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Abstract: A prerequisite for sustainable peatland forestry is sufficiently low water table (WT) level
for profitable tree production. This requires better understanding on controls and feedbacks between
tree stand and its evapotranspiration, drainage network condition, climate, and WT levels. This study
explores the role of spatial tree stand distribution in the spatiotemporal distribution of WT levels and
site water balance. A numerical experiment was conducted by a three-dimensional (3-D) hydrological
model (FLUSH) applied to a 0.5 ha peatland forest assuming (1) spatially uniform interception and
transpiration, (2) interception and transpiration scaled with spatial distributions of tree crown and root
biomass, and (3) the combination of spatially scaled interception and uniform transpiration. Site water
balance and WT levels were simulated for two meteorologically contrasting years. Spatial variations
in transpiration were found to control WT levels even in a forest with relatively low stand stem volume
(<100 m3/ha). Forest management scenarios demonstrated how stand thinning and reduced drainage
efficiency raised WT levels and increased the area and duration of excessively wet conditions having
potentially negative economic (reduced tree growth) and environmental (e.g., methane emissions,
phosphorus mobilization) consequences. In practice, silvicultural treatment manipulating spatial
stand structure should be optimized to avoid emergence of wet spots.

Keywords: distributed hydrological modeling; drained peatland forest; spatial biomass distribution;
water balance; water table depth

1. Introduction

Large-scale drainage of peatlands and paludified forests during the 1930s-1980s has remarkably
increased forest growth in Finland [1] and elsewhere in the boreal region (e.g., [2,3]). In Finland,
peatlands contribute to the total forest growth by about 25% [4], and drainage efficiency continues to
be the key factor in the management of peatland forests [5,6].

Water balance in drained peatlands is driven by meteorological conditions and controlled by
(1) drainage efficiency, (2) peat type (hydraulic conductivity and water retention properties) and
peat layer thickness, (3) underlying mineral soil type, (4) stand and ground vegetation properties,
and (5) site topography. Hydrological effects of peatland forest drainage have been extensively studied
with experimental approaches during the past decades. However, the importance of above factors,
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the role of vegetation in particular, as controls of water table (WT) levels and their spatial and temporal
variability, is still poorly understood.

Peatland drainage has been found to lower WT and alter runoff dynamics (e.g., [7]).
Drainage efficiency (ditch spacing and depth) controls WT both directly by shortening surface and
subsurface flow paths [8] and indirectly through improved tree growth and consequently increased
interception and transpiration [9]. Adequate drainage in peatland forests, i.e., sufficiently low WT
levels for profitable tree production, can be maintained either by regularly cleaning the ditch network,
or by biological drainage through stand evapotranspiration [6]. Peat hydraulic conductivity typically
decreases in deeper, more decomposed layers, reducing drainage impact on soil moisture in deeper
layers compared with the more conductive surface layers. WT is also highly dependent on stand
volume; in mature tree stands, evapotranspiration has been recognized as a key factor regulating
growing season WT and stand growth [5,6,9], with increasing significance in the late summer [10].
Spatial variation in WT levels within a drained peatland stand was studied by Haahti et al. [11],
who showed strong correlation with the distance to the nearest ditch and topography, except during
a dry summer when tree proximity controlled spatial WT variations. Thus, the factors controlling
WT may have different roles under different hydrologic conditions, which complicate their empirical
analysis. Variations in WT levels in drained peatland forests are also linked to nutrient export to water
courses [12], mercury methylation [13], and greenhouse gas balance [14], which makes understanding
the controls of WT levels important in a wider context.

Interest towards continuous-cover forestry has grown in recent years because it is
considered more environmentally and societally sustainable compared to even-aged forestry [15,16].
Replacing clear-cutting with alternative harvesting methods such as canopy gap cuttings and selective
removal of trees further increases the need to understand the role of vegetation on WT levels.
In particular, the more heterogeneous vegetation cover is likely to increase spatial variation of
evaporation and transpiration and thereby affect spatial and temporal WT distributions in drained
peatland forests.

