gp → ∞, we 
recover the diffusive limit. The calculated auto correlation with bias at terminal 1 and the other terminals 
grounded is given by

=
+ +

+
.S G G

G G G G

G G
eV2

18 45 32

( 4 ) (2)
p

p p

p
b11 0

2 0
2

0
2

0
4

For the general formula for G Gt p≠ , see the Methods section. The above ratio for S S/13 11 depends on G G/p 0 
and, thus, it can be used to obtain information on G G/p 0 of the graphene cross.

We define the Hanbury – Brown and Twiss exchange correlation term in accordance with ref.19 by 
∆ = − −S S S SC A B, where SA, SB, and SC denote the absolute values of the cross-correlated noise power spectra 
between terminals 1 and 3 in three different measurement configurations A, B and C: in the HBT configuration 
A, (B), bias was applied to terminal 2 (4) while the other terminals were connected to DC ground; in the case C, 
both 2 and 4 were biased and 1 and 3 DC-grounded. Using Eq. 1 and its variants for A, B, and C bias configura-
tions, we obtain

S
G G

G G
eV20

( 4 ) (3)

p

p
b

0
2 3

0
4∆ = −

+
.

for the HBT exchange term. Our negative, non-zero result is in clear contrast with S 0∆ =  obtained for regular 
diffusive systems by the semiclassical theory20, as well as ∆ >S 0 predicted for ballistic graphene24. The calculated 
result for ∆ +S S S/( )A B  is displayed in Fig. 2 on the plane spanned by Gp and Gt. The regular diffusive behavior 
∆ =S 0 is obtained in the limit G G,p t → ∞.

Experimental Results
Conductance.  We first characterized the sample conductances. The conductances of the arms were derived 
from the data for I V/  in Fig. 3 measured for the biasing configuration C, where the biasing leads 2 and 4 are seen 
with positive (ingoing) current, while currents in 1 and 3 are negative (outgoing). The currents in the four termi-
nals are symmetric in general. Therefore, in semiclassical treatment, we may set the potential of the center of the 
cross to V/2 in this measurement configuration. We obtain the arm conductances given in Table 1. The arm con-
ductances in the proper diffusive regime far away from the Dirac point display symmetry within approximately 
±6% % at V 30g = −  V and ±9% at = −V 10g  V. The symmetry of the four arms was also proven in measurements 
at V 30g = −  V in other configrations, in which g1,2, g1,3, g1,4, and g2,4 were determined with the remaining termi-
nals floating, respectively. The difference of g1,2, g1,3, g1,4, and g2,4 was less than ±6%, which corroborates the 
symmetry of the four arms far away from the CNP. The measured conductivities correspond to a field effect 
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mobility of 
 500FEμ  cm2/Vs, which is by a factor of two smaller than in the graphene cross experiments of ref.25. 

Some asymmetry in conductances is observed at V 0g ∼  and ∼V 15g  V. However, the asymmetry in these regions 
is bias dependent and its influence on cross correlations becomes reduced by using a fixed current-level correla-
tion determination if necessary (For a linear cross-shaped conductor, when switching to measurement configu-
ration C, the currents at terminals 1 and 3 double from the single source configurations A and B. For a nonlinear 
system, this is not the case unless one fixes the currents by adjusting voltages).

The conductances Gp and Gt, defining the behaviour in the central region, were estimated from non-local 
measurements and the geometric dimensions. Though the arms of our sample are undoubtedly diffusive, the 
observed negative bend voltage is a clear sign of enhanced ballistic transport through the central area26–28. The 
observed bend voltage illustrated in Fig. 3 is rather small but it indicates nevertheless that part of the charge car-
riers traverse the central region ballistically. The bend voltage Vbend can be calculated using the Landauer-Buttiker 
theory. The result using the parametrization of Fig. 1a reads

Figure 2.  Theoretically calculated HBT effect ∆ +S S S/( )A B  as a function of G G/p 0 and G G/t 0. In our analysis we 
are using the overlaid trace for ∆ +S S S/( )A B  on the diagonal at which =G Gp t.

Figure 3.  Conductance =G I V/  vs. Vg  measured at =V 30b  mV using the bias configuration C: Ingoing currents 
I2 and I4 are positive, while <I 01  and <I 03 . The inset at = −V 30g  V displays negative bend voltage V Vbend 1,2= , 
where the bias is fed between terminals 4 and 3 and the voltage is measured across terminals 1 and 2.

