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Abstract—Tax evasion detection plays a crucial role in 
addressing tax revenue loss. Many efforts have been made to 
develop tax evasion detection models by leveraging machine 
learning techniques, but they have not constructed a uniform 
model for different geographical regions because an ample 
supply of training examples is a fundamental prerequisite for an 
effective detection model. When sufficient tax data are not 
readily available, the development of a representative detection 
model is more difficult due to unequal feature distributions in 
different regions. Existing methods face a challenge in explaining 
and tracing derived results. To overcome these challenges, we 
propose an Inter-Region Tax Evasion Detection method based on 
Transfer Learning (IRTED-TL), which is optimized to 
simultaneously augment training data and induce interpretability 
into the detection model. We exploit evasion-related knowledge in 
one region and leverage transfer learning techniques to reinforce 
the tax evasion detection tasks of other regions in which training 
examples are lacking. We provide a unified framework that takes 
advantage of auxiliary data using a transfer learning mechanism 
and builds an interpretable classifier for inter-region tax evasion 
detection. Experimental tests based on real-world tax data 
demonstrate that the IRTED-TL can detect tax evaders with 
higher accuracy and better interpretability than existing 
methods. 

Keywords—tax evasion; transfer learning; interpretability; 
inter-region detection 

I.  INTRODUCTION 
Tax evasion causes a large revenue loss in China. The 

Chinese government reported that the rate of tax revenue loss 
in China was more than 22 percent [1]. Especially in recent 
years, tax evasion measures have become more diverse and 
covert in China. Many companies use advanced facilities, 
accounting methods, and human factors to evade taxation 
inspections, which makes auditing work more difficult. 
Meanwhile, with the rapid development of economy, tax data 
has been growing rapidly. The number of annual tax-related 
business records is up to 1 billion, and the daily peak of these 
records is up to ten million. Such large amount of data brings 
tremendous pressure to the tax audit work. 

National governments have taken a series of measures to 
detect tax evasion. Three means for tax evasion detection have 
been adopted by tax authorities in their daily operation: manual 

case selection, computer-based case selection and whistle-
blowing-based selection [1]. The computer-based case 
selection is primarily based on machine learning techniques, 
which extract evasion-related features from historical data for 
training and obtain a model that can be used in tax audit. Thus, 
it is considered a semi-automatic and labor-saving method 
applicable in the era of big data. 

However, traditional machine learning-based methods have 
a concrete problem in practice, inter-region tax evasion 
detection. Machine learning-based tax evasion detection 
methods assume an ample supply of training examples as a 
fundamental prerequisite to construct an effective tax evasion 
detection model in a geographical region. However, the 
annotation of datasets in the taxation domain tends to be 
expensive and time-consuming. In addition, a tax evasion 
detection model trained for a specific region may have a high 
generalization error when applied to other regions due to 
different economic and social conditions. Different regions 
have different distributions of features. Most statistical models 
must be rebuilt from scratch using newly collected training 
data. This is a big challenge in developing a universal tax 
evasion detection model for different regions with varying 
economic and social conditions. Thus, construction of an 
evasion detection model for a region with the help of auxiliary 
data from another region has become an important and 
challenging issue. 

Transfer learning [2] is a method to use knowledge gained 
while solving one problem to solve a different but related 
problem. It lessens the need for expert experience and greatly 
reduces the amount of labeled data needed in a target research 
domain. Transfer learning has been widely applied in 
document classification, image recognition, speech recognition, 
knowledge discovery and other fields. Applying transfer 
learning, we can absorb auxiliary knowledge from a source 
region that holds adequate training data and apply it to a label-
sparse target region to augment learning in the presence of 
regional differences caused by economic and social disparities. 
It can be applied for inter-region tax evasion detection.  

However, there are several challenges when applying the 
transfer learning to inter-region tax evasion detection.  



First, no existing studies on tax evasion detection are based 
on transfer learning. Few works have explored how transfer 
learning can be used in inter-region tax evasion detection. 
Current studies about transfer learning are difficult to directly 
apply to tax evasion detection due to the high accuracy and 
interpretability requirements in the field of taxation. 

Second, due to regional differences, there are few common 
features between regions, which causes difficulty in the transfer 
process. Even with common features, their marginal 
probability distributions can be quite different. For example, 
the average age of legal representatives in China's coastal cities 
is 36, but it is 47 in China's inland cities. 

Third, as presented by Tian et al. [1], the results of machine 
learning-based methods are not explainable and 
counterintuitive. Almost all machine learning models and 
transfer learning methods are black box models due to the 
feature mapping operation, which are vulnerable to security 
attacks [3] [4] [5]. Making the model interpretable is an 
important issue for developing a robust and stable tax evasion 
detection system. 

In this paper, we propose an Inter-Region Tax Evasion 
Detection method based on Transfer Learning (IRTED-TL) to 
overcome the above challenges and realize inter-region tax 
evasion detection with high accuracy and sound 
interpretability. It integrates Transfer Adaboost (TrAdaBoost) 
[6], Transfer Component Analysis (TCA) [7] and LightGBM 
[8]. Specially, TrAdaBoost is an instance-based transfer 
learning method, which ensures the transfer ability of the 
IRTED-TL. LightGBM supports the interpretability and 
accuracy of the IRTED-TL. TCA, a feature-based transfer 
learning method, reduces the difference between the regions, 
which further optimizes the performance of the model. 
Therefore, the IRTED-TL can provide an effective and 
explainable model for a label-sparse tax evasion detection task 
in a target region.  