Various modeling studies have been conducted in drained peatland forests to quantify runoff
generation, water balance, and WT dynamics across a range of weather conditions and drainage
configurations. These include one-dimensional (1-D) models such as DRAINMOD-FOREST [17,18]
and the CoupModel [19], and quasi-two-dimensional FEMMA model which has been widely applied
in Finland [20-23]. Three-dimensional (3-D) distributed hydrological modeling in drained peatlands
has been conducted with GEOtop [24] and FLUSH models [25]. While some of the model applications
have embedded a spatial description of the peatland, the effect of spatially varying stand characteristics
and evapotranspiration has not been considered in earlier studies. Physically-based 3-D hydrological
models, such as FLUSH [25,26], are among the most promising tools to analyze spatial differences of
soil moisture, WT levels and water balance within a drained peatland. We expect that such modeling
can significantly increase the understanding of the effect of heterogeneous vegetation on spatial and
temporal variability of WT levels. This would further enable the simulation of different harvest regimes
in their ability to sustain sufficient drainage for tree growth.

In hydrological models, the stand characteristics are conventionally described using average
stand values, such as dominant height, basal area and stand volume, which disregard any spatial
information of individual trees. The tree stand structure on drained peatlands is clearly uneven [27-29],
which suggests considerable spatial differences in transpiration and interception capacity within the
tree stand that should be considered in hydrological modeling. Spatially averaged stand properties
may be sufficient for modeling average water balance components but methodological development
is needed to assess the spatial variability of hydrological state variables, such as WT. First steps
towards spatially advanced hydrological modeling should therefore include accounting for the spatial
heterogeneity in tree stand interception and transpiration. This is timely since terrestrial and airborne
laser scanning [30,31] are already able to provide necessary information on spatial stand heterogeneity
to be incorporated into ecohydrological models.
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management scenarios (for scenario definitions, see Section 2.5).

Within the stand area, 50 groundwater tubes were installed (Figure 1b) and peat layer thickness
was measured next to each tube. Utilizing that data, peat layer thickness was interpolated over the
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Within the stand area, 50 groundwater tubes were installed (Figure 1b) and peat layer thickness
was measured next to each tube. Utilizing that data, peat layer thickness was interpolated over the
area. The peat layer thickness extended beyond the ditch depth, except for the southern end of the
area (Figure 1b). According to the Finnish site type classification [33], Sattasuo represents a medium
productivity site. The ground vegetation was composed of a 0.3-0.5 m high layer of dwarf shrubs
(Rhododendron tomentosum Harmaja, Vaccinium uliginosum L., and Betula nana L.). The topography of
the area is flat with average slope 0.2°. A digital elevation model (DEM) was constructed for the area
from openly available Lidar data [34] by first creating a 10 x 10 m? DEM which was then interpolated
toal x 1 m? grid.

WT depths (the distance between the soil surface and the WT level) were manually measured
from 50 groundwater tubes (Figure 1b) at 1-2 week intervals during the unfrozen season (May to
October) in 2006 and 2007. The length of the tubes below the soil surface, and thus the maximum
measurement depth of WT, was 1 m. Throughfall under the overstory canopy was measured in
2007 using 20 precipitation gauges (Figure 1b) emptied at least once a week during June-September.
Sapflow measured from seven trees at 10-min intervals provided an estimate for the stand-average
transpiration (see Figure Al). The sapflow measurements were based on the Granier method [35].
Trees for the measurements were selected to represent dominant and co-dominant pines located at
different distances from ditch in the middle of the peatland strip. Sapflow tree diameters ranged
from 127 to 174 mm. In this study, the role of the experimental site and the measurements was not to
characterize a specific drained peatland forest area for hydrological modeling of drainage conditions
(i.e., the model was not systematically calibrated), but the observational data was used to ensure that
the model produces realistic WT depths on a typical drained peatland forest.