Vg Arm 1 Arm 2 Arm 3 Arm 4

−10 V 22 20 22 24

−30 V 33 35 37 35

Table 1.  Arm conductances (in μS) at gate voltages V 10g = −  V and V 30g = −  V, indicating symmetry of the 
four arms.
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The smallness of the measured bend voltage in Fig. 3 (approximately a few per cent of bias voltage) indicates 
that =G Gp t within approximately ±20%. The size of the central region, taken as a square fitting within the mid-
dle of the cross, yields for the relative direct conductance G G L W/ / 2 3 4p 0 = = . .

Auto and Cross Correlations.  Autocorrelation S11 was investigated with bias Vb in terminal 1 and the other 
terminals grounded. In this configuration, we found .F 0 4, close to the values reported in ref.25 for a configura-
tion with floating side terminals; similarly F was increased near the CNP where the IV curves become strongly 
non-linear at small bias V 10b <  mV. This Fano factor is higher than the universal value =F 1/3 for diffusive 
systems.

For a symmetric diffusive cross with negligible resistance of the central region =S S/ 1/313 11 . Our calculated 
result deviates from this universal diffusive-system value and our ratio depends on the significance of the occupa-
tion number noise induced by non-equilibrium distribution functions. The inset in Fig. 4 depicts the theoretical 
ratio as a function of G G/p 0 at =G Gp t. When → ∞Gp , our theory recovers the diffusive value =S S/ 1/313 11  as an 
extremum case, while in the limit of = →G G 0p t  we obtain 2/9. Hence, the non-equilibrium-induced occupation 
number noise will lead to a clear deviation from the diffusive behavior even though no asymmetry exists in the 
conduction and =G Gp t at the crossing.

Figure 4 displays the measured ratio S S/13 11 for our GNR cross. Off from the CNP, our measured ratio fluctu-
ates between 0.22–0.32. We assign this variation to universal noise fluctuations29 which exist in all diffusive con-
ductors30. These fluctuations allow only for a comparison of average values away from the CNP point. Our 
theoretical calculation for G G/ 3 4p 0 = .  yields S S/ 0 27513 11 = . , which agrees well with the average value of the 
experimental ratio at − < < −30V V 5Vg ; the data at + < < +20V V 30Vg  would agree with a slightly smaller 
value for G G/p 0, but the statistics here is too small to make definite conclusions. In the range of = … +V 3 13g  V, 
in particular, the electrical transport is influenced by hopping conduction. Near the CNP ( < <8V V 10g  V), we 
find a decrease of S S/13 11 down to 0.13–0.14 which is beyond the range of values produced by our HCL model. 
Inelastic hopping conduction via localized states near the CNP is a likely cause for the decrease of S S/13 11.

Hanbury – Brown and Twiss Exchange Correlations.  Figure 5 displays our results for the HBT corre-
lations. In order to compare the experimental results more accurately with theoretical predictions, we present the 
scaled HBT ratio ∆ +S S S/( )A B  in Fig. 5. Our data display clearly a deviation from ∆ + =S S S/( ) 0A B  which is the 
prediction of the regular diffusive theory. The dashed line in Fig. 5, obtained from Eq. (3) using G G/ 3 4p 0 = . , 
corresponds to S 0 175 0 007∆ = . ± .  where the error estimate indicates the 20% uncertainty in the ratio G G/p t. 
The agreement between the model and the data is good in the regime where the charge density in the sample is 
large. However, there is a strong modification of the HBT exchange factor near the Dirac point. The strength of 
this change, however, cannot be captured by our HCL model. In our theoretical model (see Fig. 2), ∆S is seen to 
vary with the ratio of G G/p 0 which is likely to be modified near the CNP point. Thereby, a moderate decrease in 

Figure 4.  Ratio of S S/13 11 vs. Vg  with bias applied via terminal 1 having the other terminals DC grounded. The 
two data sets, light and dark, relate to V 0b , respectively: their difference is indicative of the small uncertainty in 
the data. The dashed line indicates the result from our HCL model with G G/ 3 4p 0 = . . Our data deviates from the 
diffusive theory value 1/3 as shown in the dot line. The fluctuations in the data are related to universal noise 
fluctuations30. The inset displays the calculated behavior of S S/13 11 vs. the ratio G G/p 0 (at G G/ 1p t = ).
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S∆  could be understood in terms of a stronger gate dependence in the conductance in the central region com-
pared to that in the arms. Such a mechanism, however, could only account for results with absolute values 
|∆ | + < .S S S/( ) 0 30A B , which clearly falls short from our measured results.

