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We aim at providing a global perspective on electromagnetic nonreciprocity and clarifying confusions
that arose in recent developments of the field. We provide a general definition of nonreciprocity and
classify nonreciprocal systems according to their linear time-invariant (LTI), linear time-variant (LTV),
or nonlinear natures. The theory of nonreciprocal systems is established on the foundation formed by the
concepts of time reversal, time-reversal symmetry, time-reversal symmetry breaking, and related Onsager-
Casimir relations. Special attention is given to LTI systems, the most-common nonreciprocal systems, for
which a generalized form of the Lorentz reciprocity theorem is derived. The delicate issue of loss in
nonreciprocal systems is demystified and the so-called thermodynamics paradox is resolved from energy-
conservation considerations. An overview of the fundamental characteristics and applications of LTI, LTV,
and nonlinear nonreciprocal systems is given with the help of pedagogical examples. Finally, asymmetric
structures with fallacious nonreciprocal appearances are debunked.
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I. INTRODUCTION

Nonreciprocity arises in all branches of physics—
classical mechanics, thermodynamics and statistical
mechanics, condensed-matter physics, electromagnetism
and electronics, optics, relativity, quantum mechanics,
particle and nuclear physics, and cosmology—where it
underpins a myriad of phenomena and applications.

Historically, the study of nonreciprocity in physics prob-
ably started with the experimental discovery by Faraday of
the eponymic polarization rotation of light passing through
glass in the direction of an applied magnetic field in 1845
[1], although it is unclear whether Faraday, mostly excited
by his success in “magnetising a ray of light,” specifically
noted the nonreciprocity of this phenomenon. Reciprocity
(nonreciprocity), conceived as the property of a system
where a ray of light and its reverse ray encounter iden-
tical (different) optical adventures – reflection, refraction,
and absorption – was first explicitely described by Stokes
in 1840 [2] and Helmholtz in 1856 [3], which led to the
so-called Stokes-Helmholtz reciprocity principle. The con-
cept was later reformulated by Kirchoff in 1860, described
as a consequence of propagation linearity by Rayleigh
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in 1873 [4], and extensively applied by Planck in 1900
[5] in his proof of the Kirchhoff law of thermal radiation
(equal blackbody-radiation emissivity and absorptivity).
The development of commercial nonreciprocal systems,
following some device explorations in the second half of
the 19th century [6], started in the microwave regime, fol-
lowing the invention of the magnetron cavity at the dawn
of World War II, and experienced a peak in the period from
1950 to 1965 [7]. The development of nonreciprocal sys-
tems in the optical regime lagged that of its microwave
counterparts by nearly 30 years, roughly corresponding
to the time lapse between the invention of the magnetron
cavity and that of the laser.

In electromagnetics, nonreciprocity is now an impor-
tant scientific and technological concept at both microwave
[7,8] and optical [9,10] frequencies. In both regimes, non-
reciprocal devices have been almost exclusively based
on ferrimagnetic (dielectric) compounds, called “ferrites,”
such as yttrium iron garnet and materials composed of
iron oxides and other elements (Al, Co, Mn, Ni) [11].
Ferrite nonreciprocity results from electron-spin preces-
sion (Landau-Lifshitz equation: ∂m/∂t = −γm × (B0 +
μ0H), where m is the magnetic dipole moment and γ is
the gyromagnetic ratio) in the microwave regime [12,13]
and from electron cyclotron orbiting (electron equation of
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motion: (me/e)∂ve/∂t = E + ve × B0, where ve is electron
velocity, e is electron charge, and me is electron mass) in
the optical regime [13,14], with both effects being induced
by a static magnetic field bias B0, which is provided by
a permanent magnet, or a resistive or superconductive
coil.

Unfortunately, ferrite-based systems tend to be bulky,
heavy, costly, and nonamenable to integrated circuit tech-
nology, due to the incompatibility of ferrite crystal lattices
with those of semiconductor materials. These issues have
recently triggered an intensive quest for “magnetless” non-
reciprocity (i.e., nonreciprocity requiring no ferrimagnetic
materials and magnets/coils).

This quest has led to the development of a plethora
of magnetless nonreciprocal systems, including metama-
terials, space-time-modulated structures, and nonlinear
materials. However, it has also generated some con-
fusion [15–21], particularly pertaining to the definition
of “nonreciprocity,” the difference between linear and
nonlinear nonreciprocity, the relation between non-
reciprocity and time-reversal symmetry breaking, the
handling of time reversal in lossy and open sys-
tems, the “thermodynamics paradox,” and the distinc-
tion between nonreciprocal and asymmetric propagation.
The objective of this paper is to clarify this confu-
sion and provide a global perspective on electromagnetic
nonreciprocity.

The paper is organized as follows. Section II defines and
classifies nonreciprocal systems. Sections III–VI explain
the concepts of time reversal and time-reversal symmetry
breaking, in general and specifically in electromagnet-
ics. Sections VII–IX study nonreciprocity in linear time-
invariant (LTI) media, culminating with the demonstration
of a generalized form of the Lorentz theorem and the
derivation of the Onsager-Casimir relations. Section X
points out the applicability of these relations to all nonre-
ciprocal systems, while Sec. XI provides a finer classifica-
tion of these systems into LTI, linear time-variant (LTV),
and nonlinear systems, and indicates the applicability of
previously seen concepts to the three categories. Sections
XII and XIII clarify the delicate handling of time-reversal
symmetry in lossy and open systems, respectively. On the
basis of the general definition of nonreciprocity, Sec. XIV
extends the concept of S-parameters to all nonreciprocal
systems. This serves as the foundation for fundamental
energy-conservation rules in Sec. XV and the resolution of
the so-called thermodynamics paradox in Sec. XVI. Build-
ing on previously established concepts, Secs. XVIII–XXI
provide an overview of the fundamental characteristics
and applications of LTI, LTV, and nonlinear nonreciprocal
systems. Finally, Sec. XXII describes a few exotic sys-
tems whose asymmetries might be erroneously confused
with nonreciprocity. Conclusions are given in Sec. XXIII
in the form of an enumeration of the main results of the
paper.

II. NONRECIPROCITY DEFINITION AND
CLASSIFICATION

Nonreciprocity is the absence of “reciprocity.” The
adjective “reciprocal” itself comes from the Latin word
reciprocus [22], built on the prefixes “re” (backward)
and “pro” (forward), which combine in the phrase reque
proque, with the meaning of “going backward as forward.”
Thus, “reciprocal” etymologically means “going the same
way backward as forward.”

In physics and engineering, the concept of nonreciproc-
ity/reciprocity applies to systems that encompass media
or structures and components or devices. A nonrecipro-
cal (reciprocal) system is defined as a system that exhibits
different (same) received-transmitted field ratios when its
source(s) and detector(s) are exchanged. In this definition,
the notion of “ratio” has been added to the aforementioned
etymological meaning of “reciprocity” to reflect common
practice, as discussed later.

Nonreciprocal systems may be classified into two fun-
damentally distinct categories: linear and nonlinear nonre-
ciprocal systems [23], as indicated in Table I, whose details
are discussed throughout this paper. We see that, in both
cases, nonreciprocity is based on time-reversal symmetry
breaking, by an external bias in the linear case, and by a
combination of self-biasing and structural asymmetry in
the nonlinear case. We also see that linear nonreciproc-
ity is stronger than nonlinear nonreciprocity, the former
working for arbitrary excitations and intensities with high
isolation, and the latter being restricted to nonsimultane-
ous excitations from different directions, specific intensity
conditions, poor isolation or hysteresis. We exclude here
nonreciprocity based on externally biased nonlinear media
[24], because this approach has been little studied and also
because it loses the most-attractive feature of nonlinear
nonreciprocity; namely, the magnetless operation.

III. TIME REVERSAL AND TIME-REVERSAL
SYMMETRY

The etymological meaning of “reciprocal” as “going
the same way backward as forward” suggests the thought
experiment depicted in Fig. 1.

In this experiment, one monitors a process (tempo-
ral evolution of a physical phenomenon) occurring in
a given system, with ports, each representing a specific
access point (or terminal), field mode, and frequency
range, as time is reversed. Specifically, let us moni-
tor the process between ports P1 and P2 of the sys-
tem via the state—magnitude, phase, temporal frequency
(ω), spatial frequency (k), polarization or spin angular
momentum, orbital angular momentum—vector �(t) =
[ψP1(t),ψP2(t)]

T (where T is the transpose), where ψP1(t)
and ψP2(t) represent the wave state at P1 and P2, respec-
tively. First, we excite P1 at t = 0 and trace the response
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TABLE I. Classification and characteristics of nonreciprocal systems.

Type Linear Nonlinear

Time-reversal symmetry breaking External bias Self bias + structural asymmetry
Nonreciprocity form Strong Weak
Operation Arbitrary direction Only one direction at a time
Intensity Arbitrary Restricted range
Isolation High Poor (or hysteresis)

ferromagnets, ferrites, magnetized plasmas, any strongly driven material
Media or structures two-dimensional electron gases and materials, (e.g. glasses, crystals, semiconductors)

nano- and transistor-loaded metamaterials, with spatial asymmetry,
space-time modulated media diversity of metastructures

isolators, diodes,
Components or devices phase shifters (e.g. gyrators), pseudo-isolators,

circulators power amplifiers (e.g. vacuum tubes)

of the system until the time t = T of complete transmis-
sion to P2. Then, we flip the sign of the time variable in
the process [25], which results in a system, not necessar-
ily identical to the original one (see Sec. V), being excited
at t = −T and evolving until the time t = 0 of complete
transmission to P1: this operation is called “time reversal,”
and it is a concept that is at the core of the work of Onsager
in thermodynamics [26–31].

Mathematically, time reversal is represented by the
operator T, defined as

T {t} = t′ = −t or T : t �→ t′ = −t (1)

when trivially applied to the time variable [32], and gener-
ally, when applied to a process, ψ(t), defined as

T {ψ(t)} = ψ′(t′) = ψ′(−t). (2)

In these two relations, it is meant that the time variable
value is reversed, while the time coordinate direction is
maintained fixed, corresponding to symmetry with respect
to the axis t = 0, consistently with Fig. 1.

y

y y y

y

y y
y

y

y –

y –

–

FIG. 1. Time-reversal symmetry (TRS) (red and blue curves)
and broken time-reversal symmetry (red and green curves), or
time-reversal asymmetry, as a general thought experiment and
mathematical criterion for nonreciprocity.

If the system remains the same (changes) under time
reversal, corresponding to the red-blue (red-green) curve
pairs in Fig. 1, that is,

T {ψ(t)} = ψ′(−t)
{=
�=

}
ψ(t), (3)

it is called “time-reversal symmetric (asymmetric)”. Since
the direct and reverse parts of the process typically
describe the response of the system for opposite trans-
mission directions, time-reversal asymmetry (symmetry) is
intimately related to nonreciprocity (reciprocity). Accord-
ing to the definition in Sec. II, time-reversal symmetry
(asymmetry) is equivalent to reciprocity (nonreciprocity)
insofar as, in both cases, the system exhibits the same (a
different) response when transmitting at P1 and receiving
at P2 as (than) when transmitting at P2 and receiving at
P1. Thus, time-reversal symmetry (asymmetry) provides a
fundamental criterion for reciprocity (nonreciprocity). It is,
however, pointed out in Sec. XII that this is a loose crite-
rion, as sensu stricto equivalence requires equal direct and
reverse field levels and not just equal field ratios.

