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Technical Paper

On Exploring Hidden Structures Behind
Cervical Cancer Incidence

Niko Lietzén, MSc1, Janne Pitkäniemi, PhD2,3, Sirpa Heinävaara, PhD2,3,
and Pauliina Ilmonen, PhD1

Abstract
Finding new etiological components is of great interest in disease epidemiology. We consider time series version of invariant
coordinate selection (tICS) as an exploratory tool in the search of hidden structures in the analysis of population-based registry
data. Increasing cancer burden inspired us to consider a case study of age-stratified cervical cancer incidence in Finland between
the years 1953 and 2014. The latent components, which we uncover using tICS, show that the etiology of cervical cancer is age
dependent. This is in line with recent findings related to the epidemiology of cervical cancer. Furthermore, we are able to explain
most of the variation of cervical cancer incidence in different age groups by using only two latent tICS components. The second
tICS component, in particular, is interesting since it separates the age groups into three distinct clusters. The factor that separates
the three clusters is the median age of menopause occurrence.
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Introduction

Increasing cancer burden has made researchers worldwide

search for factors that explain the increasing trends.1 In addi-

tion to age, period, and cohort, several other observable factors

have an effect on the trends in cancer incidence. Improved

diagnostics, cancer screening programs, and general awareness

have increased the incidence of many cancers. Additionally,

several lifestyle-related factors have an effect on the cancer

incidence. For example, changes in smoking prevalence have

a clear delayed effect on the incidence of lung cancer. How-

ever, there are also unknown and unobservable underlying fac-

tors that have effects on cancer incidence rates. Identification

and quantification of these unknown factors would further help

in understanding the trends in cancer incidence data.

In this article, we consider a time series version of invariant

coordinate selection (tICS) in the context of latent components

of calendar time variation in incidence. Invariant coordinate

selection is closely related to the more famous independent

component analysis (ICA). Under certain assumptions, the ICS

procedure provides a solution to the independent component

problem. The objective in ICS is to transform the observed data

into an invariant coordinate system. Occasionally, the new

coordinate system reveals structures from the data that are not

visible in the original coordinate system. The clear advantage

of ICS, when compared to, for example, the frequently used

principal component analysis (PCA), is that the chosen scales

and units of measurement have no effect on the results.

Invariant coordinate selection was presented as an exploratory

tool for searching interesting features from independent and iden-

tically distributed (i.i.d.) multivariate data.2,3 In this article, we
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present a time series version of ICS, denoted by tICS. Similarly as

in the i.i.d. case, under certain assumptions, the method provides

a solution to the time series ICA (or blind source separation

[BSS]) unmixing problem. Independent component analysis has

been applied successfully to analyze, for example, electroence-

phalography (EEG) data sets of the brain4 and to cluster mam-

mogram data sets.5 In this article, we however do not assume an

underlying ICA model. Instead of that, we, in the spirit of Tyler

et al,3 apply tICS as an exploratory tool in the search of hidden

underlying structures from cancer incidence data.

We apply the tICS transformation to a cervical cancer inci-

dence data set. The data set is from Finland between the years

1953 and 2014 and it is available online.6,7 Incidence of many

cancers has increased in Finland. However, an effective cervi-

cal cancer screening program has enabled to treat precancerous

conditions, and because of that, the cervical cancer incidence

rate has decreased.8,9

Ethical Considerations

The data set used in this study is available in the public domain

and can be accessed from the web site of the NORDCAN

database.6,7 Furthermore, the corresponding data set is pro-

vided as Supplemental Material.

Invariant Coordinate Selection

In this section, we review the scatter matrix-based ICS method

introduced in the study by Tyler et al.3

Let X 2 Rn�p, where, n > p. A location statistic T̂ (X) is a

p-vector valued statistic, that is affine equivariant in the sense that

T̂ðXAþ 1nb
T Þ ¼ ATT̂ðX Þ þ b;

for all nonsingular p � p matrices A and for all p-vectors b. A

scatter matrix ŜðX Þ is a positive definite p � p matrix valued

statistic, that is affine equivariant in the sense that

ŜðXAþ 1nb
T Þ ¼ ATŜðX ÞA;

for all nonsingular p � p matrices A and for all p-vectors b.