2.2. 3-D Distributed Hydrological Model FLUSH

To simulate water balance components and the spatiotemporal variability of WT, the hydrological
model FLUSH [36] was applied together with a simple vegetation ecohydrological model [37].
FLUSH is a distributed, open-source 3-D hydrological model originally developed for subsurface
drained agricultural fields, and recently applied also to an open-ditch-drained peatland forest site [25].
In FLUSH, overland flow is simulated in 2-D with the diffusive wave approximation of the St. Venant
equations and 3-D subsurface flow with the numerical finite volume solution of the Richards equation.
The subsurface domain in FLUSH comprises soil matrix and macropore systems, but only a single
pore (soil matrix) system was considered in this study. FLUSH applies the Mualem-van Genuchten
schemes [38] to quantify water retention and unsaturated hydraulic conductivity in the soil. Ditches act
as sinks in the overland and subsurface domains (see [25]). Water in the root zone can be removed
by transpiration, which is determined in FLUSH using input time series of potential transpiration
(transpiration rate without soil water constraints), the root mass distribution, and the soil moisture
conditions. The restriction of transpiration during inadequate soil moisture supply was described
according to the scheme presented by Lagergren and Lindroth [39].

In this study, FLUSH was modified to feed in spatially varying throughfall (F,) and tree stand
transpiration (Epot0), and separate Eyot, and potential understory transpiration (Epot,). Time series
of these input variables were computed off-line using the simple vegetation ecohydrological model
detailed in Section 2.4 and Appendices A.1-A.3.

2.3. Discretization and Parameterization

The modeled area (0.6 ha) was outlined by the inner ditch network (see Figure 1a). The ditches
were prescribed with a depth of 0.95 m and a constant water depth of 0.1 m. The size of the soil columns
used in the FLUSH simulations were 2 x 2 x 2 m3. Each soil column was vertically discretized to
18 calculation cells; 0.05 m thick layers down to the depth of 0.4 m, then 0.1 m layers down to 1 m depth,
and finally 0.25 m layers down to 2 m depth. The depth of the root zone was set to 0.2 m. The peat
hydraulic properties (Table 1) were based on a previous study in the same area [21]. In that study,
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the water retention curve parameters for the layers 0-0.2 m were adopted from Péivédnen [40] and the
parameters for the deeper layers from soil sample analysis. Vertical saturated hydraulic conductivities
of peat (Kys,) for layers 0.2-2.0 m were set based on Paivédnen [40] and for layers 0-0.2 m manually
adjusted comparing the simulated WT depths against measured WT depths. Saturated horizontal
hydraulic conductivities (Kp,¢) were set to 10 x Ky, in layers at depths 0-0.6 m and equal to Ky, in
deeper layers (for anisotropy of peat hydraulic conductivity, see e.g., [41,42]). The depth of the peat
layer within the model area was described according to Figure 1b. The underlying mineral soil was
characterized as silt loam and the parameters adopted from Vakkilainen [43].

Table 1. Parameterization of the FLUSH model. Peat layer thickness varies between 0.8-2 m within
the area. The parameters for the lowest peat layer are marked with tag ‘peat’. The parameters for the
mineral soil under the peat layer are marked with tag ‘mineral’. Parameter values that were manually
adjusted are marked with *.

Depth (m) s m®*m=3 06, (m*m3) a(m™71) B (=) Kysat mh™1)  Kpeur mh™1)
0-0.1 0.95 0.098 33.85 1.4 3* 10 X Kyga
0.1-0.2 0.95 0.098 33.85 1.4 1* 10 X Kyga
0.2-0.3 0.9141 0 1.0469 1.3115 0.03 10 X Kygat
0.3-0.4 0.801 6.74 x 1078 1.383 1.3047 0.01 10 X Kyt
0.4-0.6 0.801 6.74 x 1078 1.383 1.3047 0.002 10 X Kyga
0.6-2.0 (peat) 0.801 6.74 x 1078 1.383 1.3047 0.0001 Kyt
0.6-2.0 (mineral) 0.55 0 1.1 1.8 0.0036 Kigsat

65 = soil porosity; 0, = residual water content; a, § = water retention curve parameter; Kygy, Kysqr = saturated
vertical and horizontal hydraulic conductivity.

