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Abstract—In this work, we present a new technique for the
M-QAM symbol error rate evaluation in communication systems
equipped with conventional detectors designed for additive white
Gaussian noise (AWGN) model of interference but operating over
a fading environment with arbitrary interference and AWGN.
In contrast to many reported methods, the given technique is
applicable to arbitrary interference and fading models, and it
can efficiently be implemented numerically. These facts make
the derived result especially convenient for practical purposes.

Index Terms—Error rate, fading channels, interference, M-
QAM, non-Gaussian noise.

I. INTRODUCTION

Interference modeling plays a key role in many tasks related
to design and analysis of communication systems. The additive
white Gaussian interference model is very convenient for
practical purposes, but in many realistic scenarios, statistical
distributions of interference amplitude are essentially non-
Gaussian [1], [2]. Such are scenarios with natural or man-
made impulsive interference, and interference caused by a few
spatially distributed nodes [3]- [7].

For known interference statistics, optimal receiver design in
the sense of a given criterion may be possible although this is
often a very challenging task. Design and analysis of optimal
receivers for different interference models were presented, e.g.,
in [3]- [7], but the considerations were restricted by binary
transmission schemes.

However, in practice, interference statistics are often not
known, and the receivers are equipped with conventional
detectors designed for the additive white Gaussian noise
(AWGN) model of interference. Most papers analyzing error
rates under different interference types assumed conventional
AWGN detectors, e.g., [8]- [16]. Generally, these works
considered particular interference types and specific fading
conditions. At the same time, generic techniques applicable to
miscellaneous operating conditions are required for practical
purposes.

In this paper, we present a new technique for symbol
error rate (SER) assessment, which in contrast to previously
reported results, can be applied to arbitrary fading models and
interference statistics. The obtained SER formula involves the
products of expectations over the interference distribution and
fading statistics of the transmission link. These expectations
can therefore be evaluated independently. For the expectations
over the fading statistics of the transmission link, we obtain

formulas for some generalized fading models such as mixtures
of (generalized) gamma distributions or η-µ distributions [17]-
[19]. In view of approximating abilities of gamma distributions
and mixtures of gamma distributions [17], [20], the derived
formulas ensure applicability of the SER formula to a large
variety of fading and shadowing scenarios. We show that the
expectations over the interference statistics can be evaluated by
using derivatives of interference moment generating function
(MGF), which can efficiently be implemented numerically
with the help of modern software (such as Maple or Mathe-
matica) via one-line operator or analytically via Faa di Bruno’s
formula [21].

II. SYSTEM MODEL

We consider a single-antenna point-to-point transmission
where the transmitter (Tx) communicates with the receiver
(Rx) over a fading environment characterized by a channel
gain h. For the sake of simplicity, we assume that an arbitrary
square M -quadrature amplitude modulation (QAM ) is used.
But the analysis below can directly be extended to an arbitrary
rectangular QAM.

Let a transmitted symbol s be drawn from an M-QAM con-
stellation C and be corrupted by the AWGN n and interference
I. Then the received symbol r can be represented as

r =
√
Essh+ I + n (1)

where Es is the transmit power, E{|s|2} = 1, and E denotes
the expectation. The variance of n is 2σ2. Generally, I is
a random variable (RV). We assume that the in-phase (I), II,
and quadrature (Q), IQ, components of I are independent and
identically distributed (i.i.d.). Fading statistics characterizing
propagation from interfering nodes to the Rx are taken into
account via the statistics of I (see section IV below), and
they may differ from those of h.

Following [8]- [16], we consider the conventional maximum
likelihood detector that decides in favor of the symbol ŝ ∈ C
based on a rule

ŝ = arg min
s∈C
|r −

√
Essh|2. (2)

III. ERROR RATE ANALYSIS

An M -QAM symbol can be viewed as a combination of two
independent pulse amplitude modulated (PAM) symbols,

√
M -

PAM representing the respective I and Q symbol components.
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Due to the symmetry, the SERs of I and Q components are
equal, and the M-QAM SER Ps can be assessed as

Ps = 1− (1− PI)
2 (3)

where PI is the SER of
√
M -PAM.