Elementary examples of a location statistic and a scatter

matrix are the sample mean vector and the sample covariance

matrix. There are several other location statistics and scatter

matrices, even families of them, that have different desirable

properties, for example, robustness, efficiency, limiting multi-

variate normality, and computational efficiency.10-12

Let T̂1(X) denote an arbitrary but fixed location statistic, and

let Ŝ1ðX Þ and Ŝ2ðX Þ denote arbitrary but fixed and different

scatter matrices. The ICS transformation ĜðX Þ for the data X is

defined such that if

ZT ¼ ĜðX Þ
�
X T � T̂1ðX Þ1Tn

�
;

then

T̂1ðZÞ ¼ 0; Ŝ1ðZÞ ¼ Ip; Ŝ2ðZÞ ¼ L ¼ diagðl1; . . . ; lpÞ;

where jl1j � jl2j � . . . � jlpj:

If the data is continuous, then the transformation matrix

ĜðX Þ is almost surely unique up to the signs of its row vectors.

Consequently, it is affine equivariant up to the signs, and it can

be used to transform the data to up to sign invariant coordi-

nates. Thus, affine transformations to the original data have no

effect on the procedure. The transformation ensures that when

examining the transformed data, the findings are true findings

and not artefacts of the chosen coordinate system. Note that

whereas PCA makes data uncorrelated, ICS makes data inde-

pendent with respect to two measures of dependence. Invariant

coordinate selection transformation can be seen as affine invar-

iant PCA that, on top of first-order dependencies, considers

second-order dependencies as well. In other words, PCA trans-

forms the data into a coordinate system, where the coordinates

are diagonal with respect to the covariance matrix. On the other

hand, ICS transforms the data into a coordinate system, where

the corresponding two scatter matrices are diagonal. Moreover,

whereas PCA is highly affected by scaling of the variables,

ICS, due to affine invariance, is not affected by scaling at all.

It can be shown that if the chosen location and scatter esti-

mates converge, so do the statistics Ĝ and L. Moreover, under

the assumption of asymptotic normality of the location and

scatter estimates, the statistics Ĝ and L are also asymptotically

normal.13-15

The scatter matrix based ICS transformation was first intro-

duced in the context of ICA.16 It was based on the use of the

regular covariance matrix and the scatter matrix based on

fourth moments. The transformation was named the fourth-

order blind identification transformation. Later, the ICS trans-

formation was considered in wider settings.3 In the independent

component model, the elements of a random p-vector are

assumed to be linear combinations of the elements of an unob-

servable p-vector with mutually independent components. The

aim in ICA is to recover the independent components by

estimating an unmixing matrix that transforms the observed

p-vector to independent components.17 If a scatter matrix is

diagonal for all random vectors with independent components,

then we say that the corresponding scatter matrix has the inde-

pendence property. Assuming that the chosen scatter matrices

have the independence property, the ICS procedure provides a

solution for the ICA problem.14,16,18,19 Under the assumption

of i.i.d. observations, the use of the scatter matrix-based ICS

transformation has not been limited to ICA. It has been applied,

for example, in finding hidden underlying structures of data, in

constructing affine invariant depth functions, in dimension

reduction, in analyzing mixture models, and in defining multi-

variate skewness and kurtosis measures.3,13-15,20

For time series data, we can obtain transformations similar

to ICS, by replacing the second scatter matrix in the transfor-

mation by an autocovariance matrix. Depending on the data set,

we could also use two autocovariance matrices with different

lags. In the context of second-order stationary time series, the

procedure is called the algorithm for multiple unknown signals

extraction (AMUSE).21 Like the scatter matrix-based ICA was

extended to ICS, we consider applying AMUSE transformation

in wider settings. We use it in dimension reduction and as an
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exploratory tool in the search of hidden structures in our case

study of cancer incidence data.

Invariant Coordinate Selection for
Time Series Data

In this section, we examine autocovariance matrix-based trans-

formations that have previously been considered in the case of

second-order stationary time series.21,22

Let X 2 Rn�p, n > p, be an observed p-variate time series

where the components of X are continuous stochastic pro-

cesses. The time series X contains n ordered observations and

we denote the ith observation by xi, such that xi 2 Rp for every

i 2 f1; 2; . . . ; ng. Likewise, we denote the kth component,

that is, kth column of X, by xðkÞ, where xðkÞ 2 Rn for every

k 2 f1; 2; . . . ; pg. Note that the word component here (as in

PCA) refers to the new coordinates given by the tICS transfor-

mation. Let t 2 f0; 1; . . . ; n� 1g and let T̂ðX Þ; Ŝ0ðX Þ, and

ŜtðX Þ denote the sample mean vector, the sample covariance

matrix, and the sample autocovariance matrix with lag t,

respectively, that are computed from X. The sample autocovar-

iance matrix is defined as

ŜtðX Þ ¼ 1
ðn� tÞ

Xn�t
j¼1
ðxj � T̂ðX ÞÞðxjþt � T̂ðX ÞÞT;

where the sample covariance matrix is obtained with t ¼ 0, up

to a constant.