In the IRTED-TL, we extract features based on random 
forest and Kullback–Leibler (KL) divergence. The random 
forest is used for feature importance extraction and the KL 
divergence measures the similarity between feature 
distributions. Based on these extracted features, we map the 
features with KL divergence exceeding a threshold value using 
TCA. Then, LightGBM is adopted to identify whether a 
taxpayer has exhibited tax evasion behavior based on mapped 
features. We circularly reweight sample weights in the source 
and target regions according to the classification result by 
applying TrAdaBoost. To evaluate the effectiveness of the 
IRTED-TL, experiments based on the real-world tax data of 
five regions in two provinces in China were conducted. The 
results show that the IRTED-TL can detect tax evaders with 
higher accuracy and better interpretability than existing 
methods. 

The IRTED-TL is original and differs substantially from 
previous methods of tax evasion detection. Those methods 
normally use traditional machine learning techniques and 
assume an ample supply of training examples as a prerequisite 
to construct a tax evasion detection model in a specific region. 
The method proposed in this paper adopts transfer learning 
techniques by using inter-region auxiliary data to augment 

learning when training examples in a target region are lacking. 
The IRTED-TL builds an interpretable classifier to induce 
interpretability into the detection model so that the derived 
results can be traced. The main contributions of this paper can 
be summarized as follows: 

• We propose a novel method for inter-region tax evasion 
detection by considering the absence of training data in a 
target region and the interpretability of the derived results. 

• We provide a unified framework that takes advantage of 
auxiliary data by applying transfer learning and builds an 
interpretable classifier to handle tax evasion detection 
issues when available training samples in a target region are 
lacking. 

• We justify the performance of the IRTED-TL through 
comparison with existing work based on a large real-world 
dataset with thirteen transfer scenarios in five regions in 
two provinces in China. The results show that the IRTED-
TL can greatly improve the accuracy of inter-region tax 
evasion detection and provide better interpretability than 
existing work. 

The remainder of the paper is organized as follows. Section 
2 provides a brief review on related work. In Section 3, we 
formulate the problem that we aim to address and provide key 
notations that are used in the paper. We propose the IRTED-TL 
for inter-region tax evasion detection in Section 4. We describe 
the experimental results and provide analysis and discussions 
in Section 5. Finally, a conclusion is presented in the last 
section. 

II. RELATED WORK 
In this section, we briefly review the related work on tax 

evasion detection and transfer learning methods. 

A. Tax Evasion Detection Methods 
There are three frequently used methods in tax evasion 

detection: manual case selection, whistle-blowing-based 
selection and computer-based case selection methods. Manual 
case selection and the whistle-blowing-based selection methods 
are time-consuming and tedious, and computer-based case 
selection methods are considered to be the most promising and 
comprehensive approach used by tax administrations to detect 
tax evasion. 

Machine learning-based tax evasion detection methods, a 
type of computer-based case selection, learn an automatic 
model without expert experience from historical tax evasion 
detection data. Existing methods include association analysis 
[9], cluster analysis [10] [11] [12] [13], classification [14] [15] 
[16] [17], genetic algorithm [18] [19] [20], simulation [21] [22] 
[23], and reinforcement learning [24] [25].  

For example, Pamela Castellón González et al. [13] gave 
evidence that it is possible to characterize and detect potential 
users of false invoices by using different types of data mining 
techniques. Moreover, they adopted clustering algorithms, such 
as self-organizing map and neural gas, to identify taxpayer 
groups with similar behaviors. Wu et al. [9] applied a data 
mining technique based on association rules to enhance the 



performance and productivity of value-added tax evasion 
detection in Taiwan. Chen and Cheng [14] proposed a hybrid 
model that combines a Delphi method and a rough set classifier 
to classify vehicle license tax payment to solve real-world 
problems faced by taxation agencies. Junqué de Fortuny et al. 
[15] applied Support Vector Machine (SVM) and Naïve Bayes 
to detect residence fraud of taxpayers. Goumagias et al. [25] 
presented a dynamic, Markov-based decision support model to 
predict the behaviors of a risk-neutral enterprise in Greece. 

However, there are two main problems of machine 
learning-based tax evasion detection methods. First, they use 
statistical techniques to identify whether a taxpayer has evaded 
taxes and require a set of manually labeled data contributed by 
auditors. Few regions in China have enough labeled data 
because data annotation in the field of taxation is very time-
consuming work. Therefore, tax evasion models can only be 
trained in the few regions with abundant labeled data, and these 
models are not generic to other regions due to discrepancies 
between different regions. Second, it is difficult to explain and 
trace the results obtained by applying these models. 

B. Transfer learning Methods 
Transfer learning uses the knowledge gained in solving one 

problem and applies it to fix a different but related problem [2]. 
There are four types of transfer learning methods [2]: instance-
based transfer learning [6] [26] [27], feature-based transfer 
learning [7] [28] [29] [30], parameter-based transfer learning 
[31] [32] and relation-based transfer learning [33] [34]. Our 
method is related to instance-based and feature-based transfer 
learning. The motivation is that: (1) instance-based transfer 
learning can preserve the original tax features and enhance the 
interpretability of the tax evasion detection model; and (2) 
feature-based transfer learning can close the gap between the 
source and target regions through feature mapping. 