We assume that the transmitted symbols are equally proba-
ble and present below a technique for PI evaluation.

Proposition 1: The
√
M -PAM SER PI can approximately

be expressed in the form of a finite sum as

PI ≈ αM
Nmax∑
l=0

1

l!
EI2I

{
exp

(
− I

2
I

2σ2

)(
I2

I

2σ2

)l}

×

E|h|2
{

Γ
(
l + 1/2, γT|h|2/2

)}︸ ︷︷ ︸
E|h|2 (l)

Γ(l + 1/2)
= αM

Nmax∑
l=0

(−1)l

l!

×
dlM I2

I
2σ2

(t)

dtl

∣∣∣
t=1
·
E|h|2(l)

Γ
(
l + 1

2

) (4)

where αM =
√
M−1√
M

, Ex means the expectation with respect
to (w.r.t.) x, Γ(c) is the gamma function, Γ(c, x) is the upper
incomplete gamma function, and γT = Es/(2σ2) is the trans-
mit signal-to-noise ratio (SNR). Mx(t)

∆
= Ex {exp (−tx)} is

the moment generating function (MGF) of x, andM I2
I

2σ2

(t) =

MI2I
(

t
2σ2

)
[22].

Proof : See Appendix A.
In (4), Nmax controls the approximation accuracy. Gener-

ally, its value is specified by the estimated SER order: Nmax

increases as the SER becomes smaller, which is the case
of high SNR and low interference levels, as well as small
constellation sizes M . The value of Nmax can be assigned
based on the following proposition.

Proposition 2: For arbitrary SNR, interference levels, and ∀
ε > 0, Nmax can be found such that the difference r between
the real value of PI and the expression on the right hand side
(RHS) of (4) satisfies the following inequality

r ≤ ε = αM

1−
Nmax∑
l=0

(−1)l

l!

dlM I2
I

2σ2

(t)

dtl

∣∣∣
t=1

 . (5)

Proof : See Appendix A.
Eq. (4) involves expectations of channel gains E|h|2(l).

They can be evaluated for many generalized fading models
with the help of the following proposition.

Proposition 3: The expectation E|h|2(l) in (4) can be evalu-
ated in closed forms for some generalized fading distributions
presented in Table I, where the abbreviation PDF means the
probability density function, B(., .) is the beta function, 2F1(.)
is the Gauss hypergeometric function, H[.] is Fox’s H function
[23, vol. 3], G[.] is the Meijer G function [23, vol. 3],
∆(n, a) = a

n ,
a+1
n , . . . , a+n−1

n , Iα(.) is the modified Bessel
function of the first kind of the order α, and F1(.) is an Appel
hypergeometric function [23, vol. 3, (7.2.4.1)].

Proof : See Appendix B.
Routines for implementation of Fox’s H function are

well known [25], [26]. The method used in sub-section C

of Appendix B can efficiently be applied to other fading
distributions not considered in this work. Fubini’s theorem
along with results reported in Table I provide techniques for
E|h|2(l)/Γ

(
l + 1

2

)
evaluation for fading models represented

via mixtures of (generalized) gamma or η − µ distributions.
All these facts make the presented method applicable to a large
variety of real fading distributions.

Eq. (4) represents a general method of SER evaluation.
Under specific operational conditions, simplified approximate
approaches can be obtained. In particular, the following propo-
sition can be formulated for the low interference regime.

Proposition 4: Under the low interference regime, i.e. if
E
{
I2
}
� Es, the

√
M -PAM SER PI can approximately be

assessed as

PI ≈ αM
[
2E|h|2

{
Q
(√

γT|h|2
)}

+√
2γT

π
EI2I

{
I2

I

2σ2

}
E|h|2

{
exp

(
−γT|h|2

2

)
|h|
}]

. (6)

Proof : Eq. (6) immediately follows from (7) (see Ap-
pendix A) with a � b that makes possible application of
[27, 06.27.06.0011.01] by taking into account that Q(x) =
1
2erfc

(
x√
2

)
, where erfc(.) is the complementary error func-

tion.
It can be seen that the first term in (6) represents the SER

under noise-limited scenarios while the second term represents
the effect of low interference power. It can also be seen that
application of (6) is convenient if the interference power can
be assessed. An application example is given in Section IV.