2.4. Computing and Spatial Scaling of Inputs for the FLUSH Model

The FLUSH model requires potential transpiration and throughfall to soil surface as inputs.
Stand-average interception rate (I,») and potential transpiration rates (Eyot,qsv) were estimated using a
simple vegetation ecohydrological model [37] forced by daily meteorological data provided for Finland
ata 10 x 10 km? resolution by the Finnish Meteorological Institute (FMI). The computed interception
accounted for water intercepted by the overstory canopy and by the field (shrubs) and bottom (living
moss) layers (see Appendix A.1). Potential transpiration rates were computed for the overstory and
understory assuming that both layers are well coupled to the atmosphere:

Doy

Epot,i, av — Gi (1)

amb

where Ep o (mm d—1)is the stand-average potential transpiration rate of layer i (for overstory (o)
or understory (1)), and Dy and P,,,;;, are the vapor pressure deficit and the ambient pressure (kPa),
respectively. The daily canopy conductance G; (mm d~!) was computed accounting for the effect
of the photosynthetically active radiation, the leaf-area index of layer i (LAI, m? m~?2), Dy, and the
seasonal cycle of vegetation (see Appendix A.3). The parameter values of both interception and G;
models were initially derived, and the predictions evaluated against measurements from a Scots pine
forest at Hyytidld, Southern Finland and at eight additional boreal sites. Here the model predictability
was checked by comparing the predicted throughfall rate (below overstory canopy) and overstory
transpiration rate against the spatially averaged throughfall and sapflow measurements, respectively
(see Figure Al). Note that Ey, computed by the simple vegetation ecohydrological model is actual
transpiration rate without possible soil moisture limitations that were subsequently accounted for
within the FLUSH.

The spatial distributions of tree biomass (crown and root) were used to describe spatially variable
potential overstory transpiration and throughfall. The biomass distributions were generated as 2 x 2 m?
rasters based on the point locations and DBH of the trees (Figure 1a). First, the biomasses of individual
trees were calculated using the DBH data and applying the biomass equations by Marklund [44].
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Crown and root projection areas were then determined for each tree [45,46], and biomasses assumed
to be evenly distributed over the projection area of the tree. The resulting biomass rasters for the
Pprestadirgsansothperr &iEled Wsee Section 2.5) tree stand are shown in Figure 2. The average crowiy
biomasses (and their standard deviation) in the area were 0.39 (0.36) and 0.23 (0.29) kg m~2 for the
prelAilh 020 ketairtderttbe pravadingspediresinesh drehstancis gespastividin avddloorvo#sy st
bieB1aB4p WIMN(R65) and 0.63 (0.54) kg m2
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Epot,o,j = ;EPOf,O,ﬂU (3)
where brot is the tree root biomass, b is the '8thffd-average tree root biomass, and Epotowis the
stand-average potential overstory transpiration.

2.5. Model Scenarios

Model scenarios (Figure 3) were divided to (1) stand description scenarios that were utilized in
model development, and (2) forest management scenarios. In the three stand description scenarios,
FILLUSH was abpplied to test the effect of spatiallv varvine intercention and transpiration rates on site
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where byo; is the tree root biomass, byt a0 is the stand-average tree root biomass, and Epot,0,q0 is the
stand-average potential overstory transpiration.