Discussion
Our results on the auto and cross correlation power show linear bias dependence at currents <1 μA (see the inset 
of Fig. 5), which becomes slightly weaker at currents well above 1 μA where inelastic scattering starts to take place. 
When inelastic processes are important (inelastic length l Lin  ), shot noise in graphene is reduced by the most 
strongly coupled energy relaxation processes, i.e. either by impurity-assisted acoustic phonon collisions or by 
optical phonons31–34. Inelastic processes were strongest in our work near the CNP, as rather large voltages were 
needed for biasing. However, the final quoted results were always obtained in the limit →V 0b , which eliminates 
any effects due to inelastic phonons.

The shot noise results away from the CNP with  .F 0 4 are in agreement with the theoretical results for disor-
dered graphene ribbons13. In ref.25 it was concluded that these results are in accordance with Gaussian disorder 
having a dimensionless strength of ≈K 100 , which meant that the conductance is strongly affected by disorder13. 
However, almost the same result is obtained in our HCL model with diffusive arms and ballistic central region. 
Indeed, the calculations for G G G3 4p t 0= = .  give F 0 367f = .  for the floating side terminals and F 0 394g = .  for 
the three grounded ones (See Methods). This excellent agreement between our HCL Langevin circuit theory and 
the experimental results indicates that transport in graphene is well amenable to analysis using semiclassical 
methods having only a few overall parameters.

Besides shot noise, fine agreement is found between the measured HBT exchange and our HCL model at large 
charge density. This indicates that our theory is able to capture well the correlations that are generated by two 
particle scattering16 in a disordered graphene conductor. Our results signify that not only the geometry is impor-
tant for HBT correlations but also there is a need to know the local distribution functions driving partitioning in 
multiterminal graphene conductors. The HBT correlations become more complex when approaching the CNP 
with localized states. The strong growth of the absolute value of HBT exchange effect near the CNP is presumably 
caused by Coulomb blockade and tunneling conductance becoming more important. For a metallic island con-
nected to four metallic leads by four tunnel junctions, we have measured ∆ + = −S S S/( ) 1A B  within 3%35. In 
addition, we did analyze whether enhanced electron-electron interactions near the CNP could account for the 
increased HBT effect at small charge density. However, a calculation using local hot electron distribution func-
tions (without a ballistic center) yields S S S/( ) 0 295A B∆ + = − . , which is clearly different from the measured 
results, both near the CNP and far away from it.

To conclude, we have studied cross correlations in a diffusive, disordered graphene conductor where the elas-
tic mean free path is on the order of the feature size of the geometric layout. Even though only weak non-local 
transport features can be observed due to ballistic propagation in the central region of the graphene cross, their 
presence promotes non-equilibrium-induced occupation-number noise that has an essential influence on the 
current-current correlations in such a hybrid multiterminal conductor. As a consequence, the noise properties of 
this disordered system cannot be treated by standard diffusive theories. By inclusion of a combinational occupa-
tion noise, i.e., partitioning noise driven by current-generated non-equilibrium distribution functions, remarka-
ble agreement is obtained between our semiclassical (HCL) model and the measured noise properties, including 
the Hanbury–Brown and Twiss exchange effects in the transport regime where charge density is large. Altogether, 
our experiment casts important light on transport phenomena in multiterminal graphene conductors where com-
plementary quantum noise issues due to local ballistic propagation have to be taken into account to treat these 

Figure 5.  HBT exchange correction ∆S vs. Vg  obtained from low-bias cross correlation experiments 
extrapolated to V 0b → . The solid line indicates our HCL model result S S S/( ) 0 175A B∆ + = − .  using 

= .G G/ 3 4p 0 . The inset displays the linear dependence of ∆S on Vb measured at V 30g = −  V.
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hybrid conductors with simultaneous diffusive and ballistic characteristics. The conclusions of our work are rele-
vant also to other atomically-thin, two-dimensional conductors with similar characteristics36.

Methods
Experimental methods.  The ribbon samples were fabricated from micromechanically cleaved graphene 
on a heavily p-doped substrate with a 280-nm thick layer of SiO2. Metallic leads to contact the graphene sheet 
were first patterned using standard e-beam lithography followed by a Ti(2 nm)/Au(35 nm) bilayer deposition. 
After lift-off in acetone, a second lithography step facilitated patterning of the GNRs. Our measurements down 
to 50 mK were performed on a dry dilution refrigerator. Standard lock-in techniques using DL Instruments 1211 
preamplifier followed by a Stanford SR830 lock-in amplifier were employed for conductance measurements. The 
IV measurements have been done by using Agilent 33120a generator and 34401a multimeter.