In our approach, we use the symmetrized version of the

autocovariance matrix estimator. Note that the eigenvectors

of symmetric matrices are more stable to estimate when com-

pared to the estimation of the eigenvectors of nonsymmetric

matrices. One could alternatively use nonsymmetric autocovar-

iance matrices here. The symmetrized sample autocovariance

matrix is defined as

Ŝ
S

t ¼
1
2

�
Ŝt þ Ŝ

T

t

�
;

where Ŝ
S

t always produces symmetric estimates.

The time series ICS transformation matrix, that is, the

unmixing matrix, ĜðX Þ for the data X is now defined such

that if

ZT ¼ ĜðX Þ
�
X T � T̂ðX Þ1Tn

�
;

then

T̂ðZÞ ¼ 0; Ŝ0ðZÞ ¼ Ip; Ŝ
S

t ðZÞ ¼ L;

where L ¼ diagðl1; . . . ; lpÞ and jl1j � . . . � jlpj > 0:
For general time series data, we call the transformation time

series ICS or shortly tICS. The tICS transformation transforms

time series data to invariant coordinates and it may be used in

dimension reduction and/or as an exploratory tool in the search

of hidden structures from time series data. We can think that

ICS is an extension to PCA and tICS is incorporating the time

series structure to the ICS transformation.

The feasibility of the tICS procedure depends strongly on

the choice of the lag parameter t. The approach proposed in

literature is to try different values of t and choose the lag

parameter such that the estimate L has as distinct diagonal

elements as possible.23

Note that,

Ŝ0ðX Þ�1Ŝ
S

t ðX ÞĜðX Þ
T ¼ ĜðX ÞT L;

that is, the diagonal elements of L are the eigenvalues of

Ŝ0ðX Þ�1Ŝ
S

t ðX Þ; and the column vectors of ĜðX ÞT are the cor-

responding eigenvectors. If the diagonal elements of L are

distinct, then the solution is unique up to the signs of the eigen-

vectors. If the underlying stochastic processes are continuous,

then the transformation matrix ĜðX Þ is almost surely unique up

to the signs of its row vectors. Consequently, it is affine equiv-

ariant up to the signs, and it can be used to transform time series

data to invariant coordinates.

The eigenvalues of the tICS transformation can be seen as

relative autocovariances (with lag t) of the tICS components,

when the variances have been standardized to be equal to 1. For

further details regarding the interpretation of the eigenvalues,

see section 3 of the study by Tyler et al.3

We refer to the columns of Z as the estimated tICS compo-

nents. After deriving the estimate ĜðX Þ ¼ Ĝ 2 Rp�p; the

observed centered curves can be estimated using the inverse

Ĝ
�1

such that,

x̂tðjÞ ¼
Xq

k¼1
ztðkÞ½Ĝ

�1�jk ; t 2 f1; . . . ; ng and j; k; q 2 f1; . . . ; pg; ð1Þ

where ztðkÞ is the kth estimated tICS component at time point t,

q is the chosen number of tICS components used in the estima-

tion, and x̂tðjÞ is the resulting estimate for the observed jth time

series at time t. Note that if we use all the tICS components, that

is, choose q ¼ p, the estimates are then exactly the centered

versions of the original time series. Furthermore, the q compo-

nents used in the estimation are the components that have the

largest absolute diagonal elements on the estimated matrix L.

Note that, the AMUSE estimator is known to converge

under the assumption of stationary BSS model.22 If the assump-

tion does not hold, then it is not known whether the estimators

converge or not. However, even under nonstationary data, the

corresponding estimators provide transformations into invar-

iant coordinates.

In this article, we apply the above-described method to

cancer incidence data. Note that, one could examine underly-

ing structures of cancer incidence data by applying other

ICA and BSS type approaches. One does not have to limit

to transformations that are based on using two autocovariance

matrices. One can replace the autocovariance matrices with

other time-dependent scatter matrices (eg affine equivariant

spatial sign autocovariance matrices24). Moreover, one could

also consider joint diagonalization of several (more than two)

time-dependent scatter matrices, or other similar approaches,

see for example.25-27

Lietzén et al 3



Underlying Trends in Cancer Incidence

In this section, we apply time series ICS transformation to time

series data of age-stratified cervical cancer incidence rates

between the years 1953 and 2014 in Finland. The data set was

obtained from the Finnish population-based cancer registry that

has excellent data quality and coverage of registration of solid

tumors.28,29 The data are available on the web page of the

NORDCAN project.6,7

During this 60-year period, cervical cancer incidence has

been affected mostly by the nationwide screening program.30

The organized cervical cancer screening program was intro-

duced in 1963 and it reached full coverage of Finland during

the decade. Municipalities are responsible for inviting

females between the ages of 30 and 60 for inspection every

5 years. In some municipalities, invitations are extended also

to females aged 25 and/or 65 years. Thus, we have divided the

data into 5-year age groups. We search for underlying struc-

tures that can be used in describing changes in cancer inci-

dences over the years.