2.5. Model Scenarios

Model scenarios (Figure 3) were divided to (1) stand description scenarios that were utilized in
model development, and (2) forest management scenarios. In the three stand description scenarios,
FLUSH was applied to test the effect of spatially varying interception and transpiration rates on site
water balance and WT levels. In the forest management scenarios, the effect of thinning of the stand and
the impact of varying ditch depth on water balance and WT levels were examined. FLUSH simulations
utilized the same soil parameterization in all scenarios. FLUSH was applied for a two-year-period
(2006-2007) using a time step of one hour. The meteorological data were compiled from the gridded
daily precipitation provided by FMI, Apukka weather station operated by FMI, and locally recorded
weather station data. The local data were from a nearby open field weather station (operated by
Natural Resources Institute Finland), where hourly air temperature, relative humidity, and wind speed
were available. When hourly input data were not available, the daily input time series (see Section 2.4)
were divided uniformly to 24 h.

‘ Meteorological input data ‘

Forest management
scenarios

Stand description scenarios

Computing stand-average input data for FLUSH
with prevailing tree stand

Computing stand-average input data
for FLUSH with thinned tree stand

A ¢ A 4

Crown biomass

distributions for

spatial scaling
(Figure 2a)

Crown and root
biomass distributions
for spatial scaling
(Figure 2a,c)

Thinned crown and
root biomass distributions
for spatial scaling

(Figure 2b,d)

I I | |
\ Ditch depth: 0.95 m | | Ditch depth: 0.5 m

v
FLUSH: 4 v Y v
Simulations with FLUSH:
uniform tree Simulations with FLUSH:
biomass spatially distributed Simulations with spatially distributed transpiration & interception
distribution interception
v v v v v
"Uniform” "Spatial 1” "Spatial 2” "Spatial 2T” "Spatial 2TD”
output output output output output

Figure 3. Conceptualization of the modeling processes for stand description (Uniform, Spatial 1,
and Spatial 2) and forest management scenarios (Spatial 2T and Spatial 2TD). For FLUSH model, see
Section 2.2.

The Uniform scenario used spatially uniform interception and potential transpiration and thus
corresponded to model parameterization using traditional, site-averaged, forest mensuration approach.
Consequently, it provided an analysis of the impact of drainage design, topography, and soil properties
on the spatial distribution of WT levels. The Spatial 1 scenario was similar to the Uniform scenario except
that interception was scaled according to the crown biomass distribution (Equation (2), Figure 2a).
In the Spatial 2 scenario, both the interception and overstory potential transpiration were scaled
based on tree biomass distributions (Equation (3), Figure 2a,c). By comparing the results of Spatial
1 and Uniform scenarios, we aimed to address the effect of spatial variability of interception on WT
depths. Comparing the Spatial 1 and Spatial 2 scenarios was assumed to reveal the impact of spatial
transpiration variation on WT depths.

The two forest management scenarios were applied by modifying the Spatial 2 scenario with
thinning of the tree stand (Figures 1a and 2b,d) (Spatial 2T) and ditches with poor water conducting
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capacity (Spatial 2TD). In the Spatial 2T scenario about one third of the trees were cut, removing
primarily the smallest trees. All trees were removed from a haulage trail (width of 5 m) located
midway between the ditches. Such treatment represents the typical first commercial thinning of
drained peatland pine stands. Finally, Spatial 2T scenario was modified by reducing ditch depth to
0.5mp.t0 simmulate the cerditions after thinning in the case of a ditch network with reduced gypinage
efficiency (scenario Spatial 2TD, Figure 3).
3. Results
3. Results

3.1. Stand Description Scenarios: The Role of Spatially Distributed Interception and Transpiration in Water
3.1patand Rasoxivtievehicenarios: The Role of Spatially Distributed Interception and Transpiration in Water

Balance and WT Levels
The peatland water balance was strongly controlled by weather conditions during the two
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restricted by the dry conditions in the simulations and thus not realized in the scenarios.