IV. TIME-REVERSAL SYMMETRY IN
ELECTROMAGNETICS

The basic laws of physics are classically [33] invariant
under time reversal or are time-reversal symmetric [34],
as may be intuitively understood by realizing that revers-
ing time is equivalent to “flipping the movie film” of the
process, as in Fig. 1. In contrast, the physical quantities
involved in the laws of physics, which we generically
denote by f (t), may be either time-reversal symmetric or
time-reversal antisymmetric; that is,

T {f (t)} = f ′(t′) = f ′(−t) = ±f (−t), (4)

where the plus sign corresponds to time-reversal symmetry,
or even time-reversal parity, and the minus sign corre-
sponds to time-reversal antisymmetry, or odd time-reversal
parity.
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The time-reversal parity of physical quantities may be
easily inferred from fundamental laws. Table II presents
the case of electromagnetic quantities [34]. Realizing that
charges do not change as time passes, and are hence invari-
ant under time reversal, one can sequentially deduce all the
results of the figure by successively invoking Coulomb,
Ohm, Ampère, Maxwell, Poynting, impedance and Joule
laws, equations, and relations. Note, particularly, that time
reversal reverses the direction of wave propagation, con-
sistently with the considerations in Sec. III: T {k(t)} =
−k(−t).

One may straightforwardly verify the time-reversal
symmetry of the Maxwell equations by applying the time-
reversal rules in Table II and noting that the ∇ operator
is time-reversal invariant. Specifically, replacing all the
primed quantities in the time-reversed Maxwell equa-
tions by their unprimed (original) counterparts according
to Table II and simplifying signs restores the original
Maxwell equations, that is,

∇ × E(′) = −∂B(′)/∂t(′) (even ≡ odd/odd), (5a)

∇ × H(′) = ∂D(′)/∂t(′) + J(′) (odd ≡ even/odd + odd),
(5b)

with parity matching indicated in parentheses (Appendix
A). The time-reversal invariance of the Maxwell equations
indicates that if all the quantities of an electromagnetic
system are time-reversed, according to the time-reversal
parity rules in Table II, then the time-reversal system

TABLE II. Time-reversal parity (even/odd), or symme-
try/antisymmetry, of the main electromagnetic quantities (time-
harmonic dependence ejωt).

will have the same electromagnetic solution as the direct
system, whatever its complexity!

V. TIME-REVERSAL SYMMETRY BREAKING
AND RELATED NONRECIPROCITY CRITERION

Time-reversal symmetry breaking is an operation that
destroys, with an external or internal (due to the wave
itself) bias, the time symmetry of a process, and hence
makes it time-reversal asymmetric, by violating (at least)
one of the time-reversal rules, such as those in Table II.
Since all physical quantities are either even or odd under
time reversal [Eq. (4)], time-reversal symmetry breaking
requires reversing (maintaining) the sign of at least one of
the time-reversal even (odd) quantities, or bias, involved
in the system. Only the latter option (i.e., maintaining the
sign of a time-reversal odd quantity, such as v, J, or B in
Table I) is practically meaningful, since this is the only one
that leaves the system unchanged. This fact will become
clearer in Sec. IX.

The time-reversal asymmetry (symmetry) criterion for
determining the nonreciprocity (reciprocity) of a given sys-
tem (Sec. III) may be applied as follows. First, one fully
time-reverses the system using the rules in Table II. As a
result, the process retrieves its initial state. However, the
time-reversal operation may have altered the nature of the
system, resulting in different direct and reverse systems.
In such a case, the time-reversal experiment is irrelevant,
since it compares apples and pears. So one must exam-
ine whether the reversed system is identical to the given
one or not. If it is identical, the process is time-reversal
symmetric and the system is reciprocal. Otherwise, the sys-
tem must violate a time-reversal rule to maintain its nature,
or break time-reversal symmetry (or become time-reversal
asymmetric), and is hence nonreciprocal. These consider-
ations are valid only in the absence of loss/gain. The case
of loss/gain (last row in Table II) requires special attention,
and is separately treated in Secs. XII and XIII.

VI. ELECTROMAGNETIC EXAMPLE

To better grasp the concepts in Secs. III, IV, and V,
consider Fig. 2, which involves two gyrotropic sys-
tems: a chiral system [35–40] and a Faraday system
[1,8,11,41,42].

In the case of the chiral system, in Fig. 2(a), the field
polarization is rotated along the chiral medium accord-
ing to the handedness of the helix-shaped particles that
compose it. On time reversal, the direction of propagation
is reversed, according to Table II. Thus, the field polar-
ization symmetrically returns to its original state, as the
current rewinds along the particles, without any system
alteration. Chiral (unbiased) gyrotropy is thus a time-
reversal-symmetric process, and is therefore reciprocal.

Now consider the Faraday system, in Figs. 2(b) and 2(c).
In such a system, the direction of polarization rotation is
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(a)

(b)

(c)

FIG. 2. Application of the time-reversal asymmetry/
symmetry criterion for nonreciprocity/reciprocity (Sec. V)
to two systems inducing electromagnetic-field-polarization
rotation (process equivalent to gyrotropy). (a) Chiral sys-
tem, without bias, and hence time-reversal symmetric (TRS)
[ψP1(0) = EP1 = E0 �→ ψ ′

P1
(0) = E0 = ψ(0)] (i.e., recip-

rocal). (b) Faraday system altered by time-reversal odd
bias B0 flipped according to time reversal (irrelevant time-
reversal test due to altered nature of the system). (c) Same
as in (b) but with unflipped B0, and hence an unaltered
system, breaking the time-reversal symmetry of the process
[ψ ′

P1
(0) = E0 cos(2φ) �= E0 = ψP1(0)] and hence revealing

nonreciprocity.

dictated no longer by particle shape but by a static mag-
netic field, B0, or bias, provided by an external magnet and
inducing specific spin states in the medium at the atomic
level.

Full time reversal requires here reversing the sign of B0,
as in Fig. 2(b), just as that of any other time-reversal odd
quantity. Then, waves propagating in opposite directions
see the same effective medium, by symmetry. However,
the system is altered on time reversal, since its spins are
reversed. Therefore, the time-reversal experiment is irrel-
evant to nonreciprocity! To preserve the nature of this
system, and hence properly decide on its nonreciprocity
(reciprocity), one must preserve its spin states by keep-
ing the direction of B0 unchanged, as shown in Fig. 2(c)
and done in practice. But this violates a time-reversal
symmetry rule (i.e., breaks time-reversal symmetry) or

makes the process time-reversal asymmetric, revealing
ipso facto that the Faraday system is nonreciprocal.

VII. LINEAR NONRECIPROCAL MEDIA

The vast majority of current nonreciprocal systems are
based on LTI media or, more precisely, media whose non-
reciprocity is enabled by an external bias rather than non-
linearity combined with structural asymmetry (Table I).
We therefore dedicate this section, as well as Secs.
VIII–IX, to the study of nonreciprocity in such media, and
later generalize the discussion to the case of the LTV and
nonlinear nonreciprocal systems.

The example in Sec. VI illustrates how nonreciprocity
is achieved by breaking time-reversal symmetry with an
external bias (i.e., a magnetic field). However, there are
alternatives for time-reversal odd biases, such as the veloc-
ity and the electric current (Table II), and we therefore
generically denote the bias field as F0.

Linear nonreciprocal media (Table I) include (a) ferro-
magnets (magnetic conductors) and ferrites [43], whose
nonreciprocity is based on electron-spin precession (per-
meability tensor) [7,11,44], or cyclotron orbiting (permit-
tivity tensor) [12,34,45], due to a magnetic field bias,
(b) magnetized plasmas [14,46], two-dimensional electron
gases (e.g., GaAs, GaN, InP) [47–50], and other two-
dimensional materials, such as graphene [51–58], whose
nonreciprocity is again based on cyclotron orbiting due
to a magnetic field bias (permittivity tensor), (c) space-
time-modulated media, whose nonreciprocity is based
on the motion of matter/perturbation associated with a
force/wave bias [59–69], and (d) transistor-loaded meta-
materials, mimicking ferrites [70–74] or using twisted
dipoles [75], both based on a current bias.

The constitutive relations of media are most con-
veniently expressed in the frequency domain, since
molecules act as small oscillators with specific resonances.
In the case of an LTI bianisotropic medium [40,76,77],
these relations may be written, for the given medium and
its time-reversed counterpart, as

D̃
(′) = ˜̄̄ε(′)(±F0) · Ẽ

(′) + ˜̄̄
ξ (′)(±F0) · H̃

(′)
, (6a)

B̃
(′) = ˜̄̄

ζ (′)(±F0) · Ẽ
(′) + ˜̄̄μ(′)(±F0) · H̃

(′)
, (6b)

where the temporal frequency (ω) dependence is implic-

itly assumed everywhere, where ˜̄̄ε, ˜̄̄μ,
˜̄̄
ξ , and

˜̄̄
ζ are

the frequency-domain medium permittivity, permeability,
magnetic-to-electric coupling, and electric-to-magnetic
coupling complex dyadic functions, respectively, and
where the plus and minus signs of the (time-reversal
odd) bias F0 correspond to the unprimed (given) and
primed (time-reversal-symmetric) problems, respectively.
The LTV counterparts of Eqs. (6a) and (6b) (Sec. XX)
would involve integral operators with time-dependent
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kernels, while its nonlinear counterpart (Sec. XXI) would
involve tensors of increasing order [78].

An important example of an LTI bianisotropic medium
is biased ferrite in the microwave regime. In such a

medium,
˜̄̄
ξ = ˜̄̄

ζ = 0, ˜̄̄ε = ε ¯̄I , and, assuming B0‖ẑ, ˜̄̄μ(ω) =
μd

¯̄It − jμo
¯̄J + μ0ẑẑ ( ¯̄I is a unit dyadic, ¯̄It = ¯̄I − ẑẑ, ¯̄J =

¯̄It × ẑ = ŷx̂ − x̂ŷ), where μd = μ0[1 + ω0ωm/(ω
2
0 − ω2)]

and μo = μ0ωωm/(ω
2
0 − ω2), with ω0 = γB0 (ferrimag-

netic resonance, γ is the gyromagnetic ratio) and ωm =
μ0γMs (Ms is the saturation magnetization). These rela-
tions extend to the lossy case on substitution ω0 → ω0 +
jωα (α is a damping factor) [7,8,11], and if B0 = 0 (unbi-
ased case), ˜̄̄μ(ω) = μ0I , so the ferrite reduces to a purely
dielectric medium with relative permittivity εr ≈ 10 − 15
[7]. In the optical regime (magneto-optic effect) [45], as
well as in magnetized plasmas [46], it is the permittiv-
ity that is tensorial, but its form is identical to that of the
permeability tensor in the microwave regime.

VIII. TIME REVERSAL IN THE FREQUENCY
DOMAIN

Equations (6a) and (6b) involve time-reversed
frequency-domain fields and constitutive parameters. How
do these quantities (for LTI systems) relate to their direct
counterparts?