TrAdaBoost [6] is the most classic method used to solve the 
transfer learning problem through instance transfer. It utilizes a 
small amount of labeled data in the target domain to leverage 
the source domain data and construct a high-quality 
classification model for the target domain. Shi et al. [35] noted 
that TrAdaBoost performs poorly given improper source data, 
hence Yao et al. [32] proposed a method named 
MultiSurceTrAdaBoost to address this limitation. 
TransferBoost, proposed by Eaton et al. [36], considers that 
each source domain can be a potential component of a target 
domain distribution. The source domain that is drawn from the 
shared component of the target distribution could be used to 
augment the target training data. However, instance-based 
transfer learning works poorly when the gap between domains 
is large because it assumes that the source domain has available 
instances for the target domain. 

The feature-transfer methods aim to find “good” feature 
representations to minimize domain divergence and 
classification or reduce regression model error. Pan et al. [7] 
proposed TCA for domain adaptation, which learns some 
transfer components across domains in a Reproducing Kernel 
Hilbert Space (RKHS) using maximum mean discrepancy. 
Gong et al. [29] presented a kernel-based method that takes 
advantage of low-dimensional structures. It models domain 

shift by integrating an infinite number of subspaces that 
characterize changes in geometric and statistical properties 
from the source domain to the target domain. Long et al. [30] 
proposed a Transfer Kernel Learning approach to learn a 
domain-invariant kernel by directly matching the source and 
target distributions in the RKHS. However, feature-based 
transfer learning is not interpretable and thus cannot be directly 
used for tasks that require interpretability. 

Although these techniques have been applied and examined 
in different domains, studies on tax evasion detection based on 
transfer learning are lacking. We can construct a tax evasion 
detection model in the absence of labeled data in one target 
region using evasion knowledge extracted from other regions 
by applying transfer learning. One important issue that has 
been neglected is the relevance and differences between the 
features of tax evasion in various regions. Based on our survey, 
the literature has not yet studied how to use the relevance 
between regions to eliminate the effects of regional differences 
for inter-region tax evasion detection. 

III. PROBLEM STATEMENT AND NOTATIONS 
In this paper, we focus on three main problems that are 

widespread in tax evasion detection. (i) How to build an 
accurate tax evasion detection model for a target region lacking 
labeled data, (ii) How to handle the discrepancies between 
different regions, and (iii) How to induce interpretability in a 
tax evasion detection model? 

To address these challenges, we focus on the problem of 
inter-region tax evasion detection based on transfer learning. 
We use a transfer learning technique to extract evasion-related 
taxation knowledge from one region with sufficient labeled 
data and apply it to build a tax evasion detection model for 
another label-sparse target region. When extracting knowledge, 
the discrepancies between different regions will be filtered, 
leaving the knowledge that can be commonly used across 
regions. We combine transfer learning with an interpretable 
classifier to induce interpretability in the tax evasion detection 
model.  

Next, we provide some notations and definitions. 

We formulate a source region and target region. We denote 
the source region as , which has abundant labeled data 

 for training, where  is the data 
instance and  is the corresponding class label. Similarly, we 
denote the target-domain data as , and the quantity of its 
training data  is often inadequate to 
train a reliable detection model. 

For the definitions of “domain” and “task” in the inter-
region tax evasion detection, a domain consists of two 
components: a feature space  and a marginal probability 
distribution , where  represents the 
tax features in each region and  is the  term in the feature 
space.  indicates the distribution for each feature. In the 
case of inter-region tax evasion detection, two different regions 
share some tax features but not all because the records in 
different regions are not identical. Moreover, they have 
different distributions due to economic and social disparities. 
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Fig. 1. The framework of the proposed IRTED-TL 

Given a specific domain , a task expresses a label 
space  and an objective function . In the field of tax 
evasion detection, two regions have the same label space , 
where .  represents a taxpayer with tax 
evasion and  represents a normal taxpayer. The function 

 is designed to detect whether a taxpayer evades taxes. 

Our formal description of inter-region tax evasion detection 
is as follows. Given source region data 

 and target region data 
, where , their domain has 

the following characteristics: , , 
, and the label space  of the source and target 

regions is the same. We aim to learn a detection model 
 in the target region using training data in 

both the source and target regions regardless of the differences 
in their distributions. 

We summarize the notations used in the paper in Table I. 

TABLE I.  NOTATIONS USED 

Variable Description 
 Domain of the source region 
 Domain of the target region 
 Label set of  
 Label set of  
 Data set of the source region 
 Data set of the target region 

 Number of instances in the source region 
 Number of instances in the target region 
 Marginal probability distribution 

 Number of dimensions 
 Instance index 
 Feature index 
 ith instance 
 Label of the ith instance 
 Sample weight of the ith instance 
 jth term in the feature space 

IV. PROPOSED SCHEME 
In this section, we describe the framework of the IRTED-

TL, the details of our method, and the IRTED-TL procedure. 

A. The Framework of the IRTED-TL 
The IRTED-TL is a novel inter-region tax evasion detection 

method based on transfer learning, which aims to construct an 
evasion detection model for label-sparse target region using 
auxiliary data from another region. It provides a unified 
framework that takes advantage of auxiliary data by applying 
transfer learning and builds an interpretable classifier to handle 
tax evasion detection issues in the presence of few available 
training samples in a target region. 