The computed stand-average water balance components were mostly similar among the stand
description scenarios (Uniform, Spatial 1 and Spatial 2) (Figure 4). The main difference between these
scenarios was that the stand-average overstory transpiration was lower (by 8 mm) in 2006 in the
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The computed stand-average water balance components were mostly similar among the stand

flo es S(;I'%E]SO]S’)I S%E%(M@W Spatial 1 and Spatial 2) (Figure 4). The main difference between Shﬁs
scenarios was that the stand-average overstory transpiration was lower (by 8 mm) in 2006 in the
Spatial 2 seenaris than in the Uniferm and Spaiial 1 scenaries. Eompared to the petential sverstory
transpiration (caleulated as in Section 2.4), the simulated sverstory transpiration was in the dry 2006
growWing ssaseurlimited bypiedeersven taravpilabilitpindhe sosteqp inalhstand Apsinti onecengriosn
boedarioln sher Shaifer vhand A d S Spnriirs sash B A0 dpkhoBRirltesSpRAIIQ diethgisuAMmes
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i@ dcenarios (Figure 4).

The medeled WT followed a simnilar pattsin as measured WT, with 1ower levels during the dry
summer of 2006 and higher levels during the wet summer of 2007 (Figure 5a). The Spatial 1 seenaris
with spatially sealed intereeption did not deviate much fom the Wnifpin sseantin. The Spatial 2
seenarie with spatially sealed interception and transpiration, hewever, shewed elearly higher spatial
variability in WT depths in Octeber=Nevember 2006 than the other twe stand deseription seenaries
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Simulated WT depths are shown for four summer and autumn dates in Figure 6 and highlight
the clear temporal differences but reveal no notable spatial differences between the Uniform (Figure
6a—d) and Spatial 1 (Figure 6e-h) scenarios. The impact of drainage ditches on WT can be detected by
lower WT levels at forest edges in July when WT is not as deep as in October and November. The
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Simulated WT depths are shown for four summer and autumn dates in Figure 6 and highlight the
clear temporal differences but reveal no notable spatial differences between the Uniform (Figure 6a—d)
and Spatial 1 (Figure 6e-h) scenarios. The impact of drainage ditches on WT can be detected by lower
WsrAldss ‘at F&%&’@E&g&ﬂﬁ‘?{uly when WT is not as deep as in October and November. The g%f?fﬁﬁ
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4. Discussion

It is obvious that spatially distributed hydrological modeling that considers tree distribution of a
forest improves the prospects of identifying the spatial patterns of soil moisture, which can exert strong
controls on tree growth, biogeochemistry and greenhouse gas balance of drained peatlands. In dry
conditions, organic matter decomposition and nutrient release can be restricted (e.g., [49]), decreasing
tree photosynthesis and productivity. On the other hand, excessively wet areas in drained peat soils
are prone to disturbed root growth, increased methane emissions [14], phosphorus leaching [12] and
mercury methylation [13]. This study provided the first steps towards acknowledging the spatial stand
distribution in hydrological modeling of drained peatlands.

The Uniform and Spatial 1 (spatially variable interception) scenarios resulted in similar WT levels
(Figure 5a), indicating that the spatial distribution of interception had minor effects on WT levels.
On the other hand, the Spatial 2 scenario demonstrated that spatial distribution of transpiration had a
strong impact on the variation of WT levels, particularly during dry periods. High spatial variation in
transpiration even resulted in local drought stress, which was suggested by the model simulations
during the dry summer. In the Spatial 2 scenario with spatially scaled transpiration and interception,
the spatial variations in WT depths were striking, in spite of the relatively low-stocked tree stand.
In forests with higher biomass, the tree stand plausibly exerts an even significantly stronger control on
WT levels than demonstrated in this study. Denser tree stands reflect directly to interception [50-53],
transpiration [54-56], root channel macropores, and snow accumulation within the stand [51].

The spatial distribution of ground vegetation transpiration was not considered in this study. It is,
however, likely that in reality the ground vegetation partly compensates for the lack of overstory
transpiration in canopy openings, as well as in sparsely stocked forests. In mature dense forests,
however, radiation is primarily available for evaporation and transpiration of the tree stand. In such
conditions the transpiration of the shaded ground vegetation is minor. In future, it is important to
better understand the role of understory on site water balance, in particular in peatland forests with
abundant shrub vegetation, where understory vegetation evapotranspiration may amount to as much
as that of the tree stand [6].