The effect of time reversal on a frequency-domain field,
f̃ (ω), may be found by writing this field in terms of
its Fourier transform and applying the time-reversal rules
(Sec. IV) as

T {f̃ (ω)} = f̃ ′(ω) = T

{∫ +∞

−∞
f (t)e−jωtdt

}

=
∫ −∞

+∞
[±f (−t)] e+jωt(−dt)

Eq. (4)= ±f̃ ∗(ω),

(7)

where the plus and minus signs correspond to time-
reversal even and time-reversal odd quantities, respec-
tively (Table II). For instance, T

{
Ẽ(ω)

} = Ẽ∗(ω) and
T

{
B̃(ω)

} = −B̃∗(ω).
One may next infer from Eq. (7) the effect of time

reversal on frequency-domain constitutive parameters. For
this purpose, compare the given (unprimed) medium in
Eqs. (6a) and (6b) and its time-reversed (primed) counter-
part with time-reversed field substitutions [Eq. (7)]. This
yields (Appendix B)

˜̄̄ε′(F0) = ˜̄̄ε∗(−F0), ˜̄̄μ′(F0) = ˜̄̄μ∗(−F0), (8a)

˜̄̄
ξ ′(F0) = −˜̄̄

ξ ∗(−F0),
˜̄̄
ζ ′(F0) = −˜̄̄

ζ ∗(−F0). (8b)

Thus, frequency-domain time reversal implies complex
conjugation plus proper parity signing. One may easily

verify that inserting Eqs. (7), (8a), and (8b) into Eqs. (5a),
(5b), (6a), and (6b) transforms the time-reversed Maxwell
and constitutive equations into equations that are exactly
identical to their original forms with all the field and con-
stitutive parameter quantities being complex conjugated
(Appendix C), hence confirming the invariance of physical
laws under time reversal (Sec. IV).

Time reversal without phase conjugation (or “∗”) in Eqs.
(8a) and (8b) (i.e., not transforming loss into gain and
vice versa) is called “restricted time reversal” [32], and is
used in the next section to derive the generalized Lorentz
(non)reciprocity theorem for LTI systems.

IX. GENERALIZED LORENTZ RECIPROCITY
THEOREM AND ONSAGER-CASIMIR

RELATIONS

Applying the usual reciprocity manipulations of the
Maxwell equations [40,77,79,80] to the frequency-domain
version of Eq. (5) with the time-reversal transformations
[Eq. (7)] yields (Appendices D and E)

�
VJ

J̃ · Ẽ
∗
dv −

�
VJ

J̃
∗ · Ẽdv

=
�

S

(Ẽ × H̃
∗ − Ẽ

∗ × H̃) · n̂ds

− jω
�

V

(Ẽ
∗ · D̃ − Ẽ · D̃

∗ + H̃ · B̃
∗ − H̃

∗ · B̃)dv.

(9)

If the medium is unbounded, so that [n̂ × E(∗) = ηH(∗)]S
assuming restricted time reversal (η unchanged), or
enclosed by an impenetrable cavity, the surface integral in
this equation vanishes (Appendix F). In reciprocal systems,
the left-hand side (reaction difference [40]) also vanishes,
as found by first applying Eq. (9) to a vacuum, where the
right-hand-side volume integral vanishes, as a fundamen-
tal reciprocity condition in terms of system ports. Inserting
Eqs. (6a) and (6b), transformed according to the restricted
time-reversal version of Eqs. (8a) and (8b) (no “∗”), in the
resulting relation yields (Appendix G)

�
V

{Ẽ∗ · [ ˜̄̄ε(F0)− ˜̄̄εT(−F0)] · Ẽ − H̃
∗ · [ ˜̄̄μ(F0)

− ˜̄̄μT(−F0)] · H̃ + Ẽ
∗ · [

˜̄̄
ξ(F0)+ ˜̄̄

ζ T(−F0)] · H̃

− H̃
∗ · [

˜̄̄
ζ(F0)+ ˜̄̄

ξT(−F0)] · Ẽ}dv = 0, (10)

where the identity a · ¯̄χ · b = (a · ¯̄χ · b)T = b · ¯̄χT · a (T
is the transpose) is used to group dyadics with opposite
premultiplying/postmultiplying fields. Equation (10) rep-
resents the generalized form of the Lorentz reciprocity
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theorem for LTI bianisotropic media [29,81]. Since this
relation must hold for arbitrary fields, one must have

˜̄̄ε(F0) = ˜̄̄εT(−F0) (11a)

and
˜̄̄μ(F0) = ˜̄̄μT(−F0), (11b)

and
˜̄̄
ξ(F0) = −˜̄̄

ζ T(−F0). (11c)

Equations (11a)–(11c) are the electromagnetic version of
the Onsager-Casimir reciprocity relations. If F0 = 0 (no
bias), Eqs. (11a)–(11c) reduce to the conventional reci-

procity relations ˜̄̄ε = ˜̄̄εT, ˜̄̄μ = ˜̄̄μT, and
˜̄̄
ξ = −˜̄̄

ζ T [40]. If the

medium is lossless, we also have ˜̄̄ε = ˜̄̄ε†, ˜̄̄μ = ˜̄̄μ†, and
˜̄̄
ξ =

˜̄̄
ζ † († is the transpose conjugate) [40], which leads to the

additional constraint Im{ ˜̄̄ε} = Im{ ˜̄̄μ} = Re{ ˜̄̄ξ} = Re{ ˜̄̄ζ } = 0
in reciprocal media.

If the sign of F0 is reversed on only one side of Eqs.
(11a)–(11c), the equalities obviously do not hold anymore,
because the constitutive parameters are not even functions
of F0 [82], and therefore they transform into the inequality
relations

˜̄̄ε(F0) �= ˜̄̄εT(F0) (12a)

or
˜̄̄μ(F0) �= ˜̄̄μT(F0) (12b)

or
˜̄̄
ξ(F0) �= − ˜̄̄

ζ T(F0). (12c)

These relations are the electromagnetic Onsager-Casimir
nonreciprocity relations, and they have been separated by
“or’s” [rather than “and’s” as in Eqs. (11a)–(11c)], since
violating one reciprocity condition is sufficient to render
the system globally nonreciprocal.

Noting that the transposed dyadics in Eqs. (11a)–(11c)
and (12a)–(12c) correspond to propagation in the reverse
direction to that of the wave associated with the
untransposed dyadic (Appendix H) leads to the follow-
ing profound and enlightening physical interpretation of
the Onsager-Casimir relations: reciprocity (nonreciprocity)
results from reversing (not reversing) the sign of F0, so that
waves propagating in opposite directions see the same (dif-
ferent) effective media. We have thus provided a rigorous
demonstration of the time-reversal symmetry criterion for
nonreciprocity that is described in Sec. V.

To better appreciate this interpretation, let us consider
again the example of ferrite, biased by the static mag-
netic field F0 = B0 and characterized by the permeability
tensor ˜̄̄μ, in Figs. 2(b) and 2(c). The Onsager-Casimir reci-
procity relation ˜̄̄μ(F0) = ˜̄̄μT(−F0) [Eq. (11b)] corresponds

to Fig. 2(b), where the wave propagating in the direct
direction (on the left) sees the medium ˜̄̄μ(F0), and the
wave propagating in the reverse direction with flipped bias
(on the right) sees the same effective medium ˜̄̄μT(−F0) =
˜̄̄μ(F0) (despite the alteration of the nature of the system):
time-reversal symmetry is ensured by reversing all the
time-reversal odd quantities of the system.

The negation of Eq. (11b), given by Eq. (12b) as
˜̄̄μ(F0) �= ˜̄̄μT(F0), is the time-reversal asymmetric relation
corresponding to Fig. 2(c), where the wave propagating
in the direct direction (on the left) still sees the medium
˜̄̄μ(F0), whereas the wave propagating in the reverse direc-
tion with unflipped bias (on the righ) sees a different effec-
tive medium ˜̄̄μT(+F0) �= ˜̄̄μ(F0) (without system alter-
ation), corresponding to time-reversal symmetry breaking
and consistent with the time-reversal symmetry criterion
for nonreciprocity described in Sec. III.

It is interesting to note that reversing an even quan-
tity (Sec. V), such as E0, instead of an odd quantity F0,
would yield nonreciprocity relations of the kind ˜̄̄ε(E0) �=
˜̄̄εT(−E0), involving bias flipping and hence forbidding
simultaneous excitations from both ends since E0 cannot
be simultaneously pointing in opposite directions.

X. GENERALITY OF ONSAGER-CASIMIR
RELATIONS

Although the frequency-domain derivation in Sec. IX
assumes linear time invariance, the Onsager-Casimir rela-
tions are totally general. Onsager derived them for linear
processes without any other assumption than microscopic
reversibility and basic theorems from the general theory
of fluctuations [27], and these relation were later extended
to nonlinear systems [83]. Therefore, the Onsager-Casimir
relations hold not only for LTI systems, as shown in
Sec. IX, but also for LTV and nonlinear systems.

Systems that are not media, but rather are inhomo-
geneous structures, components, or devices, cannot, of
course, be characterized by medium parameters, but the
Onsager-Casimir relations still apply to them in terms
of extended S-parameters and S-matrix, as shown in
Sec. XIV.

XI. FINER CLASSIFICATION OF
NONRECIPROCAL SYSTEMS

In Sec. II we established a gross classification of non-
reciprocity in terms of linear and nonlinear nonreciprocal
systems. However, in Sec. VII we revealed the neces-
sity to further divide the linear category into LTI and
LTV nonreciprocal systems, Eqs. (6a) and (6b) and Secs.
VIII–IX applying to only the former type [84].

Table III reflects this fact while summarizing the appli-
cability of the main concepts studied in this paper to the
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TABLE III. Fundamental concept applicability to the three different types of nonreciprocal systems: linear time invariant, linear time
variant, and nonlinear.

Linear

Time invariant Time variant (space-time mod) Nonlinear

¯̄S(F0) �= ¯̄ST(F0)
¯̄S(F0) �= ¯̄ST(F0)

¯̄S(F0) �= ¯̄ST(F0)

Common bias F0 Magnetic field (B0) Velocity (v0) Wave field (E)
Time reversal, Secs. III–VI � � �
Onsager-Casimir, Eqs. (11a)–(11c) and (12a)–(12c) � � �
Lorentz nonreciprocity, Secs. VII–IX � ✗ ✗
Extended S-parameters, Sec. XIV � �� ���

resulting three different categories. In addition to mention-
ing the most-common bias field involved, it presents time-
reversal symmetry breaking and Onsager-Casimir relations
in terms of the generic S-matrix/tensor ( ¯̄S) relation

¯̄S(F0) �= ¯̄ST(F0) (13)

as a common descriptor for all nonreciprocal systems,
stresses that the Lorentz theorem is applicable only to LTI
systems, and indicates that extended S-parameters apply
to the three types of nonreciprocal systems, with increas-
ing restriction from the LTI case through the LTV case to
the nonlinear case.

XII. RECIPROCITY DESPITE TIME-REVERSAL
ASYMMETRY IN LOSSY SYSTEMS

We now consider the case of lossy nonreciprocal sys-
tems, and particularly explain how to handle time reversal
and time-reversal symmetry breaking in such systems,
which is not trivial and possibly prone to confusion.

Figure 3 shows the process of electromagnetic wave
propagation in a simple lossy biasless waveguide system.
Let us see how this system responds to time reversal (Secs.
III–IV) by applying the time-reversal symmetry breaking
test in Sec. V, as previously done for the Faraday system
in Figs. 2(b) and 2(c).

In the direct part of the process, the wave is attenu-
ated by dissipation as it propagates from port P1 to port
P2 (red curve); say, from P0 to P0/2 (3-dB loss). On
time reversal, the propagation direction is reversed, and
loss is transformed into gain (Table II). As a result, the
wave propagates back from P2 to P1 and its power level
is restored (green curve), from P0/2 to P0. However, the
system has been altered since it has become active. Main-
taining it lossy leads to further attenuation on the return
trip, from P0/2 to P0/4 (6-dB loss), and hence breaks
time-reversal symmetry. According to Sec. V, this would
imply nonreciprocity, which is at odds with the generalized
reciprocity theorem (Sec. IX)!