Our cross and auto correlation measurement system operates over frequencies fBW = 600–900 MHz37. This 
frequency is typically well above any fluctuator noise due to switching in transmission eigenvalues at the con-
tacts31. Still, the employed frequency range is low enough to correspond to zero-frequency noise because the 
frequency is low compared with the internal RC1/  scale and the temperature. An aluminum tunnel junction was 
used for calibration of the noise spectrometers38. Auto and cross correlations were measured using two software 
defined digital radio receivers37. For IV curves with significant non-linearity, Snm values were first derived as a 
function of current in the limit →I 0. The resulting reading of dS dI/nm  was converted to dS dV/nm b by using the 
measured differential conductance dI dV/ b. Note that we always take the opposite of the cross correlations when 
n m≠ , which makes Snm positive as all these non-diagonal correlations are negative in a fermionic system.

Theoretical modeling.  The system we address is of hybrid type as its different parts exhibit both diffusive 
and ballistic conduction. It represents a conducting cross whose arms are much longer than the elastic mean free 
path 

mfp, but the central region at the intersection is on the order of mfp
. We also assume that the motion of elec-

trons along the arms is incoherent. Therefore it is possible to adopt a circuit model of the system shown in Fig. 1b. 
The equivalent circuit of the system consists of four diffusive wires shown by dark rectangles, the central ballistic 
region shown by the white circle, and four transition regions between the diffusive wires and the ballistic region, 
which serve as “reservoirs” with nonequilibrium electron distributions acting on the central region. The length of 
these “reservoirs” is assumed to be on the order of 

mfp and hence their resistance is negligible when compared 
with G1/ 0 of the diffusive arms. To calculate the average current in each arm, we treat the four diffusive arms and 
the central connecting region as separate elements of the circuit, and the average current in each arm can be 
found from a system of Kirchhoff ’s circuit laws. The four arms of the cross are modelled as two-terminal resistors 
with equal conductances G0, The ballistic central region may be treated as a four-terminal conductor with +m n2  
reflectionless channels originating from each arm. Of these channels, n go straight ahead into the opposite arm, 
while m channels turn left and right, respectively. Hence the conductance matrix of the central region may be 
written in the form

=







+ − − −

− + − −

− − + −

− − − +







G

G G G G G
G G G G G
G G G G G
G G G G G

2
2

2
2 (5)

t p t p t

t t p t p

p t t p t

t p t t p

where G me h2 /p
2=  and =G ne h2 /t

2 . If the electrical potential in arm i at the crossing is i
cϕ , the total current 

flowing from this arm into the other arms equals

∑ ϕ= .I G
(6)

i
j

ij j
c

On the other hand, this current is given by the Ohm’s law in the diffusive arm i

ϕ= −I G V( ), (7)i i i
c

0

where Vi  is the external voltage applied to the outer end of the arm. Equations (6) and (7) form a full system for 
finding the currents Ii in each arm of the cross.

The two-terminal resistance between the opposite ends of the cross is calculated by setting =V Vb1 , V 03 = , and 
I I 02 4= = . Solving Eqs (6) and (7) for I1 readily gives

R V I
G G G

G G G
/

2( )
( ) (8)

t b
p t

p t
2 1

0

0
≡ =

+ +

+
.

To calculate the bend voltage, it is sufficient to substitute =V 03 , V Vb4 = , and = =I I 01 2  into the system (6)–
(7) and solve it for V1 and V2. As a result, one obtains

= − =
−

+ + +
.V V V

G G G
G G G G G G

V
( )

( 3 ) 8 ( ) (9)
bend

t p

p t t p t
b1 2

0

0
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The current flowing through arms 4 and 3 is

I I
G G G G

G G G G G G
V

4 ( )
( 3 ) 8 ( )

,
(10)

t p t

p t t p t
b4 3

0

0
= − =

+

+ + +

and the bend resistance equals

R V V I
G G

G G G
( )/ 1

4 ( ) (11)
b

t p

t p t
2 1 4≡ − =

−

+
.

If the motion of electrons in the diffusive arms is incoherent, the arms of the cross and the central region may 
be considered as independent sources of noise. The fluctuations of current in the arms are conveniently described 
by the semiclassical Langevin equation

I I x LG d x
dx

( ) ( ) ,
(12)i i

ext
i

i i

i
0δ δ

δϕ
= +

where I x( )i
ext

iδ  is the extraneous Langevin current, xi is the coordinate along the arm, L is its length, and x( )i iδϕ  is 
the fluctuation of electric potential in this arm. The correlation function of the Langevin currents is39

I x I x x x LG d f x E f x E( ) ( ) 4 ( ) ( , ) [1 ( , )], (13)i
ext

j
ext

ij i i0 ∫δ δ δ δ ε〈 ′ 〉 = − ′ −

where f x E( , )i  is the distribution function of electrons in arm i. An integration of Eq. (12) over x with the condi-
tion (0) 0iδϕ =  brings it to the form