The expectation E = E|h|2
{

exp
(
−γT|h|

2

2

)
|h|
}

has the
form of Laplace transform of product of power function and
fading PDF. For many practical fading distributions, tabulated
formulas can be used. Because of space restrictions, we give
here only references to the formulas for fading distributions
listed in Table I. For Nakagami-m distribution, E can be
assessed with the help of [23, vol. 4, eq. 2.1.1.1]. Eqs. [23,
vol. 4, eq. 3.15.1.2] and [23, vol. 4, eq. 2.2.1.22] can be used
for the η − µ and GG fading distributions, respectively.

IV. APPLICATION EXAMPLES

In all considered scenarios we assumed the ordinary
distance-dependent path-loss model [28] with the path-loss
exponent ζ = 3.8.

First, based on (4), we evaluated the SER performance
under interference coming from Poisson fields of interferers
characterized by the density λ and transmit power Pint equal
to the probe Rx power at SNR=0 dB, i.e. the signal-to-
interference power ratio (SIR) was equal to the SNR. We
applied an expression for the interference MGF derived in
[29, eqs. (5), (6)].

We considered Nakagami-m fading models of interfering
links, and Nakagami-m and η-µ fading scenarios [19] for
the useful links. Under the former scenarios, we assumed
that the useful and interfering links were modeled by iden-
tical Nakagami-m fading distributions, and under the latter
scenarios, we considered format 1 of η-µ fading [19] with
η = 0.3 and µ = 0.855. The SER estimates are shown in Fig.
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TABLE I
FORMULAS FOR E|h|2

{
Γ
(
l + 1/2, γT|h|2/2

)}
FOR DIFFERENT FADING STATISTICS.

Fading distribution PDF of channel power gains E|h|2 (l)/Γ
(
l + 1

2

)
Nakagami-m f|h|2G

(x) = xm−1

Γ(m)θm
exp

(
−x
θ

)
, 1− (γT·θ/2)

l+1
2

(l+ 1
2

)B(m,l+ 1
2 )

m - shape param., θ - scale param. ×2F1

(
l + 1

2
,m+ l + 1

2
; l + 3

2
;−γT

θ
2

)
Generalized f|h|2GG

(x) =
ν(β/γ̄GG)mν

Γ(m)
xνm−1exp

[
−
(
βx
γ̄GG

)ν]
, 1

Γ(m)Γ(l+ 1
2 )

gamma (GG) [18], m, ν - shape param., γ̄GG = E{|h|2GG} ×H1,2
2,2

[
2β

γTγ̄GG

(1/2− l, 1), (1, 1)
(m, 1/ν), (0, 1)

]
arbitrary ν β = Γ(m+ 1/ν)/Γ(m)

Generalized gamma, jlkm−1/2(2π)1−(j+k)/2

Γ(m)Γ(l+ 1
2 )

rational ν = j
k

×Gk,2j2j,k+j

[(
2jβ

kk/jγTγ̄GG

)j ∆(j, 1/2− l),∆(j, 1)
∆(k,m),∆(j, 0)

]

η-µ model was introduced in [19] fZ(x) =
2
√
πµ
µ+1

2H
µ
1 x

µ− 1
2 exp(−2µxH1)

Γ(µ)H
µ− 1

2

Iµ− 1
2

(2µHx)
Γ(2µ+ 1

2 )(1+α1)−µ
√
πΓ(2µ+1)(1+α2)µ

×

in two formats with different Z = |h|2η−µ/γ̄η−µ; γ̄η−µ = E{|h|2η−µ}; H1, H , and F1

(
1
2
, µ, µ, 2µ+ 1; 1

1+α1
, 1

1+α2

)
+

(16µ2H1)µ

Γ(2µ)
×

physical interpretation of µ are parameters; H1 and H are functions of η [19]
∑l
k=1

Γ(2µ+k− 1
2 )(γTγ̄η−µ)

k− 1
2

Γ(k+ 1
2 )(γTγ̄η−µ+4µH1)

2µ+k− 1
2

×

the parameter η α1 =
γTγ̄η−µ

4µ(H1+H)
; α2 =

γTγ̄η−µ
4µ(H1−H)

. 2F1

[
µ+ k−0.5

2
, µ+ k+0.5

2
;µ+ 0.5;

(
4µH

γTγ̄η−µ+4µH1

)2
]
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Fig. 1. 4 QAM and 16 QAM SER performance under AWGN and Poisson
interferer fields of density λ. Interfering links follow Nakagami-m fading
distributions, and useful links follow Nakagami-m (solid and dotted lines)
and η-µ (dashed lines) fading models. Single points report simulation results.