This paradox originates in the looseness of the
assumption that “time-reversal symmetry (asymmetry) is

equivalent to reciprocity (nonreciprocity)” in Sec. III. This
assumption is made on the ground that it is the ratio
definition of Sec. II—and not its restricted level form—that
is commonly used in practice but it is sensu stricto incor-
rect, the equivalence rigorously holding only in terms
of absolute field levels and not in terms of field ratios.
In the case of loss, as just seen, the field/power ratios
are equal [(P0/4)/(P0/2) = 0.5 = (P0/2)/P0], consistent
with the general definition of reciprocity in Sec. II, but
the field/power levels are not (P0/4 �= P0), in contradic-
tion with the definition of time reversal in Sec. III. In
this sense, a simple lossy system breaks time-reversal
symmetry despite being perfectly reciprocal.

This time-reversal asymmetry may be seen as an expres-
sion of thermodynamical macroscopic irreversibility. Con-
sider, for instance, an empty metallic waveguide. The
transfer of charges along the waveguide’s lossy walls
results in electromagnetic energy being transformed into
heat (Joule’s first law) [30]. In theory, a Maxwell demon
[85] could reverse the velocities of all the molecules
of the system, which would surely reconvert that heat
into electromagnetic energy. In this sense, all systems

FIG. 3. Time-reversal symmetry breaking (TRSB) (Sec. V)
in a lossy reciprocal waveguide of length . Assuming that
the process under consideration is the propagation of a mod-
ulated pulse between ports P1 and P2, we have � ′(−t) =
[ψ ′

P1
(−t),ψ ′

P2
(−t)]T (blue curve) �= [ψP1(t),ψP2(t)]

T = �(−t)
(green curve), and in particular, with the power loss assumed in
the figure, � ′(0) = [P0/4, 0]T �= [P0, 0]T = �(0).
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are microscopically reversible, which is the fundamen-
tal assumption underpinning Onsager reciprocity relations
[27–29,86]. However, such reconversion is prohibited by
the second law of thermodynamics, which stipulates that
the total entropy in an isolated system cannot decrease over
time. It would at the least require injection of energy from
outside the system! So, such a lossy system is macroscopi-
cally—and hence practically—irreversible. Loss cannot be
undone; it ever accumulates over time, as illustrated in
Fig. 3.

As a corollary of this discussion, one may state that
although time-reversal symmetry necessarily implies reci-
procity, time-reversal asymmetry does not necessarily
imply nonreciprocity!

XIII. OPEN SYSTEMS AND THEIR
TIME-REVERSAL-SYMMETRY “LOSSY”

BEHAVIOR

Consider the two-antenna open system in Fig. 4, show-
ing successively the original, time-reversed, and reciprocal
problems in Figs. 4(a), 4(b), and 4(c), respectively. The
nature of the system is clearly altered on time reversal,
from Fig. 4(a) to 4(b), where the intrinsic impedance of
the surrounding medium becomes negative (Table II). This

(a)

(b)

(c)

FIG. 4. Time-reversal asymmetry and apparent (false) non-
reciprocity of an open system composed of a dipole antenna
and a patch antenna in free space. (a) Original (“O”) problem.
(b) Time-reversed (“T”) problem. (c) Reciprocal (“R”) problem.

results from the fact that the radiated and scattered energy
escaping the receiving antennas in the original problem is
equivalent to loss relatively to the two-port system. Such
loss transforms into gain on time reversal, as in Sec. XII,
leading to fields emerging from infinity. On replacing
time reversal by restricted time reversal (Sec. VIII) so
as to avoid denaturing the system, one would find, as in
the lossy case, reduced field levels but conserved field
ratios. The only difference between the restricted time-
reversal problem and the reciprocity problem, depicted in
Fig. 4(c), would then be the fact that in the former case
the field level is not reset to its initial value before prop-
agation in the opposite direction. An open system is thus
time-reversal-wise similar to a lossy system (Sec. XII).

XIV. EXTENDED SCATTERING PARAMETER
MODELING

The lossy/open-system difficulty (Secs. XII and XIII),
the nonreciprocity/reciprocity definition in Sec. II, and the
general reciprocity relations derived by Onsager [26–28]
prompt a description of nonreciprocal/reciprocal systems
in terms of field ratios. This leads to the scattering param-
eters, or S-parameters, introduced in quantum physics in
1937 [87], used for more than 70 years in microwave
engineering for LTI systems [8,88,89], and extended to
power parameters for arbitrary loads in the 1960s [8,90]
and to the cross-coupled matrix theory for topologically
coupled resonators in the 1970s [91,92]. We attempt here
an extension of these parameters to LTV and nonlinear
systems.

Figure 5 defines an extended arbitrary P-port network
as an electromagnetic structure delimited by a surface S
with n waveguide terminals, Tn, each supporting a number
of mode-frequency ports, Pp = Pn

μ,ω, with p = 1, 2, . . . , P.
“Frequency” refers here to new frequency sets (possibly
infinite or continuous) that may be generated in LTV and
nonlinear systems. For instance, if T1 in an LTI network
is a waveguide terminal with the M1 = 2 modes TE10 and
TM11 and the �1 = 2 frequencies ω and αω, it includes
the M1�1 = 4 ports P1 = P1

TE10,ω, P2 = P1
TE10,αω, P3 =

P1
TM11,ω, and P4 = P1

TM11,αω, where ω and αω could also
represent the input frequency and a generated frequency in
the case of a LTV or a nonlinear network.

The transverse fields in the waveguides have the
frequency-domain form [89], extended here to LTV and
nonlinear systems,

{
Ẽt,p(x, y, z)
H̃t,p(x, y, z)

}
= (

ape−j βp z ± bpe+j βnz) {
ẽt,p(x, y)
h̃t,p(x, y)

}
,

(14)
where

�
S(ẽt,p × h̃t,q) · n̂ds = 2δpq (also applying when p

and q differ only by frequency, with the same termi-
nal/mode, assuming narrow-band and hence independent
port detectors), and where ap (bp ) (p = 1, . . . , P) are the
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FIG. 5. Arbitrary P-port network and extended scattering
matrix, S.

port input (output) complex wave amplitudes, which are
related by the extended S-matrix, S, as

b = Sa, with
{

b = [b1, b2, . . . , bP]T

a = [a1, a2, . . . , aP]T

}
. (15)

If the system is linear, and hence superposition applies,
each entry of the matrix can be expressed by the simple
transfer function Sij = bi/aj |ak=0,k �=j , which corresponds
to the conventional definition of the S-parameters, except
for the frequency-port-definition extension in the space-
time modulated (LTV) case. If the system is nonlinear,
then Sij = Sij (a1, a2, . . . , aP), and therefore all the (sig-
nificant) input signals must be simultaneously present in
the measurement of the transfer function Sij , as done in
broadband polyharmonic distortion, used in the Keysight
microwave nonlinear vector network analyzer [93–95]. For
instance, in a simple waveguide junction (without any
bias), S21 = b2/a1|a2=a3=0 �= S21(a3), which allows mea-
surement of the system with separate inputs, whereas in
a mixer (or modulator), S21 = S21(a3 ≡ LO) and the local
oscillator (or pump) port (P3) must be excited simultane-
ously with the signal port (P1) for proper measurement of
the transfer function S21.

If the system is an LTI medium its bianisotropic reci-
procity relations [40,77] for the two network states a′ and
a′′ with responses b′ and b′′ read [35]

∇ · (Ẽ′ × H̃
′′ − Ẽ

′′ × H̃
′
) = jωẼ

′′ · ( ˜̄̄ε − ˜̄̄εT) · Ẽ
′ − H̃

′′

· ( ˜̄̄μ− ˜̄̄μT) · H̃
′ + Ẽ

′′ · ( ˜̄̄ξ + ˜̄̄
ζ T) · H̃

′

− H̃
′′ · ( ˜̄̄ζ + ˜̄̄

ξT) · Ẽ
′
] = 0, (16)

where the sources, being outside the system, do not con-
tribute, contrary to the situation of the reciprocity theorem
[Eq. (9)] (Appendix I). Inserting the sum (

∑P
p=1) of fields

[Eq. (14)] into this equation, taking the volume integral
of the resulting relation, applying the Gauss theorem and
the orthogonality relation, and using the Onsager-Casimir
relations [Eq. (11)] yields [35]

∑
p(b

′
pa′′

p − a′
pb′′

p) = ba′′T − ab′′T = a′a′′T (
ST − S

)
,

(17)

where Eq. (15) is used to eliminate b(′,′′) in the last equality.
This leads to the reciprocity condition (Appendix J)

S = ST, (18)

and hence to the convenient scattering-parameter nonre-
ciprocity condition

S �= ST or ∃(i, j )|Sij �= Sji, i =, 1, 2, . . . , N (19)

(e.g., S21 �= S12), which also applies to LTV and nonlinear
systems, although the current demonstration is restricted to
LTI media (Appendix K).

In the microwave regime, these S-parameters can be
directly measured (magnitude and phase) with a vector
network analyzer [8] or with a nonlinear vector network
analyzer [93–95]. In contrast, in the optical regime no spe-
cific instrumentation is available to do this, and a special
setup, with nontrivial phase handling, is therefore required
[19].

The symmetry reciprocity relation S = ST and non-
reciprocity relation S �= ST [Eq. (19)], assuming the
extended S-parameters introduced in this section, are noth-
ing but the general Onsager-Casimir reciprocity/ nonre-
ciprocity relations [27–30], and may be explicitly written
as

¯̄S(F0) = ¯̄ST(−F0) (reciprocity), (20a)

¯̄S(F0) �= ¯̄ST(F0) (nonreciprocity), (20b)

where the matrix S is written in the tensor notation ¯̄S for
direct comparison with Eqs. (11a)–(11c).

XV. ENERGY CONSERVATION

In a lossless system, energy conservation requires that
the total output power equals the total input power, or∑P

p=1 |bp |2 = ∑P
p=1 |ap |2 in Fig. 5, since no power is

dissipated in the system. In terms of the S-matrix, this
requirement translates into the unitary relation

SS† = I , (21)

where the dagger symbol represents the transpose conju-
gate and I the unit matrix. Many fundamental useful facts
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on multiport systems straightforwardly follow from energy
conservation (see, e.g., Ref. [8]).

Some immediate consequences of Eq. (21) for nonre-
ciprocity are as follows:

1. A lossless one-port system, S = [S11], can be only
totally reflective, from |S11|2 = 1, even if it includes non-
reciprocal materials, contrary to claims in Ref. [96].

2. A two-port system, S = [S11, S12; S21, S22], can be
magnitude-wise nonreciprocal only if it is lossy; specif-
ically, a purely reflective (lossless) two-port isolator
S = [0, 0; 1, 1] is impossible, since energy conservation
requires |b2|2 = |a1|2 + |a2|2, whereas the device would
exhibit b2

2 = a2
1 + a2

2 + 2a1a2, with the additional term
2a1a2 that may cause the total energy to be larger than the
input power, depending on the relative phases of a1 and a2.

3. A lossless two-port system can still be nonreciprocal
in terms of phase, since Eq. (21) does not demand ∠S21 =
∠S12 [97,98].

4. A lossless three-port system, S = [S11, S12, S13; S21,
S22, S23; S31, S32, S33], can be matched simultaneously at
all ports only if it is nonreciprocal, as may be shown by
manipulation of the matrix system given by Eq. (21) [8].