The IRTED-TL integrates TrAdaBoost, TCA and 
LightGBM to solve the three challenges of inter-region tax 
evasion detection. TrAdaBoost is an instance-based transfer 
learning method, which ensures the transfer ability of the 
IRTED-TL. TCA reduces the differences between different 
regions, which enhances the performance of the IRTED-TL. 
Moreover, LightGBM provides interpretability for the IRTED-
TL. 

The framework of the IRTED-TL is shown in Figure 1 and 
is comprised of three main stages. 

In the Preprocessing stage, we collect two tax data sets 
from two regions (Region1 and Region2). They are both high-
dimensional semi-structured data sets and their sizes are 
different due to the uneven distribution. Therefore, 
preprocessing is required for tax data, including filling in 
missing values, reducing feature dimensions and extracting 
features from sequence data. To achieve automated tax evasion 
detection preprocessing, feature selection methods such as 
random forest [37] are adopted to automatically select the 
features associated with tax evasion. Then, for the convenience 
of training, sequence data such as transaction amounts are 
distilled into a static indicator. 

In the Feature Mapping stage, features are divided into two 
groups according to the feature similarity between Region1 and 
Region2. The group with low similarity is mapped to the same 
feature space using TCA, which narrows the distance between 
the two regions. 

In the Transfer Model Training stage, we use TrAdaBoost 
to circularly reweight the sample weight of each instance based 



on the hypothesis calculated by LightGBM. An evasion 
detection model is generated when the error rate converges.  

B. The IRTED-TL Framework 
1) Preprocessing Stage 
There are two categories of features to describe a taxpayer: 

static information and dynamic information. Static information 
indicates the properties of the taxpayer, such as the registered 
capital, registered address, number of employees, and age of 
the legal representative. Dynamic information includes time-
series data in the process of interacting with other taxpayers, 
such as transaction amounts, transaction taxes, and billing days. 

In general, tax databases have more than 10,000 features in 
China. However, not all these features are helpful for evasion 
classification. In fact, few would be helpful for tax evasion 
detection. Therefore, we adopt a random forest classifier to 
calculate the feature importance based on source data  to select 
the most useful information from the feature space. In the 
random forest, we use a Gini index [38] to present the 
importance of features in each decision tree: 

 2 2
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where  denotes the number of classes,  denotes the set 
of all possible values for the feature  and  is the ratio of 
the  class in data . The Gini index reflects the probability of 
an inconsistent category when selecting two samples from the 
dataset randomly. Then, we calculate the Gini Importance (GI) 
for each feature : 

  (2) 

where  denotes the number of times a feature splits nodes 
in the random forest and  denotes the number of sample  
splits. Finally, we select 200 features with the highest GI for 
tax evasion detection. 

Note that some of these features are sequence data such as 
the tax amount payable, which refers to the amount of income 
calculated by tax authorities in accordance with the provisions 
of tax law and is declared once a month. We take the maximum, 
minimum, average and median of those features as the original 
data. 

2) Feature Mapping Stage 
Although we extracted features from the original data, the 

features in  and  may follow different distributions. 
Therefore, it is necessary to map the features into the same 
distribution. The Maximum Mean Discrepancy (MMD) [7] is a 
widely used objective in domain adaption that can dramatically 
minimize the distance between domain distributions by 
projecting the data onto the learned transfer components: 

  (3) 

where  denotes a mapping function that maps the 
original features to a high-dimensional space. The definitions 
of , ,  and  are illustrated in Section III. 

Next, we calculate the KL divergence between each pair of 
features in  and  to evaluate the similarity between 
features in the source and target regions: 

  (4) 

where  denotes the  feature in the source region,  
denotes the same feature in the target region,  and  are 
the probability density functions of  and , respectively. 

A low similarity feature distribution will reduce the effect 
of the transfer model. Thus, we select low similarity features 
from the feature space by setting a threshold  on the KL value 
and mapping them to the same distribution. If the KL of a 
feature is greater than , it means that the feature has low 
similarity between regions.   is selected with two goals: (1) 
increasing  to maintain the original structure of the feature to 
its maximum extent, and (2) decreasing  to narrow the 
distance of the distribution between  and . Our test results 
show that a reasonable choice of  helps improve the classifier 
performance. 

Then, we minimize the MMD for the features with higher 
KL divergence than  to close the distance between the 
distribution of the regions. The following formula is the 
optimization goal for minimizing the MMD and the detailed 
solution is proposed in the TCA [7]. 

  (5) 

where  is the transformation matrix,  is the data that 
combines the source and target regions and  is an MMD 
matrix. 

3) Transfer Model Training Stage 
With the above steps, we closed the distance between the 

distribution of  and  so that auxiliary data from  can be 
reused in the classification of . However, there are some 
instances in  that have a negative effect on the classification 
of  due to the regional differences. To solve this problem, 
we adopt TrAdaBoost to select useful instances from the 
source region. 

If an instance from  is mistakenly predicted, the instance 
may likely conflict with . TrAdaBoost decreases its training 
weight to reduce its negative effect. In the next round, the 
misclassified instances in source region, which are dissimilar to 
those in the target region, affect the learning process less than 
in the current round. After several iterations, the instances in 



the source region that fit those in the target region better will 
have larger training weights whereas the source region training 
instances that are dissimilar to those in the target region will 
have lower weights. The instances with large training weights 
help the algorithm train better classifiers. TrAdaBoost can 
extract valuable knowledge from the source region and 
improve the classification performance of the target region, 
which dynamically adjusts the sample weights of the instances 
to distinguish instances that may be beneficial for the learning 
target classifier. Figure 2 shows an illustration of TrAdaBoost 
[6]. 
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(a) Classification is very difficult 
when there are few labeled training 
data. 