∫δ δϕ δ= +I G dx
L

I x( ), (14)i
c L

i
ext

1 0
0

where L( )i
c

iδϕ δϕ≡  is the potential fluctuation of the reservoir in arm i at the crossing.
On the other hand, the central ballistic region is also a source of noise. Although there is no electron backscat-

tering and thus no true partition noise there, it can generate the noise due to occupation-number fluctuations in 
its “reservoirs” because the distribution functions f E f L E( ) ( , )i

c
i≡  at the ends of the corresponding arms are 

nonequilibrium and different from zero and 1 in a range of energies. The fluctuation of current flowing from arm 
i into the rest of arms equals

∑δ δϕ δ= +I G I ,
(15)

i
j

ij j
c

i
ext


where Ii
ext

δ  are extraneous random currents generated at the crossing due to the nonequilibrium distribution of 
incident electrons with the correlation function16

∫δ δ〈 〉 = − + − .I I G dE f f f f2 [ (1 ) (1 )] (16)i
ext

j
ext

ij i
c

i
c

j
c

j
c

 

The values of fi
c may be obtained from a system of equations similar to Eqs (6) and (7) with fi

c in place of i
cϕ  

and −f E eV( )i0  in place of Vi  where f E( )0  is the Fermi distribution function. The distribution function of elec-
trons in the arms is governed by simple diffusion at a given energy, which yields a linear combination of distribu-
tions at its ends

f x E x
L

f E eV x
L

f E( , ) 1 ( ) ( )
(17)i i i

c
0=



 −



 − + .

The system of equations (14) and (15) has to be solved for δIi and Ijδ , and then the correlation function 
S I Iij i jδ δ= −〈 〉 has to be calculated using Eqs (13) and (16).

First of all, we calculate the two-terminal Fano factor for the case where the current flows only through arms 
1 and 3, whereas side arms 2 and 4 are floating. Hence one has to set =V Vb1 , =V 03  and = =I I 02 4  for the aver-
ages and δ δ δ δ= = = =V V I I 01 3 2 4  for the fluctuations. This gives us the Fano factor in the form

F S eI G G
G G G G G G

G G G
/ 2

3
( )

6 9 ( ) 4( )

[ 2( )] (18)
f p t

p t p t

p t
11 1

0
2

0
2

0
3≡ | | = +

+ + + +

+ +
.

It is easily seen that Ff  depends only on the ratio between +G Gp t and G0. It tends to zero as for a purely ballis-
tic system when this ratio is small and approaches the 1/3 value for a diffusive conductor when G G Gp t 0+ . 
The value passes through a maximum ≈ .F 0 48f  at G G G( )/ ( 5 1)/2 0 62p t 0+ = − ≈ . , while it equals 0.367 for 
G G G3 4p t 0= = . . The latter value is larger than the shot noise for diffusive conductor with purely elastic scatter-
ing, but somewhat smaller than the noise in the hot-electron regime.

In a configuration where the voltage is applied to terminal 1 and the rest of terminals are grounded, one sets 
V 0iδ =  for all i. The general expression for the Fano factor is too cumbersome, and we present it here only for the 

particular case of =G Gp t, where it reads



www.nature.com/scientificreports/

9ScIEnTIFIc REPOrTS |  (2018) 8:14952  | DOI:10.1038/s41598-018-32777-5

≡ | | =
+ +

+
.F S eI G

G G G G

G G
/ 2

3
18 45 32

( 4 ) (19)
g p

p p

p
11 1

0
2

0
2

0
3

The F G G( / )g p 0  curve is similar in shape to F G G( / )f p 0  but lies higher and reaches its maximum = .F 0 65g  at 
≈ .G G/ 0 24p 0 . For our particular values = = .G G G3 4p t 0, Fg  equals 0.394 as mentioned in the main text.

In a similar way, one calculates S A
13 for V V V 01 3 4= = =  and =V Vb2 , S B

13 for = = =V V V 01 2 3  and V Vb4 = , 
and S C

13 for V V 01 3= =  and = =V V Vb2 4 . The resulting exchange term in the noise equals

∆ ≡ − − = − .
+ + + +

+ + +
S S S S eV

(20)
C A B G G G G G G G G G G

G G G G G b13 13 13
20
3

(10 2 3 )( 2 2 )

( 2 2 ) ( 4 )
t t p p p t t

p t t

0
2 2

0 0
2

0
2

0
4

This formula yields Eq. 3 in the main text using G Gt p= .

Data Availability Statement
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.
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