XVI. THE “THERMODYNAMICS PARADOX”

Case 2 in Sec. XV—the two-port isolator—raised much
perplexity in the past, and led to the so-called “thermo-
dynamics paradox.” The paradox states that an isolator
system would ever increase the temperature of the load
at the passing end and not that of the load at the iso-
lated end, hence violating the second law of thermody-
namics, which prescribes heat transfer from hot to cold
bodies.

The paradox started in 1885 with the comment by
Rayleigh that the recently developed system composed
of two Nicol prisms sandwiching a magnetized dielectric
would be “inconsistent with the second law of thermody-
namics” [99].

It was overruled 16 years later by Rayleigh himself [6],
who realized then, following related studies of Wien [100],
a misunderstanding of the system, which was actually not
nonreciprocal, as the wave on the presumed stop direc-
tion could eventually exit the device after three round trips
across the device (see Sec. XIX).

The paradox resurfaced in 1955, as Lax and Button
[101] pointed out the existence of lossless unidirectional
eigenmodes in some ferrite-loaded waveguide structures.
It was eventually resolved by Ishimaru [14,102], who
showed that such a waveguide would necessarily sup-
port substantial loss in its terminations, due to energy
conservation (Sec. XV), even in the limit of negligible
material loss. This loss would eventually heat up the isola-
tor, and therefore ensure thermal balance through thermal
emission toward the cold bath. The paradox was because

the Maxwell equations were resolved for a completely
lossless medium, which represents an “improperly posed
problem” since it does not correspond to physical real-
ity. Properly solving the Maxwell equations for a realis-
tic medium with nonzero conductivity, and letting then
the conductivity go to zero completely resolves the issue
[14,102].

XVII. NOTE ON EVANESCENT AND COMPLEX
WAVES

We emphasize here that all the contents of this paper
apply to all electromagnetic waves. Indeed, all the rea-
sonings and derivations are completely general, since they
are based on symmetry first principles and the Maxwell
equations, without any restriction, unless otherwise stated.
Therefore, they do not apply only to propagating waves,
but also to evanescent waves. Evanescent waves are
characterized by an exponential power decay in space
and occur, notably, in total internal reflection, diffrac-
tion from an aperture, and dipolar radiation [103], and
in complex (or inhomogeneous) waves (see, e.g., Ref.
[104]). Complex waves have complex (generally real
and imaginary) wavenumbers in different directions of
space and play a central role in plasmonic and Zen-
neck surface waves, leaky waves, optical waveguides,
couplers, coupled-resonator filters, and quantum tunnel-
ing [14].

The applicability of nonreciprocity concepts, and par-
ticularly of the Lorentz reciprocity theorem, to evanescent
waves was explicitly verified in Ref. [105] with use of an
angular spectrum electromagnetic perspective and by con-
sideration of an arbitrary distance between the scatterer and
the observation point.

Evanescent waves are rarely discussed in the context of
nonreciprocity, because they are not present or essential in
most nonreciprocal systems. However, interesting nonre-
ciprocal effects specifically affecting or leveraging evanes-
cent waves might naturally be discovered and applied in
the future.

XVIII. OVERVIEW OF THE THREE
FUNDAMENTAL TYPES OF NONRECIPROCAL

SYSTEMS

At this point, the fundamental concepts of reciprocity
have been presented to a level that we judge appropriate
for such a review. Upon this foundation, we now describe
the aforementioned three types of nonreciprocal systems
(Table III)—namely, LTI, LTV, and nonlinear nonrecipro-
cal systems—which are covered in Secs. XIX, XX, and
XXI, respectively. In each case, we list the fundamen-
tal characteristics, enumerate the main applications, and
describe a particular example of the system.
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XIX. LINEAR TIME-INVARIANT
NONRECIPROCAL SYSTEMS

LTI nonreciprocal systems have the following funda-
mental characteristics:

1. Time-reversal symmetry breaking by time reversal
odd external bias F0, which is most often a magnetic field,
B0, as, for instance, in Fig. 2(c).

2. Applicability, from linearity, to arbitrary excitations
and intensities, corresponding to strong nonreciprocity, as
pointed out in Table I.

3. Frequency conservation, also due to linearity, and
hence unrestricted frequency-domain descriptibility (Secs.
VII and VIII), and full applicability of the Lorentz reci-
procity theorem (Sec. IX) and of the S-parameter formal-
ism (Sec. XIV).

4. Generally based on LTI materials [7,44,45,106–
111], including two-dimensional electron gases and
graphene [51,53–58], or metamaterials [70–75,112–117]
(Sec. VII).

The main LTI nonreciprocal systems are isolators, non-
reciprocal phase shifters, and circulators [7,8,44]. Isola-
tors (S = [0, 0; 1, 0]) may be of Faraday, resonance, field-
displacement, or matched-port-circulator type, and may
involve resistive sheets, quarter-wave plates, or polarizing
grids. They are typically used to shield equipment (e.g.,
vector network analyzer or laser) from detuning, interfer-
ing reflections, and even destructive reflections. Nonrecip-
rocal phase shifters (S = [0, ej�ϕ; 1, 0]), with the gyrator
(�ϕ = π ) [118] as a particular case, may be of latch-
ing (hard magnetic hysteresis) or Faraday rotation type,
and may involve quarter-wave plates. They combine with
couplers to form isolators or circulators, provide compact
simulated inductors and filter inverters, and enable non-
reciprocal pattern and scanning arrays. Circulators (S =
[0, 0, 1; 1, 0, 0; 0, 1, 0]) may be of four-port Faraday rota-
tion or three-port junction rotation type; in the latter type,
which is more common, nonreciprocal circulation results
from the suppression of the degeneracy between counter-
rotating modes in the presence of a perpendicular magnetic
biasing field, which results in constructive and destructive
interferences at the coupled and isolated ports, respec-
tively. They are used for isolation, duplexing (radar and
communication), and reflection amplifiers. All these com-
ponents are dissipative, with the stopped energy being
transformed into heat, since they do not satisfy Eq. (21).

Figures 2(b) and 2(c) represent a Faraday rotator, whose
operation is described in Sec. VI. This system constitutes
the key building brick of a Faraday isolator. A typical
implementation of such an isolator involves a Faraday
rotation angle of φ = π/4 and two linear polarizers sand-
wiching the magnetic (generally ferrite) medium, rotated
by φ = π/4 with respect to each other. In the passing

direction, the electric field at P1 is perpendicular to the
first polarizer grid and therefore fully traverses it; it is next
rotated in the, say, clockwise direction by π/4 so as to
emerge perpendicular to the second grid, which leads to
full transmission to P2, corresponding to S21 = 1. In the
stopping direction, the wave enters the system at P2, so as
to perpendicularly face the second grid and hence com-
pletely traverse it; it is then rotated, still clockwise, by
π/4. As a result, it is now parallel to the first grid, and
hence fully reflected by it, which leads in principle [119]
to S12 ≈ 0.

XX. LINEAR TIME-VARIANT
NONRECIPROCAL SYSTEMS

LTV nonreciprocal systems have the following funda-
mental characteristics:

1. Time-reversal symmetry breaking by time-reversal
odd external bias (F0) velocity, v0, associated with spa-
tial inversion symmetry breaking, as seen in the example
below.

2. Strong nonreciprocity, as LTI systems (Sec. XIX),
from linearity.

3. Generation of new, possibly anharmonic frequen-
cies, due to assumed external application of the modula-
tion, and hence restricted applicability of S-parameters.

4. Moving-medium (i.e., moving-matter) modulation
(e.g., optomechanical) [34,40,63,120,121] or moving-
wave (i.e., moving-perturbation) modulation (e.g., electro-
optic, acousto-optic, or nonlinear-optic) modulation [10,
59], with both producing Doppler shifts [122] and non-
reciprocity, but only the former supporting Fizeau drag
[34,123] and bianisotropy transformation [40], and only
the latter allowing superluminality [124];

5. Pulse or periodic (i.e., crystal [125]) and abrupt or
smooth medium/wave modulations.

As an illustration, Fig. 6 graphically depicts, using an
extended Minkowski diagram representation [124,125],
step space-time modulated systems with an interface
between media of refractive indices n1 and n2 moving in
the −z direction with constant velocity v0 = vẑ (v < 0)
and excited by an incident wave propagating in the +z
direction. On full time reversal, v0 is reversed, which
leads to identical Doppler shifts [122] in the reflected
and transmitted waves [with temporal frequency (ω) and
spatial frequency (k) transitions following correspond-
ing frequency conservation lines in the moving frame
[124]], as shown in Fig. 6(a), but alters the system. The
unaltered system is time-reversal asymmetric, and hence
breaks time-reversal symmetry, which leads to the com-
plex nonreciprocal scattering observed in Fig. 6(b). It
clearly appears that, as mentioned above, purely temporal
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(a)

(b)

FIG. 6. Step space-time-modulated (LTV) systems (n2 > n1).
(a) Original system (top t > 0) and its time-reversal symmet-
ric counterpart (bottom t < 0); (b) Original system (top t > 0)
and its time-reversal asymmetric and nonreciprocal counterpart
(bottom t < 0). i, incident; r, reflected; t transmitted.

modulation, which would here have the form of a hori-
zontal interface between the two (white and gray) media
[126–128], would be insufficient for nonreciprocity; spatial
inversion symmetry breaking, provided here by the moving
modulation (oblique interface), is also required to break
time-reversal symmetry: ¯̄χ(v0) �= ¯̄χT(v0). Spatial inver-
sion asymmetry must always accompany time variance
for nonreciprocity in LTV systems, since nonreciproc-
ity requires asymmetry between different points in space,
which cannot be provided by time modulation alone.

A great diversity of useful space-time-modulated non-
reciprocal systems have been reported in recent years
[64–67,129–146]. They are all based on the production
of different traveling phase gradients in opposite direc-
tions and are therefore all, in that sense, more or less
lumped/distributed [8] variations of parametric systems

FIG. 7. Three-port nonreciprocal space-time-modulated reflec-
tive metasurface with S matrix. Left: reflection from port P1 with
temporal-spatial frequencies (ωi, ki) to port P2 with temporal-
spatial frequencies (ωr, kr). Right: reflection from port P2 with
temporal-spatial frequencies (ω′

i , k′
i) = (ωr, kr) to port P1 with

temporal-spatial frequencies (ω′
r, k′

r).

developed by microwave engineers in the 1950s, primarily
for amplifiers or mixers rather than nonreciprocal devices
[147–153]. However, these systems will probably lead to
many novel structures and applications, especially when
more than one dimension of space is involved.

Figure 7 shows such a multidimensional system,
specifically a nonreciprocal metasurface reflector [140,
154] based on the space-time modulation n(x) = n0 +
nm cos(βmx + ωmt), where (ωm/βm)ẑ = v0. The space-
time-modulated metasurface breaks reciprocity and hence
provides a quite unique nonreciprocal device by adding the
spatial and temporal momenta KMS and ωMS to those of the
incident wave. This system includes infinitely many ports,
with scattering parameters Sn,n+1 = 0 and Sn+1,n �= 0, and
with frequencies ωn+1 > ωn (n = 1, . . .∞), but its func-
tional reduction in Fig. 7 is meaningful if the power
transfer beyond P3 is of no interest.

XXI. NONLINEAR NONRECIPROCAL SYSTEMS

Nonlinear nonreciprocal systems have the following
fundamental characteristics:

1. Time-reversal symmetric breaking by spatial asym-
metry and nonlinear self-biasing (nonlinearity triggering
by the signal wave itself) [83,155], as is seen in the
example below.

2. Limitation to restricted excitations, intensities, and
isolation, which represents the first aspect of the weak non-
reciprocity given in Table I, as will also be understood by
the example.