(b) If we have sufficient auxiliary 
training data (blue "+" and "-"), we 
may be able to estimate the 
classification hyperplane. 
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(c) Auxiliary data may also be 
misleading classification results; the 
black "-" with a green circle is 
misclassified. 

(d) TrAdaBoost moves the 
classification hyperplane in the correct 
direction by increasing the weight of 
misclassified source training data and 
reducing the weight of misclassified 
target training data 

Fig. 2. An illustration of TrAdaBoost 

TrAdaBoost uses an SVM as a base classifier, but it is not 
interpretive. To make the model interpretable, a tree-based 
classifier is adopted. However, most single tree-based 
classifiers perform worse than an SVM. Tree-based ensemble 
learning is an intuitive method to address this problem, which 
improves the performance of the classifier in each round and 
produces a traceable result. Therefore, we adopt LightGBM 
[8], a newly published tree-based boosting method, to cover the 
interpretability deficit of TrAdaBoost. Compared with other 
tree-based gradient boosting frameworks, LightGBM has two 
novel techniques: Gradient-based One-Side Sampling (GOSS) 
and Exclusive Feature Bundling (EFB). GOSS reduces data 
instances with small gradients so that the remaining data with 
high gradients can be used to calculate the information gain. 
Thus, useless instances in the source region are filtered. 
Because the data instances with larger gradients play more 
important roles in the computation of information gain, GOSS 

can obtain an accurate estimation of the information gain with 
a much smaller data size. EFB can reduce the number of 
features by bundling mutually exclusive features. The 
experiment [8] explained that LightGBM is ten times faster 
than the previous method due to EFB and GOSS. 

C. The Procedure of the IRTED-TL 

 

The procedure of the IRTED-TL is given in Algorithm 1. 
We initialize the sample weight for each instance in  and  



and we distinguish between them by applying different sample 
weights at the beginning  for the instances in  and  those 
in . Notably, , thus  plays a more important role 
than  because  is used to assist the training of . 
TrAdaBoost calculates the sample weight for the training of 
LightGBM and LightGBM provides the hypothesis for 
updating the sample weight.  and  are two factors for 
updating sample weight;  updates the sample weight for 
instances in  and  updates the sample weight for instances 
in . Note that  and , thus 
the sample weight of  is higher than that of . The error 
rate is a weighted average of the loss and sample weights for 
updating . When entering a new target region taxpayer, the 
model derives the prediction from the post-N / 2 classifier. 

V. PERFORMANCE EVALUATION 
To evaluate the performance of the IRTED-TL, we 

introduce our experimental design. Then, we investigate the 
following four research questions: 

RQ 1: Can our method classify tax evasion taxpayers in the 
target region with high accuracy? For this purpose, we 
evaluate the IRTED-TL based on large real-world datasets and 
compare its accuracy with six baseline approaches (see Section 
IV-C-1 for details). 

RQ 2: How to determine the value of the parameters in the 
IRTED-TL to achieve the best detection accuracy? For this 
purpose, we adjust the values of parameters and test their 
effects on the performance of the IRTED-TL (see Section IV-
C-2 for details). 

RQ 3: Can our method be adapted to a small amount of 
labeled data in the target region? For this purpose, we evaluate 
the IRTED-TL with the increment of training data and compare 
it with the baselines (see Section IV-C-3 for details). 

RQ 4: Can our method explain the process of tax evasion 
detection and provide evidence of tax evasion? For this 
purpose, we visualize a partial result of our method to provide 
an impression of the interpretability of the IRTED-TL (see 
Section IV-C-4 for details). 

A. Datasets and Metrics 
There is no public standard dataset to evaluate tax evasion 

detection. For our experiments, we obtained tax data from tax 
authorities in China. We collected the tax information of 
122,047 taxpayers in the industrial categories of wholesale and 
retail from two provinces. The taxpayers were divided into tax 
evaders and non-tax evaders. Each taxpayer has two categories 
of data: static data and dynamic data. Static data indicates the 
inherent attributes of taxpayers, including legal representative 
information (i.e., age, gender, and region), company size, 
registered capital and other company-related indicators. The 
dynamic data comprises a series of trading and declaration data 
with time-varying properties, such as transaction amounts, 
transaction taxes, and billing days. For convenience, we named 
one province  and the other province .  has sufficient 
labeled data for tax evasion detection and  processes little tax 
evasion detection data in daily audit tasks. We selected four 

independent regions from , , and each region 
has its own economic and social conditions. Thus, we gathered 
actual tax data from five regions . Moreover, 
through feature selection, they are located in the same feature 
space but differ in the marginal probability distribution. The 
features of , ,  and  are more similar than that of  
because they are in the same province. We designed thirteen 
inter-region transfer scenarios, as shown in Table II. 

In Table II, the data set  indicates that  is the 
source region and  is the target region, and its task is to 
extract knowledge from  to aid in the classification of . 
The other scenarios are named in the same manner.  
denotes the amount source region data used for training. 

 is the amount of data in the target region,  denotes 
the 20% of target region data used for training, and  denotes 
the remainder used for testing. 