The model could not correctly predict the timing of WT level rise after the dry summer (Figure 5a).
This may be due to overestimation of evapotranspiration demand during growing season, which can
lead to an underestimation of WT response to subsequent rainfalls. Most likely, however, the model
bias is related to the single pore system description in the model (i.e., no preferential flow paths),
which during dry conditions results in poorly conductive surface peat layers that prevent infiltration to
the deeper layers at the onset of rainfalls. The instant WT level rise observed at Sattasuo after rainfall on
dry soil is probably caused by preferential flow paths [57], and simulating their impact on infiltration
and soil water redistribution is an additional need for modeling the drained peatland hydrology.

The period July-August has been suggested as the most critical season for Scots pine roots
growth [48] and thus it was examined closer in our study. Our numerical experiments on forest
management (thinning with reduced drainage efficiency, i.e., Spatial 2TD scenario) suggest that cleaning
(i.e., deepening) the ditch network would have been beneficial in Sattasuo in connection with the first
commercial thinning to avoid excess wetness. On the other hand, larger tree stands than in Sattasuo
are likely to maintain the WT levels at sufficient depth through evapotranspiration [5,6], and ditch
cleaning may be unnecessary even with ditches with poor drainage efficiency.

Our results indicated that thinning of the tree stand raised WT levels especially in the haulage trail.
Such a result can have negative environmental consequences because soil compaction at the wheel ruts
decreases hydraulic conductivity and reduces the quantity of macropores [58]. Such circumstances can
create anoxic conditions in surface soil, resulting in the above mentioned problems related to methane
emissions, mercury methylation, and phosphorus leaching. In addition, applying brash mats in the
haulage trail could further increase phosphorus leaching [59].

To truly simulate interception and transpiration in different scales horizontally and vertically,
future works should aim towards a more advanced approach than presented here, i.e,
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scaling interception and transpiration by spatial tree stand distribution. This would require more
sophisticated ecosystem models (e.g., [60]) that incorporate 3-D description of canopy structure,
within-canopy radiation and biogeochemical and hydrological processes. Nevertheless, our study
showed that accounting for the spatiotemporal variation in the vegetation controls on WT levels in a
hydrological model may allow locating wet hot-spots of biogeochemical processes, as well as the local
drought stress areas during dry summers. Further understanding of the controls of WT levels would
also be useful in operational forestry in finding the critical ditches to be cleaned instead of making
unnecessary cleaning operations over larger areas.

5. Conclusions

The effects of spatial stand distribution on hydrological processes and WT of a drained peatland
forest were demonstrated in this study via numerical experiments using a distributed hydrological
model. Comparison between the stand description scenarios revealed that the role of stand
heterogeneity is significant in the spatial variability of WT level particularly during a dry summer,
and the variability is more sensitive to transpiration than that of rainfall interception. Our results also
imply that traditional assumption that WT levels in a drained peatland are regulated only by distance to
ditch is incomplete. A numerical experiment revealed that typical first commercial thinning decreased
transpiration and interception, resulting in elevated WT levels compared to pre-thinning situation.
WT was elevated especially in the middle of the stand where trees were removed from the haulage
trail. Reduced drainage efficiency of the ditch network further elevated WT levels, emphasizing the
need for ditch cleaning in pre-matured peatland forests in conjunction with their thinning.

The results suggest that spatial information of the tree stand needs to be accounted for in
hydrological modeling of a drained peatland forest, particularly to identify the areas where excess
water may decrease tree growth and induce environmental problems. It is noteworthy, however,
that we did not fully simulate spatial variation of transpiration and interception but scaled them using
spatial tree stand distribution data. Development of spatial modeling of hydrology in peatland forests
is important particularly if continuous-cover forestry aiming at more heterogeneous stand structure
than in even-aged forests becomes a more popular forest management regime. The modeling opens an
avenue to develop optimization tools for planning silvicultural treatment of stand spatial structure to
avoid emergence of wet spots that may cause negative economic and environmental consequences.
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Appendix A.