3. Limitation to excitation of one direction only at
a time, which represents the second aspect of weak
nonreciprocity, still to be understood from the example,
and which unfortunately precludes most practical isolator
applications (Sec. XIX) [20].

4. Generation of new, only harmonic frequencies
(assuming self-biasing) and inapplicability of superpo-
sition, and hence very restricted applicability of S-
parameters.

5. Large diversity of possible time-reversal symmetry-
breaking approaches.
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Figure 8 shows a simple way to achieve nonlinear
nonreciprocity consisting in asymmetrically pairing a
linear medium and a nonlinear lossy medium. The two
media are strongly mismatched, with reflection �. A wave
injected at port P1 experiences a transmittance of |T|2 =
1 − |�|2  1, yielding a much smaller field level in the
nonlinear medium. If this level is insufficient to trigger
nonlinear loss, all the power transmitted through the inter-
face (|T|2) reaches port P2, so |S21| = |T| and |S11| =
|�|. The same wave injected at P2, assuming sufficient
intensity to trigger nonlinear loss, undergoes exponential
attenuation e−αNL (NL is the nonlinear length), so |S12| =
|T|e−αNL ≈ 0. The system is thus nonreciprocal, but it is a
pseudoisolator because (a) it is restricted to a small range
of intensities; (b) it works only for one excitation direc-
tion (P1 → P2 or P2 → P1) at a time, since the P2 → P1
wave, triggering nonlinear loss, would also extinct a simul-
taneous P1 → P2 wave; (c) it suffers from poor isolation
(|S21|/|S12| = eαNL) and poor isolation to insertion loss
ratio ((|S21|/|S12/|)/|S11| = eαNL/|�|)—typically smaller
than 20/25 dB in nonreciprocal nonlinear structures, while
commonly exceeding 45/50 dB in nonreciprocal LTI iso-
lators, or hysteresis (memory) dependence in the case of
bistable systems [156]; and (d) it is reciprocal to noise,
since noise simultaneously propagates in both directions
[20]. Such a device is also not a diode [157], whose non-
reciprocity consists of different forward/backward spectra
due to positive/negative wave-cycle clipping, rather than
different forward/backward signal levels.

Ingenious variations of the nonlinear nonreciprocal
device in Fig. 8 have been reported [156,158–171]. Some
of them mitigate some of the aforementioned issues, but
these improvements are severely restricted by fundamental
limitations of nonlinear nonreciprocity [19,20,172].

XXII. DISTINCTION WITH ASYMMETRIC
PROPAGATION

A nonreciprocal system is a system that exhibits time-
reversal asymmetric field ratios between well-defined ports

FIG. 8. Principle of nonlinear (NL) nonreciprocity with the
asymmetric cascade of a linear medium, εL = ε1, and a nonlinear
lossy medium, εNL = ε2 + [ε′(E)− j ε′′(E)], with strong mis-
match, |�| = |(√εNL − √

εL)/(
√
εNL + √

εL)| � 0. Left: prop-
agation from P1 to P2. Right: propagation from P2 to P1.

FIG. 9. Asymmetric reciprocal system formed by a lens and a
mirror sandwiched between two antenna arrays. Left: propaga-
tion from P1 to P2. Right: propagation from P2 to P1.

[Eq. (19)], which is possible only under external biasing
(linear nonreciprocity) or self-biasing plus spatial asym-
metry (nonlinear nonreciprocity). Any system not satisfy-
ing this condition is necessarily reciprocal, despite possible
fallacious transmission asymmetries [15–21,173,174].

For instance, the system in Fig. 9 exhibits asymmetric
ray propagation, but it is fully reciprocal since only the
horizontal ray gets transmitted between the array ports,
the P1 → P2 oblique waves symmetrically canceling out
on the right array due to opposite phase gradients.

Other deceptively nonreciprocal cases include symmet-
ric field rotation filtering (e.g., π/2 reciprocal rotator +
polarizer), where Syx

21 �= Sxy
21, but Syx

21 = Sxy
12; an asymmet-

ric waveguide junction (e.g., step-width variation), with
full transmission to the larger side distributed over mul-
tiple modes and small transmission from the same mode
to the smaller (single-mode) side, but reciprocal mode-to-
mode transmission (e.g., S51 = S15, 1: port corresponding
to mode 1 at small-side single-mode terminal, 5: port
corresponding to mode 5 at large-side multi-mode termi-
nal) [19]; asymmetric mode conversion (e.g., waveguide
with nonuniform load), where an even mode transmits in
opposite directions with and without excitation of an odd
mode, without breaking reciprocity, since See

21 = See
12 and

Soe
21 = 0 = Seo

12 [21]. In all cases, reciprocity is verified on
exchange of the source and detector.

XXIII. CONCLUSION

We present, in the context of recent magnetless non-
reciprocal systems aiming at repelling the frontiers of
nonreciprocity technology, a global perspective of nonre-
ciprocity, with the following main conclusions:

1. Nonreciprocal systems are defined as systems that
exhibit different received-transmitted field ratios – and not
just field levels – when their source(s) and detector(s) are
exchanged.

047001-14



NONRECIPROCITY... PHYS. REV. APPLIED 10, 047001 (2018)

2. Time reversal symmetry breaking is always a nec-
essary condition for nonreciprocity, since the field ratios
cannot differ if the field levels do not.

3. Nonreciprocity is equivalent to time-reversal sym-
metry breaking in lossless systems or, by commonsense
extension, in systems with negligible loss.

4. So, systems with significant loss or gain are time-
reversal asymmetric even when they are reciprocal; in such
systems, reciprocity should be expressed in the restricted
sense of equal field ratios (rather than field levels), which
is consistent with the definition in the previous point.

5. Time reversal/time-reversal symmetry breaking is
a fundamental and powerful common descriptor for all
nonreciprocal systems.

6. In the case of LTI media, time reversal leads to a
generalized Lorentz reciprocity theorem, itself leading the
powerful Onsager-Casimir relations, according to which
nonreciprocity follows from the fact that waves propa-
gating in opposite directions see different effective media
when the time-reversal odd bias is fixed.

7. However, Onsager-Casimir relations are completely
general; they also apply to LTV and nonlinear nonrecip-
rocal systems, most generally in terms of field ratios or
generalized transfer functions.

8. Nonreciprocal systems may be classified into lin-
ear (LTI and LTV) and nonlinear systems on the basis
of time-reversal symmetry breaking by external biasing
and self-biasing plus spatial asymmetry, respectively; in
the LTV case, time modulation must be accompanied by
spatial symmetry breaking, as nonlinearity.

9. Nonlinear nonreciprocity is a weaker form of non-
reciprocity than linear nonreciprocity, as it suffers from
restricted intensities, one-way-at-a-time excitations, and
poor isolation or hysteresis.

10. S-parameters can be advantageously generalized to
all types of nonreciprocal systems, including, in addition
to LTI systems, LTV and nonlinear systems, with signifi-
cant and major restrictions in the former and latter cases,
respectively.

11. Care must be exercised to avoid confusing asym-
metric transmission with nonreciprocity in some fallacious
systems.

Nonreciprocity is a rich and fascinating concept that will
continue to open new scientific and technological horizons
in the forthcoming decades.

APPENDIX A: TIME-REVERSAL SYMMETRY OF
THE MAXWELL EQUATIONS: EQS. (5A) AND (5B)

Time-reversed version of the Maxwell equations (∇′ =
∇):

∇ × E′ = −∂B′/∂t′, (A1a)

∇ × H′ = ∂D′/∂t′ + J′. (A1b)

Applying the time-reversal rules in Table II to Eqs. (A1a)
and (A1b) :

∇ × (E) = −∂(−B)/∂(−t), (A2a)

∇ × (−H) = ∂(D)/∂(−t)+ (−J). (A2b)

Simplification of Eqs. (A2a) and (A2b):

∇ × E = −∂B/∂t, (A3a)

∇ × H = ∂D/∂t + J. (A3b)

These are identical to the original Maxwell equations,
equivalent to the proof of Eqs. (5a) and (5b).

APPENDIX B: FREQUENCY-DOMAIN
EXPRESSIONS OF THE TIME-REVERSED

CONSTITUTIVE PARAMETERS:
EQS. (8A) AND (8B)

Frequency-domain constitutive relations for a biased
LTI bianisotropic medium with bias F0 [Eqs. (6a) and (6b)
without primes and positive signs]:

D̃ = ˜̄̄ε(F0) · Ẽ + ˜̄̄
ξ(F0) · H̃, (B1a)

B̃ = ˜̄̄
ζ(F0) · Ẽ + ˜̄̄μ(F0) · H̃. (B1b)

The same for the corresponding time-reversed medium
[Eqs. (6a) and (6b) with primes and negative signs]:

D̃
′ = ˜̄̄ε′(−F0) · Ẽ

′ + ˜̄̄
ξ ′(−F0) · H̃

′
, (B2a)

B̃
(′) = ˜̄̄

ζ ′(−F0) · Ẽ
′ + ˜̄̄μ′(−F0) · H̃

′
, (B2b)

where the sign of F0 is reversed because this quantity is
assumed to be time reversal odd (Sec. VII).

Applying Eq. (7) with the time-reversal rules in Table II
to Eqs. (B2a) and (B2b):

D̃
∗ = ˜̄̄ε′(−F0) · Ẽ

∗ + ˜̄̄
ξ ′(−F0) · (−H̃

∗
), (B3a)

(−B̃
∗
) = ˜̄̄

ζ ′(−F0) · Ẽ
∗ + ˜̄̄μ′(−F0) · (−H̃

∗
). (B3b)

Simplifying Eqs. (B3a) and (B4b):

D̃
∗ = ˜̄̄ε′(−F0) · Ẽ

∗ − ˜̄̄
ξ ′(−F0) · H̃

∗
, (B4a)

B̃
∗ = −˜̄̄

ζ ′(−F0) · Ẽ
∗ + ˜̄̄μ′(−F0) · H̃

∗
. (B4b)

047001-15



CHRISTOPHE CALOZ et al. PHYS. REV. APPLIED 10, 047001 (2018)

Complex conjugating Eqs. (B4a) and (B4b):

D̃ = ˜̄̄ε′∗(−F0) · Ẽ − ˜̄̄
ξ ′∗(−F0) · H̃, (B5a)

B̃ = −˜̄̄
ζ ′∗(−F0) · Ẽ + ˜̄̄μ′∗(−F0) · H̃. (B5b)

Comparing Eqs. (B5a) and (B5b) and Eqs. (B1a) and
(B1b):

˜̄̄ε(F0) = ˜̄̄ε′∗(−F0)
˜̄̄
ξ(F0) = −˜̄̄

ξ ′∗(−F0), (B6a)

˜̄̄
ζ(F0) = −˜̄̄

ζ ′∗(−F0)
˜̄̄μ(F0) = ˜̄̄μ′∗(−F0). (B6b)

Complex conjugating Eqs. (B6a) and (B6b) and apply-
ing the dummy variable change F → −F0:

˜̄̄ε′(F0) = ˜̄̄ε∗(−F0)
˜̄̄
ξ ′(F0) = −˜̄̄

ξ ∗(−F0), (B7a)

˜̄̄
ζ ′(F0) = −˜̄̄

ζ ∗(−F0)
˜̄̄μ′(F0) = ˜̄̄μ∗(−F0), (B7b)

which are equivalent to Eqs. (8a) and (8b).
Restricted time-reversed version of Eqs. (B7a) and

(B7b) (same without ∗):

˜̄̄ε′(F0) = ˜̄̄ε(−F0)
˜̄̄
ξ ′(F0) = −˜̄̄

ξ(−F0), (B8a)

˜̄̄
ζ ′(F0) = −˜̄̄

ζ(−F0)
˜̄̄μ′(F0) = ˜̄̄μ(−F0). (B8b)

APPENDIX C: FREQUENCY-DOMAIN
EXPRESSIONS OF THE TIME-REVERSED

MAXWELL EQUATIONS (SEC. VIII)

Fourier transforming Eqs. (A3a) and (A3b) (dependence
ejωt):

∇ × Ẽ = −jωB̃, (C1a)

∇ × H̃ = jωD̃ + J̃, (C1b)

Substituting t′ = −t in Eqs. (A1a) and (A1b):

∇ × E′ = ∂B′/∂t, (C2a)

∇ × H′ = −∂D′/∂t + J′. (C2b)

Fourier transforming Eqs. (C2a) and (C2b):

∇ × Ẽ
′ = jωB̃

′
, (C3a)

∇ × H̃
′ = −jωD̃

′ + J̃
′
. (C3b)

Applying Eq. (7) with the time-reversal rules in Table II to
Eqs. (C3a) and Eqs. (C3b):

∇ × Ẽ
∗ = −jωB̃

∗
, (C4a)

∇ × H̃
∗ = jωD̃

∗ + J̃
∗
. (C4b)

Comparing Eqs. (4a) and (4b) and Eqs. (1a) and (1b): The
frequency-domain Maxwell equations of the time-reversed
problem are identical to those of the original problem with
all the field quantities conjugated.