1. Effects of different fading parameters can conveniently be
analyzed with the help of the proposed technique. In particular,
it can be seen that a power imbalance between the I and
Q components of scattered waves in multipath clusters (not
observed in Nakagami-m fading, but inherent to η-µ fading
and expressed via the parameter η = 0.3) has a deteriorating
effect on the SER.

The presented SER estimation method is applicable to arbi-
trary and generally different fading models of useful and inter-
fering links. Effects of fading coefficients of interfering links
are inherently included into the MGF expression M I2

I
2σ2

(t),

and effects of fading coefficients of fading links are evaluated

via E|h|2(l). In Fig. 2, we show 16 QAM SER estimates for
scenarios where the useful and interfering links were modeled
by different GG fading distributions. Useful link parameters
were m = {1.71; 2.71}, ν = {1; 4}, and interfering link
parameters were m = {1.71; 2.71}, ν = {6; 6}. Both shape
parameters m and ν are inversely proportional to the amount
of fading [18], and thus their increasing boosts both the useful
and interfering powers. For the considered parameters, we
observe SER decreasing as m and ν increase.

The evaluation of (4) requires high-order MGF derivatives.
They can efficiently be evaluated numerically since many
modern software packages have built-in derivation operators.
In this work, we applied the derivation operator implemented
in Mathematica as D[MGF [t], {t, l}]/.t→ 1.

Then we analyzed the M-QAM SER in the low interfer-
ence regime with the help of (6). We considered a Poisson
field of interferers of density λ = 0.01 and transmit power
Pint = 0.1Es|SNR=0dB operating outside of a guard circle of
the radius Rg around the probe Rx. Under these conditions,
taking into account that the interference power is split equally
between the I and Q components, EI2I

{
I2I
2σ2

}
= πλPint

2σ2(ζ−2)Rζ−2
g

[30, eq. (14)]. We assumed identical Nakagami-m fading
conditions for both useful and interfering signals and assessed
interference effects in terms of difference ∆ SER between the
SERs with and without interference. The graphs of 16 QAM
∆ SER versus the radius of guard zone Rg for a few values
of parameter m are shown in Fig. 3 for γT = 10 dB.

V. CONCLUSION

Estimation of error probability under non-Gaussian inter-
ference is of interest in different operational scenarios. For
example, providing of acceptable error probability levels is an
important task in spectrum sharing wireless systems [31].

Practical receivers are very often equipped with conven-
tional detectors designed for AWGN since real interference
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Fig. 2. 16 QAM SER performance under AWGN and Poisson interferer fields
of density λ = 0.01. Interfering links are modeled by GG fading distributions
with νint = 6 and mint = {1.71, 2.71}. Useful links are modeled by GG
fading distributions with m = {1.71; 2.71} and ν = {1; 4}). Single points
report simulation results.
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Fig. 3. Effects of low interference power on 16 QAM SER, γT = 10 dB.

statistics or optimal detectors may be unavailable. Although
many works analyzed such detectors under various interfer-
ence types, the considerations were restricted by concrete
interference and fading statistics.

In this work, we presented a new method for the SER assess-
ment, which can be applied to arbitrary interference and fading
statistics. The method is especially convenient if the MGF of
interference is known. The generality of new technique was
proven by its efficiency under a few practical scenarios where
previously reported results could not be applied, and Monte
Carlo simulations were the only alternative to the presented
technique. Vice versa, under the considered scenarios, the
given method seems to be the only possibility to check
results of Monte Carlo simulations. The presented method
can easily be implemented numerically because required high-

order MGF derivatives can be evaluated via a one-line operator
realized in many modern software packages.