Appendix A.1. Calculation of Interception Rate

In the simple vegetation ecohydrological model, the stand-average interception (I; 5, mm d=1) of
overstory and field /bottom layers was estimated as [51]

Ii,av = (Wmux,i - Wini,i)(l - e_Pi/Wmax’i) (Al)
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where Wj,; ; and W, ; are the initial and maximum interception storages (mm) of layer i, and P; the
precipitation or throughfall rate (mm d N to layer i. For overstory and field layer shrubs, W,,,, ; was set
equal to 1.9 mm x LAI; [37] and the interception capacity of living moss layer was added to the latter
to get the lumped interception storage of the field /bottom layer. The maximum interception capacity
of moss was set to 2.4 mm based on dry mass of living mosses (estimated 0.16 kg m~2, [61]) and
maximum storage capacity per unit dry mass (15 kg H,O/kg moss, [62]). In wintertime, the ground
snow accumulation and melt were modeled using temperature-index model [63]. In the presence
of snow, interception was restricted to the overstory layer. For snowfall (T,;, < 0 °C), the overstory
maximum interception capacity was increased to Wiyuxo = 4.4 mm x LAI,. The total stand-average
interception (I4) is the sum of overstory and understory interception values (Equation (A1)).

Appendix A.2. Calculation of Spatial Distribution of Interception
The scaling coefficient for interception at a grid cell j (¢;) was calculated as

o b, + b(,,]'
I (bu + bo,]'>

average

(A2)

where b, is the understory above-ground biomass and b, ; the overstory above-ground biomass in
cell j. Understory above-ground biomass was assumed to be constant (0.195 kg m~2) within the area
following the empirical biomass model of Muukkonen and Mikipad [61]. Interception at a grid cell
j (Ij) was calculated as

(A3)

Ij = Cjlav, P > Cmaxlav
[ (emax —cav) Ino—(¢max Iaw—P)
f = [(eommpdatoanbol ) 4yl P < cmreh
where I;; and P are the stand-average interception and precipitation, and c;sx and ¢4y are the maximum
and average values, respectively, of ¢; over the area.

Appendix A.3. Calculation of Over- and Understory Potential Transpiration Rates

In the simple vegetation ecohydrological model, the daily canopy conductance G; (mm d~!)
needed to compute the stand-average potential transpiration rate (Ep,i 0, Equation (1)) for layer i was
computed as in [37]:

o 8sref kaARi +b 1

Gi X X X 0y At
i kp n kpexp(—kaAI,-)—|—b \/TW fPheno Ov

(A4)

where the first term describes the integration of stomatal conductance from leaf-level to canopy
(i.e., overstory or understory) scale and depends on the light-saturated leaf-level stomatal conductance
sref (mm 1) at Dy, = 1 kPa, LAI; (m? m~2), and attenuation of photosynthetically active radiation
(PAR;, W m~2) at the layer. The second term describes the stomatal response to Dyp; the third term
accounts for the dormancy recovery in the spring and was adopted directly from [64], and the last term
converts the units from m s~! to kg H;O m~2 d~! = mm d~!. The attenuation of PAR within both
layers was assumed exponential (extinction coefficient k, = 0.6), and the parameter g,,f was 2.3 mm
s~ ! and b 40 Wm ™2 for both over- and understory. Note that the simple vegetation ecohydrological
model accounts for the atmospheric factors controlling the level of potential transpiration, whereas the
soil moisture control on evapotranspiration is embedded in FLUSH.

The Scots pine overstory LAI was derived from needle specific leaf area (SLA = 6.8 m? kg1, [65])
and the needle biomass was estimated from DBH data at Sattasuo using the biomass equations by
Marklund [44]. The understory LAI was set to 1.0 m? m~2.
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The predicted daily overstory transpiration agreed reasonably well with the average measured
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