TABLE II.  THIRTEEN TRANSFER SCENARIOS 

Scenarios   
3388 1630 
3388 1580 
3388 646 
1630 1630 
1630 1580 
1630 646 
1580 1580 
1580 1580 
1580 646 
646 646 
646 646 
646 646 

8940 2768 
The metrics used in our experiments are shown in TABLE 

III. 

TABLE III.  DESCRIPTIONS OF THE METRICS 

Term Abbr Definition 
True Positive  TP # of correctly classified tax evaders. 
True Negative TN # of correctly classified non-tax evaders. 
False Negative FN # of incorrectly classified non-tax evaders. 
False Positive FP # of incorrectly classified tax evaders. 
Error Rate ER (FN + FP) / (TP + TN + FN + FP) 
Precision P TP / (TP + FP) 
Recall R TP / (TP + FN) 
F-measure F1 2PR / (P + R) 
ROC Area AUC Area under ROC curve 
Top N hit rate TopN (# correctly classified tax evaders in top N) / N 

B. Comparison Methods 
To verify the performance of the IRTED-TL, we used 

traditional machine learning methods and a transfer learning 
method as comparison methods in the experiments. Traditional 
machine learning methods include the Multilayer Perceptron 
(MLP) [39] and SVM methods [40]. An MLP is a class of 
feedforward artificial neural network that consists of at least 
three layers of nodes; each node is a neuron that uses a 
nonlinear activation function. An SVM is a discriminative 
classifier formally defined by a separating hyperplane. 
TrAdaBoost(SVM) was adopted as a transfer learning baseline, 
as described in previous work [6]. 



According to the source of training data, the comparisons 
generate six baselines that fall into three categories, as shown 
in Table IV. The S-classifier indicates that we use source data 
to train the model and apply it to the target region. The T-
classifier indicates that the model is directly trained by data in 
the target region. ST-SVM and TrAdaBoost(SVM) use both 

 and  as training data. 

TABLE IV.  THE BASELINE METHODS 

Baseline Training Data Test Data Classifier 
S-MLP  MLP 
S-SVM  SVM 
T-MLP  MLP 
T-SVM  SVM 
ST-SVM   SVM 
TrAdaBoost(SVM)   SVM 
 

TABLE V.  ERROR RATES OF TAX EVASION DETECTION WITH DIFFERENT METHODS 

Data Set S-MLP S-SVM T-MLP T-SVM ST-SVM  TrAdaBoost(SVM) IRTED-TL 
 0.172 0.260 0.150 0.317 0.187 0.122 0.018 
 0.216 0.335 0.223 0.344 0.168 0.085 0.024 
 0.157 0.108 0.133 0.235 0.127 0.074 0.034 
 0.105 0.239 0.075 0.181 0.139 0.063 0.015 
 0.259 0.392 0.222 0.346 0.261 0.102 0.019 
 0.141 0.130 0.114 0.257 0.102 0.094 0.019 
 0.152 0.348 0.070 0.191 0.146 0.076 0.018 
 0.491 0.416 0.179 0.297 0.272 0.137 0.028 
 0.110 0.393 0.126 0.464 0.186 0.088 0.037 
 0.340 0.488 0.063 0.119 0.146 0.067 0.020 
 0.314 0.483 0.170 0.312 0.308 0.164 0.020 
 0.420 0.497 0.206 0.347 0.477 0.136 0.024 

 0.488 0.505 0.226 0.276 0.302 0.166 0.136 
 

TABLE VI.  F1 SCORE OF TAX EVASION DETECTION WITH DIFFERENT METHODS 

Data Set S-MLP S-SVM T-MLP T-SVM ST-SVM  TrAdaBoost(SVM) IRTED-TL 
 0.818 0.704 0.850 0.608 0.803 0.876 0.982 
 0.770 0.566 0.769 0.681 0.848 0.912 0.976 
 0.863 0.899 0.863 0.714 0.882 0.933 0.968 
 0.900 0.728 0.926 0.813 0.862 0.939 0.985 
 0.772 0.493 0.788 0.682 0.702 0.901 0.981 
 0.873 0.871 0.884 0.691 0.897 0.909 0.983 
 0.866 0.726 0.931 0.810 0.867 0.925 0.982 
 0.056 0.669 0.817 0.630 0.716 0.860 0.972 
 0.894 0.726 0.868 0.219 0.824 0.920 0.964 
 0.487 0.066 0.936 0.876 0.842 0.932 0.980 
 0.617 0.096 0.819 0.590 0.574 0.832 0.980 
 0.319 0.062 0.806 0.702 0.121 0.872 0.976 

 0.663 0.627 0.748 0.642 0.708 0.830 0.868 
 

TABLE VII.  AUC SCORE OF TAX EVASION DETECTION WITH DIFFERENT METHODS 

Data Set S-MLP S-SVM T-MLP T-SVM ST-SVM  TrAdaBoost(SVM) IRTED-TL 
 0.944 0.871 0.936 0.783 0.906 0.950 0.991 
 0.891 0.858 0.873 0.757 0.849 0.963 0.998 
 0.957 0.972 0.942 0.921 0.956 0.981 0.997 
 0.958 0.864 0.970 0.904 0.936 0.977 0.998 
 0.877 0.718 0.872 0.736 0.819 0.949 0.998 
 0.919 0.900 0.954 0.931 0.918 0.970 0.998 
 0.953 0.779 0.973 0.896 0.934 0.969 0.998 
 0.911 0.696 0.912 0.805 0.798 0.942 0.993 
 0.959 0.835 0.934 0.928 0.902 0.973 0.997 
 0.927 0.924 0.979 0.953 0.949 0.975 0.998 
 0.837 0.910 0.927 0.783 0.889 0.930 0.994 
 0.768 0.788 0.890 0.745 0.860 0.924 0.998 