In this letter, we also presented an approximate simplified
SER formula for low interference regime.

APPENDIX A
PROOFS OF PROPOSITION 1 AND PROPOSITION 2

It can be seen from (1) that the I component of the received
symbol conditioned on h and II is corrupted by Gaussian noise
with a non-zero mean II. Thus, the PAM SER averaged over
the transmitted symbols and conditioned on the channel gain
h and II, PI(|h|, II), can be expressed in terms of Gaussian
Q function as [28]

PI(|h|, II) = αM

[
Q

(√
Es/2|h|+ II

σ

)
+Q (

√
Es/2|h| − II

σ

)]
= αM

Q
√γT|h|2︸ ︷︷ ︸

b

+
II

σ︸︷︷︸
a



+Q

√γT|h|2︸ ︷︷ ︸
b

− II

σ︸︷︷︸
a


 (I)

= Q 1
2
(a, b)

(II)
=

∞∑
l=0

exp

(
−a

2

2

) a2lΓ
(
l + 1/2, b

2

2

)
2ll!Γ(l + 1/2)︸ ︷︷ ︸

S

(7)

where Qµ(a, b) is the generalized Marcum Q function [32],
(I) is due to [32, eq. (7)], and (II) is due to [33, eq.(16)].

The arguments of Gaussian Q function in (7) are expressed
via the sum of independent RVs |h|2 and I2

I , which makes
averaging over the corresponding statistics practically impos-
sible while the representation in terms of Marcum Q function
overcomes this problem. It can be seen that the expectations
w.r.t. the independent random variables a and b in (7) can
be evaluated separately. Evaluating E|h|2,II {S} by applying
Fubini’s theorem [24], we obtain a series S1 =

∑∞
l=0 s1l

similar to (4) with the difference that Nmax is changed to
∞. Based on a Laplace transform property [23, vol. 4, eq.
(1.1.2.9)], we can find that

EI2I

{
exp

(
− I

2
I

2σ2

)(
I2

I

2σ2

)l}
=

(−1)l

l!

dlM I2
I

2σ2

(t)

dtl

∣∣∣
t=1

. (8)

If the series S1 is truncated by N1 = Nmax + 1
terms, the residual rS1

(Nmax) must be assessed.
One can note that the expectation of regularized
gamma function E|h|2(l)/Γ(l + 1

2 ) < 1, and thus

S1 < S2 =
∑∞
l=0

1

l!
EI2I

{
exp

(
− I

2
I

2σ2

)(
I2

I

2σ2

)l}
︸ ︷︷ ︸

s2l

=
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∑∞
l=0

(−1)l

l!

dlM I2
I

2σ2

(t)

dtl

∣∣∣
t=1

= 1. Since 0 ≤ s1l ≤ s2l for ∀l,
the residuals rS1 and rS2 resulting from truncation of S1 and
S2, respectively, by N1 terms, are related as rS1

< rS2
=∑∞

l=Nmax+1
s2l = 1 −

∑Nmax

l=0
(−1)l

l!

dlM I2
I

2σ2

(t)

dtl

∣∣∣
t=1

= δ since
S2 is a convergent series. Due to this fact, for ∀δ > 0, Nmax

can be found such that rS1
≤ δ, and r = αMrS1

≤ ε = αMδ.

APPENDIX B
PROOF OF PROPOSITION 3

A. Nakagami-m Fading

E|h|2(l) can be evaluated via [23, vol. 4, eq. (3.10.1.2)].

B. Generalized Gamma Distribution

The result for arbitrary ν was derived in [18, eq. (10)].
E|h|2(l) for rational ν results from [23, vol. 3, eq. (8.3.2.22)]
providing reduction of Fox’s H function to the Meijer G
function for rational values of ν = j

k . An identical result was
reported in [18].