APPENDIX D: FREQUENCY-DOMAIN
EXPRESSIONS OF THE CONSTITUTIVE

RELATIONS (SEC. VIII)

Frequency-domain constitutive relations [Eqs. (B1a)
and (B1b)]:

D̃ = ˜̄̄ε(F0) · Ẽ + ˜̄̄
ξ(F0) · H̃, (D1a)

B̃ = ˜̄̄
ζ(F0) · Ẽ + ˜̄̄μ(F0) · H̃. (D1b)

Substituting frequency-domain restricted time-reversed
constitutive relations [Eqs. (B8a) and (8b)] into Eqs. (B4a)
and (B4b):

D̃
∗ = ˜̄̄ε(−F0) · Ẽ

∗ + ˜̄̄
ξ(−F0) · H̃

∗
, (D2a)

B̃
∗ = ˜̄̄

ζ(−F0) · Ẽ
∗ + ˜̄̄μ(−F0) · H̃

∗
. (D2b)

Comparing Eqs. (D2a) and (D2b) and Eqs. (D1a) and
(D1b): The frequency-domain constitutive relations of the
time-reversed problem are identical to those of the orig-
inal problem with all the field (but not the constitutive
parameter!) quantities conjugated and F0 changed to −F0.
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APPENDIX E: DERIVATION OF EQ. (9)

Frequency-domain Maxwell equations for the set of
original (excitation-response) fields [Eqs. (C1a) and
(C1b)]:

∇ × Ẽ = −jωB̃, (E1a)

∇ × H̃ = jωD̃ + J̃. (E1b)

Same for time-reversed fields [Eqs. (C4a) and (C4b)]:

∇ × Ẽ
∗ = −jωB̃

∗
, (E2a)

∇ × H̃
∗ = jωD̃

∗ + J̃
∗
. (E2b)

Subtracting Eq. (E1a) dot-multiplied by H∗ from Eq. (E2b)
dot-multiplied by E, and doing the same with swapped
unconjugate and conjugate terms:

Ẽ · ∇ × H̃
∗ − H̃

∗ · ∇ × Ẽ = jωẼ · D̃
∗ + Ẽ · J̃

∗

+ jωH̃
∗ · B̃, (E3a)

Ẽ
∗ · ∇ × H̃ − H̃ · ∇ × Ẽ

∗ = jωẼ
∗ · D̃ + Ẽ

∗ · J̃

+ jωH̃ · B̃
∗
, (E3b)

and applying the identity A · ∇ × B − B · ∇ × A = −∇ ·
(A × B):

−∇ · (Ẽ × H̃
∗
) = jωẼ · D̃

∗ + Ẽ · J̃
∗ + jωH̃

∗ · B̃, (E4a)

−∇ · (Ẽ∗ × H̃) = jωẼ
∗ · D̃ + Ẽ

∗ · J̃ + jωH̃ · B̃
∗
. (E4b)

Subtracting Eq. (E4a) from Eq. (E4b):

∇ · (Ẽ × H̃
∗ − Ẽ

∗ × H̃)

= jω
(

Ẽ
∗ · D̃ − Ẽ · D̃

∗ + H̃ · B̃
∗ − H̃

∗ · B̃
)

+ Ẽ
∗ · J̃ − Ẽ · J̃

∗
(E5)

or

Ẽ
∗ · J̃ − Ẽ · J̃

∗

= ∇ · (Ẽ × H̃
∗ − Ẽ

∗ × H̃)

− jω
(

Ẽ
∗ · D̃ − Ẽ · D̃

∗ + H̃ · B̃
∗ − H̃

∗ · B̃
)

. (E6)

Integrating over the volume V formed by the surface S and
applying the Gauss theorem:

�
V→VJ

J̃ · Ẽ
∗
dv −

�
V→VJ

J̃
∗ · Ẽdv

=
�

S

(
Ẽ × H̃

∗ − Ẽ
∗ × H̃

)
· n̂ds

− jω
�

V

(
Ẽ

∗ · D̃ − Ẽ · D̃
∗ + H̃ · B̃

∗ − H̃
∗ · B̃

)
dv,

(E7)

which is equivalent to Eq. (9)

APPENDIX F: VANISHING OF THE SURFACE
INTEGRAL IN EQ. (9)

The surface integral in Eq. (9) reads

IS =
�

S

(
Ẽ × H̃

∗ − Ẽ
∗ × H̃

)
· n̂ds. (F1)

From the identity (a × b) · c = c · (a × b) = a · (b × c) =
b · (c × a):

(Ẽ × H̃
∗
) · n̂ = Ẽ · (H̃∗ × n̂) = H̃

∗ · (n̂ × Ẽ), (F2a)

(Ẽ∗ × H̃) · n̂ = Ẽ∗ · (H̃ × n̂) = H̃ · (n̂ × Ẽ
∗
). (F2b)

Impenetrable [perfect electric conductor (PEC) or perfect
magnetic conductor (PMC) or combination of the two]
cavity:

[
H̃ × n̂

]
S=PMC

=
[
H̃

∗ × n̂
]

S=PMC
= 0 (F3a)

or [
n̂ × Ẽ

]
S=PEC

=
[
n̂ × Ẽ

∗]
S=PEC

= 0. (F3b)

Inserting Eqs. (F3a) and (F3b) into Eqs. (F2a) and (F2b)
and substituting the result into Eq. (F1):

IS = 0. (F4)

In an unbounded medium, at an infinite distance from the
source(s), the field is a plane wave:

[
n̂ × Ẽ = ηH

]
S=∞

and
[
n̂ × Ẽ

∗ = ηH∗
]

S=∞
,
(F5)

where the restricted time reversal assumed in Sec. IX is
used in the latter equation by not changing η into η∗
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Inserting Eq. (F5) into Eqs. (F2a) and (F2b) and substi-
tuting the result into the integrand of Eq. (F1):

[
(Ẽ × H̃

∗ − Ẽ
∗ × H̃) · n̂

]
S=∞

=
[
H̃

∗ · (n̂ × Ẽ)− H̃ · (n̂ × Ẽ
∗
)
]

S=∞
by Eq. (F5)=

[
H̃

∗ · ηH̃ − H̃ · ηH̃
∗]

S=∞
= |H|2(η − η) = 0. (F6)

Inserting Eq. (F6) inserted into Eq. (F1):

IS = 0. (F7)

APPENDIX G: DERIVATION OF THE
GENERALIZED LORENTZ THEOREM: EQ. (10)

Using the result of the vanishing of the surface integral
[Eqs. (F4) and (F7)], and the fact that the left-hand side
(reaction difference) in Eq. (9) vanishes under reciprocity,
Eq. (9) reduces to

�
V

Xdv = 0, (G1)

with

X = Ẽ
∗ · D̃ − Ẽ · D̃

∗ + H̃ · B̃
∗ − H̃

∗ · B̃. (G2)

Substituting Eqs. (D1a) and (D1b) and Eqs. (D2a) and
(D2b) into Eq. (G2):

X = Ẽ
∗ ·

[
˜̄̄ε(F0) · Ẽ + ˜̄̄

ξ(F0) · H̃
]

− Ẽ ·
[
˜̄̄ε(−F0) · Ẽ

∗ + ˜̄̄
ξ(−F0) · H̃

∗
]

+ H̃ ·
[ ˜̄̄
ζ(−F0) · Ẽ

∗ + ˜̄̄μ(−F0) · H̃
∗
]

− H̃
∗ ·

[ ˜̄̄
ζ(F0) · Ẽ + ˜̄̄μ(F0) · H̃

]

= Ẽ
∗ · ˜̄̄ε(F0) · Ẽ − Ẽ · ˜̄̄ε(−F0) · Ẽ

∗

− H̃
∗ · ˜̄̄μ(F0) · H̃ + H̃ · ˜̄̄μ(−F0) · H̃

∗

+ Ẽ
∗ · ˜̄̄
ξ(F0) · H̃ + H̃ · ˜̄̄

ζ(−F0) · Ẽ
∗

− H̃
∗ · ¯̄ζ(F0) · Ẽ − Ẽ · ˜̄̄

ξ(−F0) · H̃∗. (G3)

Applying the tensor identity a · ¯̄χ · b = (a · ¯̄χ · b)T = b ·
¯̄χT · a (scalar quantity) to the terms at the right in the last

equality of Eq. (G3):

X = Ẽ
∗ ·

[ ˜̄̄ε(F0)− ˜̄̄εT(−F0)
]

· Ẽ

− H̃
∗ ·

[ ˜̄̄μ(F0)− ˜̄̄μT(−F0)
]

· H̃

+ Ẽ
∗ ·

[ ˜̄̄
ξ(F0)+ ˜̄̄

ζ T(−F0)

]
· H̃

− H̃
∗ ·

[
¯̄ζ(F0)+ ˜̄̄

ξT(−F0)

]
· Ẽ. (G4)

Inserting Eq. (G4) into Eq. (G1) and considering that the
resulting relation must hold for any fields:

˜̄̄ε(F0) = ˜̄̄εT(−F0), (G5a)

˜̄̄μ(F0) = ˜̄̄μT(−F0), (G5b)

˜̄̄
ξ(F0) = −˜̄̄

ζ T(−F0), (G5c)

˜̄̄
ζ(F0) = −˜̄̄

ξT(−F0), (G5d)

which are equivalent to Eq. (10).

APPENDIX H. INTERPRETATION OF THE
TRANSVERSE CONSTITUTIVE TENSORS

The transverse tensors in Eqs. (G5a)–(G5d) are clearly
seen in Appendix G, to stem from the fields D̃∗ and −B̃∗,
which, according to Eq. (7), are related to their time-
reversed counterparts by D̃∗ = T{D̃} and −B̃∗ = T{B̃}.
Therefore, the transverse dyadics may be interpreted as
corresponding to the medium seen in the time-reversed
problem.