 0.684 0.688 0.882 0.897 0.746 0.915 0.940 
 

 



TABLE VIII.  TOPN(N=100) SCORE OF TAX EVASION DETECTION WITH DIFFERENT METHODS 

Data Set S-MLP S-SVM T-MLP T-SVM ST-SVM  TrAdaBoost(SVM) IRTED-TL 
 0.990 0.970 0.970 0.910 0.950 0.988 1.000 
 0.856 0.780 0.942 0.930 0.710 0.952 1.000 
 0.990 1.000 0.964 1.000 0.970 0.990 1.000 
 0.972 0.970 0.978 0.980 0.940 0.976 1.000 
 0.868 0.700 0.914 0.900 0.910 0.952 1.000 
 1.000 0.980 0.970 0.950 0.980 0.990 1.000 
 0.970 0.930 0.964 0.990 0.960 0.940 1.000 
 0.992 0.880 0.968 0.940 0.960 0.990 1.000 
 0.990 0.880 1.000 0.940 0.960 0.990 1.000 
 0.924 0.870 0.976 0.940 0.960 0.952 1.000 
 0.938 0.960 0.976 0.850 0.950 0.982 1.000 
 0.854 0.810 0.934 0.880 0.860 0.902 1.000 

 0.946 0.886 0.954 0.984 0.914 0.930 0.992 

C. Experimental Results 
1) Effectiveness of the IRTED-TL  
We evaluated the effectiveness of the different methods in 

different scenarios using four metrics. The evaluation tables are 
shown in Tables V to VIII. 

Table V shows the error rates of the different methods. For 
all thirteen transfer scenarios, compared with the traditional 
machine learning-based methods and TrAdaBoost(SVM), the 
IRTED-TL performs better in terms of error rate. The error 
rates of the IRTED-TL are more than 4.00% lower than that of 
the others, an average 19.6% lower. 

Table VI shows the F1 scores of different methods. The 
IRTED-TL achieves the best performance in all thirteen 
transfer scenarios. The F1 scores of the IRTED-TL are greater 
than 0.96 in the , ,  and  transfer scenarios. Notably, 
when the MLP and SVM perform badly in the condition of 

 and , the transfer learning methods 
TrAdaBoost(SVM) and IRTED-TL maintain excellent 
performance, which demonstrates that a tax evasion detection 
model trained with single-region data may not apply to other 
regions, causing high generalization error. 

As shown in Table VII, the IRTED-TL outperforms other 
methods and shows outstanding AUC scores, as the feature 
mapping and boosting classifier of the IRTED-TL cause 
performance gains. 

As shown in table VIII, the proposed method can achieve 
almost 1.000 TOPN (N=100) in tax evasion detection. If we 
provided tax authorities with a list of 100 taxpayers suspected 
of tax evasion, all the taxpayers on the list would be verified to 
be correctly classified. The results justify the stability of the 
proposed methods against region noise and data errors because 
the IRTED-TL has high performance in all thirteen transfer 
scenarios. 

We focus the ROC curve of the  transfer scenario, as 
shown in Figure 3. This scenario is representative of the 
thirteen transfer scenarios because its source and target regions 
are in different provinces. The IRTED-TL always outperforms 
other methods and shows outstanding detection accuracy. 

 

Fig. 3. The ROC Curve of different methods 

In conclusion, the IRTED-TL greatly improves the 
accuracy of tax evasion identification according to various 
metrics. 

2) Effect of Parameters 
The threshold  plays an important role in the IRTED-TL, 

controlling the balance between the original structural 
information and the distance of the distribution. 

 

Fig. 4. Error rate of the IRTED-TL with different thresholds 

Figure 4 illustrates the error rates with different values of 
the threshold . We sampled  at the same density in the set of 
KL divergence. As most of the KL divergence between 
features was lower than 1, we can just sample a few thresholds 



for different collections greater than 1. The error rate gradually 
decreases when  is in the range of 0 to 1 and increases slowly 
when  is greater than 1. When , none of the features 
undergo a mapping operation and when , all the features 
undergo the mapping operation. Our method performs the best 
when . Thus, appropriate feature mapping operations will 
improve the performance of our method. The smaller the value 
of h, the more features undergo the feature mapping operation 
and the less structural information is preserved. This 
demonstrates that an appropriate threshold setting can help 
close the gap between different distributions and maintain the 
original internal data structure during the feature mapping 
operation. 