C. η-µ Fading

We take into account that Γ(1/2+l,x)
Γ(l+1/2) =

Γ(1/2,x)√
π

+ exp(−x)
∑l
k=1

xk−1/2

Γ(k+1/2) [27] and that
Γ(1/2, x) = 2

√
πQ(
√

2x) [34, eq. (4.71)], [32, eq.
(7)]. Then based on Fubini’s theorem,

E|h|2 (l)

Γ(l+1/2) =

2Ex{Q(
√
γTx} +

∑l
k=1

(
γT
2

)k− 1
2
Ex{exp(− γT2 x)xk−1/2}

Γ(k+1/2) .
We obtain E|h|2(l) by evaluating the first term via [35, eq.
(10)] and the second term via [23, vol. 4, eq. (3.15.1.2)].

REFERENCES

[1] S. Kassam, Signal Detection in Non-Gaussian Noise, New York:
Springer-Verlag, 1988.

[2] X. Wang and H. V. Poor, “Robust multiuser detection in non-Gaussian
channels,” IEEE Trans. Signal Proces., vol. 47, pp. 289–305, Feb. 1999.

[3] S. Ambike, J. Ilow, and D. Hatzinakos, “Detection for binary transmis-
sion in a mixture of Gaussian noise and impulsive noise modeled as
an alpha-stable process,” IEEE Signal Proces. Lett., vol. 1, pp. 55-57,
March 1994.

[4] G. A. Tsihrintzis and C. L. Nikias, “Performance of optimum and
suboptimum receivers in the presence of impulsive noise and impulsive
noise modeled as an alpha-stable process,” IEEE Trans. Commun., vol.
43, pp. 904-914, Feb/March/April 1995.

[5] N. C. Beaulieu, G. Bartoli, D. Marabissi, and R. Fantacci, “The structure
and performance of an optimal continious-time detector for Laplace
noise,” IEEE Commun. Lett., vol. 17, pp. 1065-1068, June 2013.

[6] S. Jiang and N. C. Beaulieu, “Precise BER computation for binary data
detection in bandlimited white Laplace noise,” IEEE Trans. Commun.,
vol. 59, pp. 1570-1579, June 2011.

[7] H. Soury, F. Yilmaz, and M.-S.Alouini, “Average bit error probability
of binary coherent signaling over generalized fading channels subject to
additive generalized Gaussian noise,” IEEE Commun. Lett., vol. 16, pp.
785-788, June 2012.

[8] P. C. Pinto and M. Z. Win, “Communication in a Poisson field of
interferers – part I: Interference distribution and error probability,” IEEE
Trans. Wireless Commun., vol. 9, pp. 2176–2186, July 2010.

[9] J. F. Schmidt, U. Schilcher, and C. Bettstetter, “Exact bit error rate ex-
pressions for interference-limited Poisson networks,” Proc. IET Electron.
Lett., vol. 52, pp. 1961–1963, Nov. 2016.

[10] M. Di Renzo and W. Lu, “The equivalent-in-distribution (EiD)-based ap-
proach: On the analysis of cellular networks using stochastic geometry,”
IEEE Commun. Lett., vol. 18, pp. 761–764, May 2014.

[11] V. A. Aalo, K. P. Peppas, G. Efthymoglou, M. Alwakeel, and S.
Alwakeel, “Evaluation of average bit error rate for wireless networks
with alpha-stable interference,” IET Electron. Lett., vol. 50, no. 1, pp.
47–49, Jan. 2014.

[12] M. Di Renzo and W. Lu, “Stochastic geometry modeling and perfor-
mance evaluation of MIMO cellular networks using the equivalent-in-
distribution (EiD)-based approach,” IEEE Trans. Commun., vol. 63, no.
3, pp. 977–996, March 2015.

[13] M. Di Renzo and W. Lu, “End-to-end error probability and diversity
analysis of AF-based dual-hop cooperative relaying in a Poisson field
of interferers at the destination,” IEEE Trans. Wireless Commun., vol.
14, no. 1, pp. 15–32, Jan. 2015.

[14] M. Di Renzo and W. Lu, “End-to-end error probability and diversity
analysis of AF-based dual-hop cooperative relaying in a Poisson field
of interferers at the destination,” IEEE Trans. Veh. Techn. , vol. 64, no.
4, pp. 1620–1628, April 2015.