APPENDIX I. DERIVATION OF THE LINEAR
TIME-INVARIANT MEDIUM

NONRECIPROCITY/RECIPROCITY CONDITION:
EQ. (16)

Eq. (E5) with unconjugated quantities primed and con-
jugated quantities double-primed:

∇ · (Ẽ′ × H̃
′′ − Ẽ

′′ × H̃
′
)

= jω
(

Ẽ
′′ · D̃

′ − Ẽ
′ · D̃

′′ + H̃
′ · B̃

′′ − H̃
′′ · B̃′

)

+ Ẽ
′′ · J̃

′ − Ẽ
′ · J̃

′′
. (I1)

Considering that the domain of interest (i.e., the integration
domain) will not include the sources (Sec. XIV), and hence
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dropping the source terms in Eq. (I1):

∇ · (Ẽ′ × H̃
′′ − Ẽ

′′ × H̃
′
)

= jω
(

Ẽ
′′ · D̃

′ − Ẽ
′ · D̃

′′ + H̃
′ · B̃

′′ − H̃
′′ · B̃′.

)
(I2)

Applying in Eq. (I2) substitutions similar to those in
Appendix H:

∇·
(

Ẽ
′ × H̃

′′ − Ẽ
′′ × H̃

′)

= jω
[
Ẽ

′′ ·
( ˜̄̄ε − ˜̄̄εT

)
· Ẽ

′ − H̃
′′ ·

( ˜̄̄μ− ˜̄̄μT
)

· H̃
′

+ Ẽ
′′ ·

( ˜̄̄
ξ + ˜̄̄

ζ T
)

· H̃
′ − H̃

′′ ·
( ˜̄̄
ζ + ˜̄̄

ξT
)

· Ẽ
′
]

= 0,

(I3)

which is equivalent to Eq. (16)

APPENDIX J: DERIVATION OF THE S-MATRIX
NONRECIPROCITY/RECIPROCITY CONDITION:

EQ. (18)

In Eq. (I3), elimination of the right-had side from
general Onsager-Casimir relations [Eqs. (11a)–(11c)],
integration over volume V of the surface S defining the
system (Fig. 5), and application of Gauss theorem on the
left-hand side:

�
S

(
Ẽ

′ × H̃
′′ − Ẽ

′′ × H′
)

· n̂ds = 0. (J1)

Total field as the sum of fields at all the ports [Eq. (14)],
with terminal local reference planes placed at z = 0 on the
surface of the network:

Ẽt(x, y, z) =
∑

p

(
ap + bp

)
ẽt,p(x, y), (J2a)

H̃t(x, y, z) =
∑

p

(
ap − bp

)
h̃t,p(x, y). (J2b)

Inserting single-primed and double-primed instances of
Eqs. (J2a) and (J2b) into Eq. (J1) yields

�
S

(
Ẽ

′ × H̃
′′ − Ẽ

′′ × H′
)

· n̂ds = 0 = I1 − I2, (J3)

I1 =
�

S

[∑
p

(
a′

p + b′
p

)
ẽ′

t,p(x, y)

×
∑

q

(
a′′

q − b′′
q

)
h̃

′′
t,q(x, y)

]
· n̂ds,

=
∑

p

∑
q

(
a′

pa′′
q − a′

pb′′
q + b′

pa′′
q − b′

pb′′
q

)

×
�

S

[
ẽ′

t,p(x, y)× h̃
′′
t,q(x, y)

]
· n̂ds

︸ ︷︷ ︸
=2δpq by orthogonality (Sec. XIV)

= 2
∑

p

(
a′

pa′′
p − a′

pb′′
p + b′

pa′′
p − b′

pb′′
p

)
, (J4a)

I2 =
�

S

[∑
p

(
a′′

p + b′′
p

)
ẽ′′

t,p(x, y)

×
∑

q

(
a′

q − b′
q

)
h̃

′
t,q(x, y)

]
· n̂ds

=
∑

p

∑
q

(
a′′

pa′
q − a′′

pb′
q + b′′

pa′
q − b′′

pb′
q

)

×
�

S

[
ẽ′′

t,p(x, y)× h̃
′
t,q(x, y)

]
· n̂ds

︸ ︷︷ ︸
=2δpq by orthogonality (Sec. XIV)

= 2
∑

p

(
a′′

pa′
p − a′′

pb′
p + b′′

pa′
p − b′′

pb′
p

)
, (J4b)

so that

I1 − I2

= 2
∑

p

(
�

��a′
pa′′

p − a′
pb′′

p + b′
pa′′

p −�
��

b′
pb′′

p

)

−
(
�

��a′′
pa′

p − a′′
pb′

p + b′′
pa′

p −�
��

b′′
pb′

p

)

= 4
∑

p

(
b′

pa′′
p − a′

pb′′
p

)
. (J4c)

Inserting Eq. (J4C) into Eq. (J3):

∑
p

(
b′

pa′′
p − a′

pb′′
p

)
= 0, (J5)

which may be alternatively written in the matrix form

∑
p

(
b′

pa′′
p − a′

pb′′
p

)
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= [b′
1, b′

2, . . .][a′′
1, a′′

2, . . .]T − [a′
1, a′

2, . . .][b′′
1, b′′

2, . . .]

= b′a′′T − a′b′′T = 0. (J6)

Recalling the definition of the S-matrix [Eq. (15)]:

b = Sa, (J7a)

for all b = [b1, b2, . . .]T and a = [a1, a2, . . .]T.
(J7b)

Eliminating, using Eq. (J7), b′ and b′′ in the last equality
of (J6):

b′a′′T − a′b′′T = (Sa′)a′′T − a′(Sa′′)T

= Sa′a′′T − a′a′′TST

= a′a′′TS − a′a′′TST

= a′a′′T(S − ST).

= 0 (J8)

Since the last equality must hold true for any source sets a′
and a′′, one must have

S − ST = 0 or S = ST, (J9)

which is equivalent to Eq. (18)

APPENDIX K: INEXISTENCE OF A
MEDIUM-BASED GENERALIZED RECIPROCITY

RELATION [EQ. (16)] FOR AN LINEAR
TIME-VARIANT (AND ALSO NONLINEAR)

MULTIPORT NETWORK

Maxwell equations for set of prime [175] (excitation-
response) fields:

∇ × E′ = −∂B′/∂t, (K1a)

∇ × H′ = ∂D′/∂t + J′. (K1b)

Maxwell equations for set of double-prime (excitation-
response) fields:

∇ × E′′ = −∂B′′/∂t. (K2a)

∇ × H′′ = ∂D′′/∂t + J′′. (K2b)

Subtracting Eq. (K1a) dot-multiplied by H′′ from Eq.
(K2b) dot-multiplied by E′ and doing the same with

swapped prime and double-prime quantities,

E′ · ∇ × H′′ − H′′ · ∇ × E′

= E′ · ∂D′′/∂t + E′ · J′′ + H′′ · ∂B′/∂t, (K3a)

E′′ · ∇ × H′ − H′ · ∇ × E′′

= E′′ · ∂D′/∂t + E′′ · J′ + H′ · ∂B′′/∂t, (K3b)

and applying the identity A · ∇ × B − B · ∇ × A = −∇ ·
(A × B):

−∇ · (E′ × H′′) = E′ · ∂D′′/∂t + E′ · J′′ + H′′ · ∂B′/∂t,
(K4a)

−∇ · (E′′ × H′) = E′′ · ∂D′/∂t + E′′ · J′ + H′ · ∂B′′/∂t.
(K4b)

Subtracting Eq. (K4a) from Eq. (K4b):

∇ · (E′ × H′′ − E′′ × H′)

= E′′ · ∂D′/∂t − E′ · ∂D′′/∂t

+ H′ · ∂B′′/∂t − H′′ · ∂B′/∂t

+ E′′ · J′ − E′ · J′′. (K5)

Eliminating the terms involving currents in Eq. (K5), since
the currents are assumed to be outside the network (Fig. 5):

∇ · (E′ × H′′ − E′′ × H′)

= (E′′ · ∂D′/∂t − E′ · ∂D′′/∂t

+ H′ · ∂B′′/∂t − H′′ · ∂B′/∂t). (K6)

Inserting the time-domain version of the constitutive rela-
tions of Eq. (B1) to accommodate LTV [ ¯̄ε = ¯̄ε(t), etc.] and
nonlinear [ ¯̄ε = ¯̄ε(E, H), etc.] media,

D = ¯̄ε(F0) ∗ E + ¯̄ξ(F0) ∗ H, (K7a)

B = ¯̄ζ(F0) ∗ E + ¯̄μ(F0) ∗ H, (K7b)

into Eq. (K6):

∇ · (E′ × H′′ − E′′ × H′)

= E′′ · ∂
[
¯̄ε(F0) ∗ E′ + ¯̄ξ(F0) ∗ H′

]
/∂t

− E′ · ∂
[
¯̄ε(F0) ∗ E′′ + ¯̄ξ(F0) ∗ H′′

]
/∂t

+ H′ · ∂
[ ¯̄ζ(F0) ∗ E′′ + ¯̄μ(F0) ∗ H′′

]
/∂t

− H′′ · ∂
[ ¯̄ζ(F0) ∗ E′ + ¯̄μ(F0) ∗ H′

]
/∂t. (K8)
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Further applying the rule ∂(f ∗ g)/∂t = ∂f /∂t ∗ g = f ∗
∂g/∂t:

∇ · [
E′ × H′′ − E′′ × H′]

= E′′ ·
(
¯̄ε(F0) ∗ ∂E′/∂t + ¯̄ξ(F0) ∗ ∂H′/∂t

)

− E′ ·
[
¯̄ε(F0) ∗ ∂E′′/∂t + ¯̄ξ(F0) ∗ ∂H′′/∂t

]

+ H′ ·
[ ¯̄ζ(F0) ∗ ∂E′′/∂t + ¯̄μ(F0) ∗ ∂H′′/∂t

]

− H′′ ·
[ ¯̄ζ(F0) ∗ ∂E′/∂t + ¯̄μ(F0) ∗ ∂H′/∂t

]
(K9)

or

∇ · (
E′ × H′′ − E′′ × H′)

= E′′ · ¯̄ε(F0) ∗ ∂E′/∂t + E′′ · ¯̄ξ(F0) ∗ ∂H′/∂t

− E′ · ¯̄ε(F0) ∗ ∂E′′/∂t − E′ · ¯̄ξ(F0) ∗ ∂H′′/∂t

+ H′ · ¯̄ζ(F0) ∗ ∂E′′/∂t + H′ · ¯̄μ(F0) ∗ ∂H′′/∂t

− H′′ · ¯̄ζ(F0) ∗ ∂E′/∂t − H′′ · ¯̄μ(F0) ∗ ∂H′/∂t
(K10)

and grouping terms with the same constitutive parameters:

∇ · (
E′ × H′′ − E′ × H′)

= E′′ · ¯̄ε(F0) ∗ ∂E′/∂t − E′ · ¯̄ε(F0) ∗ ∂E′′/∂t

+ H′ · ¯̄μ(F0) ∗ ∂H′′/∂t − H′′ · ¯̄μ(F0) ∗ ∂H′/∂t

+ E′′ · ¯̄ξ(F0) ∗ ∂H′/∂t − E′ · ¯̄ξ(F0) ∗ ∂H′′/∂t

+ H′ · ¯̄ζ(F0) ∗ ∂E′′/∂t − H′′ · ¯̄ζ(F0) ∗ ∂E′/∂t.
(K11)

There is no way, even approximate, to reduce Eq. (K11)
to an equation of the type of Eq. (I3) [or Eq. (16)]. So
this relation is used erroneously in Ref. [19] in reference
to nonlinear systems.
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