3) Stability of the IRTED-TL 

 

Fig. 5. The error rate of the IRTED-TL with different training data sizes for 
the target region 

Figure 5 shows the error rates of different methods with 
different amounts of target region training data. We omitted the 
MLP-based baselines result because it was similar to the SVM. 
We maintained the amount of source region training data and 
changed the size of the target training data step-by-step. The 
amount of target region training instances was gradually 
increased from 20 to 500. The IRTED-TL always outperforms 
other methods with different amounts of target region data. The 
error rate of the S-SVM remains constant with increasing target 
data sets because it only uses source region data for training. 
The ST-SVM converges slowly because it is seriously affected 
by the source data and not all of data in source region are 
useful for target classification, thus the error rate decreases 
slowly with increasing target training data. The T-SVM only 
uses target data for training and subtle changes in the training 
data have a large impact on the classification, which leads to a 
jitter phenomenon with the growth of training data. Compared 
with the ST-SVM and T-SVM, the error rate of 
TrAdaBoost(SVM) and the IRTED-TL are quite low at the 
beginning and converge quickly even if provided a small 
amount of data. The IRTED-TL is better than 
TrAdaBoost(SVM) due to the advantages of the feature 
mapping and boosting technique. When the data size increases, 
the effect of the T-SVM gradually approximates the IRTED-
TL because the target region has sufficient data for training. 
When the target region has a small amount of training data, the 
IRTED-TL would extract useful knowledge from the source 

region to improve the performance of tax evasion detection in 
the target region. Therefore, the IRTED-TL has excellent 
performance and stability in tax evasion detection in the 
absence of target region data. 

4) Interpretability of the IRTED-TL 
Most machine learning-based tax evasion detection 

methods cannot clearly explain the process of tax evasion when 
proposing a list of suspicious taxpayers. The IRTED-TL has 
the advantage of interpretability, thus it has the ability to 
interpret the detection process. Figure 6 shows a partial 
visualization of the training results of the IRTED-TL. 

 

Fig. 6. Interpretability of the IRTED-TL 

Figure 6 consists of two types of nodes colored in blue and 
red. The blue node is an attribute node, indicating the feature 
name and the corresponding threshold to split the node. The 
red node is a value node that will give a value to the sample for 
the next iteration. The value of the red node is meaningful. 
Positive values tend to be more prone to tax evasion whereas 
negative values tend to be normal. We can obtain the suspect 
value of tax evasion by adding the values of red nodes passed 
by a taxpayer. Therefore, we have strong evidence if the 
IRTED-TL detects a tax evader. The IRTED-TL can tell which 
indicators are abnormal using a tree structure. Moreover, the 
IRTED-TL explains the linkage between the various indicators. 
It is normal to examine the metrics alone, but there may be 
problems when combining them. In practice, the IRTED-TL 
can provide a set of tax evasion detection programs as a 
supplementary audit tool.  

D. Further discussion 
1) Advantages: 
Based on the above evaluation results, we summarize the 

advantages of our approach below. 

Hybrid solution: The proposed approach benefits from the 
advantages of transfer learning and a boosting classifier. The 
intent of this hybrid solution is to solve the problems of 
traditional tax evasion detection method such as poor 
generalization, the need for large labeled data and the lack of 
interpretability. The performance test shows that our approach 
achieved the best performance for all metrics. 



Stability: The proposed method can be applied to detect tax 
evasion with a small amount of labeled data in a target region. 
Our performance evaluation tested target regions with different 
training data sizes, and the results imply that our approach can 
converge to the best performance with a small amount of 
training data. When the data size becomes larger, our approach 
still outperforms existing methods. Therefore, we can conclude 
that our method can stably improve the effectiveness of tax 
evasion detection when training examples are insufficient. 

Robustness: Our method is robust even in the presence of 
data perturbations. The data sets of each region have strong 
local characteristics, which are regarded as abnormal 
disturbances in the transfer scenario. Our performance test 
showed that the proposed method can remove interference and 
extract common aspects of tax evasion in each region. In 
addition, the data set also has some perturbations due to 
registration error or empty data. Applying the boosting 
technique in our hybrid approach can overcome this problem. 

Accuracy: Based on our evaluation, the proposed approach 
can achieve higher tax evasion detection accuracy than 
baselines using different groups of datasets. In addition, our 
method converges to a low error rate quickly with a small 
amount of training data. 

Interpretability: The proposed approach is interpretable. 
When our approach detects a tax evader, it can provide a 
detailed tax evasion detection trail, which explains the reason 
for tax evasion. Auditors can deduce some information from 
the visualization of the model and develop specific inspection 
programs for taxpayers because some thresholds in the model 
are specific to the region.  

2) Disadvantages 
There are some disadvantages in our approach. We must 

further improve the following aspects. First, we must collect 
other tax evasion detection data to justify the scalability of the 
method. We could build a more robust model through 
multisource transfer learning, which extracts knowledge from 
at least two regions to detect the tax evasion of target region. 
Second, to improve the accuracy of the approach, we adopted 
the feature mapping technique but it increases the computation 
time. Thus, we are committed to finding a faster method to 
reduce the time complexity of our approach. 

VI. CONCLUSION 
This paper proposed the IRTED-TL, a novel inter-region 

tax evasion detection method. It integrates transfer learning and 
an interpretable classifier to augment training data for a label-
sparse target region and induce interpretability in the detection 
model. First, by combining feature-based and instance-based 
transfer learning techniques, auxiliary knowledge from a 
source region with adequate training data is absorbed and 
applied to a label-sparse target region to augment the learning 
data in the presence of regional differences. Second, to offer a 
clear explanation of tax evasion, LightGBM is adopted to build 
an interpretable and accurate tax evasion detection model in the 
target region. The IRTED-TL outperforms existing methods 
with higher accuracy. In addition, it provides a good 
explanation of tax evasion behavior. 

In future work, we will improve the design and seek a new 
method to optimize the speed of the process. Moreover, we aim 
to study multi-source transfer learning in tax evasion detection, 
which uses auxiliary training data sets from multiple source 
regions to achieve better tax evasion detection performance in a 
target region. 
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