[15] M. Di Renzo and W. Lu, “Error performance of multi-antenna receivers
in a Poisson field of interferers: A stochastic geometry approach,” IEEE
Trans. Commun., vol. 61, no. 5, pp. 2025–2047, May 2013.

[16] M. Di Renzo, C. Merola, A. Guidotti, F. Santucci, and G. E. Corazza,“A
mathematical framework to the computation of the error probability of
downlink MIMO cellular networks by using stochastic geometry,” IEEE
Trans. Commun., vol. 62, no. 8, pp. 2860–2879, Aug. 2014.

[17] S. Atapattu, C. Tellambura, and Hai Jiang, “A mixture gamma distri-
bution to model the SNR of wireless channels,” IEEE Trans. Wireless
Commun., vol. 10, pp. 4193–4203, Dec 2011.

[18] V. A. Aalo, T. Piboongungon, and C.-D. Iskander, “Bit-error rate
of binary digital modulation schemes in generalized gamma fading
channels,” IEEE Commun. Lett., vol. 9, pp. 139–141, Feb. 2005.

[19] M. D. Yacoub, “The κ−µ distribution and the η−µ distribution,” IEEE
Ant. and Propag. Mag., vol. 49, pp. 68–81, Feb. 2007.

[20] S. Al-Ahmadi and H. Yanikomeroglu, “On the approximation of the
generalized-K distribution by a gamma distribution for modeling com-
posite fading channels,” IEEE Trans. Wireless Commun., vol. 9, pp. 706–
713, Feb. 2010.

[21] E. W. Weisstein, “Faa di Bruno‘s formula,” MathWorld.
[22] A. Papoulis, Probability, Random Variables and Stochastic Processes,

New York, NY: McGraw-Hill, 1994.
[23] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and

Series. New York, NY: Gordon and Breach, 1986.
[24] M. Vetterli, J. Kovacevic, and V. K. Goyal, Foundations of Signal

Processing. Cambridge, MA: Cambridge Univ. Press, 2014.
[25] F. Yilmaz and M.-S. Alouini, “Product of the powers of generalized

Nakagami-m variates and performance of cascaded fading channels,” in
Proc. IEEE Global Telecommun. Conf. (GLOBECOM), pp. 1–8, 2009.

[26] K. Peppas, “A new formula for the average bit error probability of dual-
hop amplify-and-forward relaying systems over generalized shadowed
fading channels,” IEEE Wireless Commun. Lett., vol. 1, pp. 85–88, April
2012.

[27] Wolfram function site, http://functions.wolfram.com
[28] A. J. Goldsmith, Wireless Communications. New York, NY: Cambridge

University Press, 2005.
[29] N. Y. Ermolova and O. Tirkkonen, “Interference analysis in wireless

networks operating over arbitrary fading channels with heterogeneous
Poisson fields of transmitters and interferers,” IEEE Signal Proces. Lett,
vol. 24, pp. 1388-1392, Sept. 2017.

[30] J. G. Andrews, A. K. Gupta, and H. S. Dhillon, “A primer on cel-
lular network analysis using stochastic geometry,” [Online]. Available:
https://arxiv.org/abs/1604.03183.

[31] T. Irnich, J. Kronander, Y. Selen, and G.Li, “Spectrum sharing scenarios
and resulting technical requirements for 5G systems,” in Proc. IEEE
PIMRC, 2013, pp. 127–132.

[32] Y. A. Brychkov, “On some properties of the Marcum Q function,”
Integral Transforms and Special Functions, vol. 23, no. 3, pp. 177–182,
March 2013.

[33] V. M. Kapinas, S. K. Mihos, and G. K. Karagiannidis, “On the
monotonicity of the generalized Marcum and Nuttall Q-functions,” IEEE
Trans. Inform. Theory, vol. 55, no. 8, pp. 3701–3710, Aug. 2009.

[34] M. K. Simon and M.-S. Alouini, Digital Communication Over Fading
Channels. Hoboken, NJ, USA: Wiley, 2005.

[35] N. Y. Ermolova, “Useful integrals for performance evaluation of com-
munication systems in generalized η-µ and κ-µ fading channels,” IET
Commun., vol. 3, pp. 303–308, Feb 2009.