Due to the sparse number of cancer incidence in the age

groups of younger than 35, they have been combined into a

single group. Likewise, age groups of older than 74 have been

combined into a single group. Thus, our data set contains 10

separate age groups, resulting in a 10-dimensional time series

with 62 observations. The age groups with the lowest mean and

median incidence are under 35, 70 to 74, and over 75. Annual

incidences of the different age groups are presented in Figure 1.

The incidences in Figure 1 are all positive as the figure displays

the actual observed noncentered incidences. The sample mean

time series of the cervical cancer incidence is presented as a

black curve in Figure 1.We performed the tICS transformation

using the sample covariance matrix as the first scatter matrix

and the sample autocovariance matrix with lag parameter as the

second scatter matrix. The first three estimated tICS compo-

nents are presented in Figure 2. We want to emphasize that the

scales of the tICS components are not relevant. Instead, we

seek for curves that have interesting shapes. The first three

components have the largest corresponding absolute diagonal

values on the estimated matrix L, and thus, they are the most

important. The remaining seven tICS components resemble

noise and are presented in the Online Appendix.

The shape of the first component is similar to the mean

curve time series, compare the black curve in Figure 1 and the

curve in Figure 2A. We name the first component as “the

average.” The first component represents the average cervical

cancer incidence.

The shape of the second tICS component is the most inter-

esting (see Figure 2B). It represents increasing trend from 1953

until mid-70s and a decreasing trend after that. We call the

second component “the turning point.”

The third tICS component in Figure 2C is less interesting

when compared to the first tICS components. Like the last

seven components, the third component has a great deal of

resemblance to random variation, with no systematic behavior.

The incidence curves in different age groups can be roughly

estimated using only the first two components, see Equation (1)

and the green curves in Figures 3 and 4. In Figures 3 and 4, the

green curves have almost identical trajectories compared to

the red curves, where the red curves are the estimated incidence

curves using three tICS components. This is an indication of the

third tICS component not providing significant improvement in

explaining the variation of the original cervical cancer

Figure 1. Age-stratified cervical cancer incidence in Finland between 1953 and 2014.
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Figure 2. The first three estimated tICS components for 1 ¼ 1. A, First tICS comp. B, Second tICS comp. C, Third tICS comp. tICS indicates
time series version of invariant coordinate selection.

Figure 3. Cervical cancer incidence in Finland between 1953 and 2014 in terms of the estimated components. The estimation is performed
using Equation 1. Note that the black curve, that is estimated using all of the tICS components, is the centered version of the corresponding
incidence curve in Figure 1. tICS indicates time series version of invariant coordinate selection.

Lietzén et al 5



incidences. The age groups of under 35, 70 to 74, and over 75

have the lowest mean incidence. Thus, random variation has a

larger effect in these age groups, which could be the reason for

the estimates being worse when compared to the other age

groups.

In order to visually observe cluster structures, the scores of

the components, that is, the curves

cik ¼ ztðkÞ½Ĝ
�1�ik ; k 2 f1; 2; 3g; i 2 f1; . . . ; pg;

are presented in Figure 5, where p ¼ 10 is the number of age

groups in our case study. We refer to the value ½Ĝ�1�ik as the

loading related to the age-group i and the tICS component k. If

the absolute value of the loading is large, that specific tICS

component has a high impact in explaining the variation of the

specific age-group. The curves with the highest absolute load-

ings are the top and bottom curves in Figure 5. Likewise, low

absolute loading values indicate that the specific tICS compo-

nent has a low impact in explaining the variation of the specific

age-group. The curves with low absolute loadings are the mid-

dle curves in Figure 5. The curves cik provide visual clustering

based on the first 3 components.

We want to further emphasize that the curves inside a single

image of Figure 5 are all the same up to a constant. Hereby, the

negative and positive signed curves will always intersect at

some point of Figure 5 (the tICS components are centered and

none of the are constant). The figure is formed such that, for

example, for the time series of the age-group 65 to 69 for tICS

component 2, we take the second tICS component, that is pre-

sented in Figure 2B, and multiply it with the corresponding

loading, that is ½Ĝ�1�82 here. The loading ½Ĝ�1�82 is the largest

(positive) and the loading ½Ĝ�1�22, which corresponds to the

age-group 35 to 39, is the smallest (negative) loading among

the loadings ½Ĝ�1�i2; i 2 f1; . . . ; 10g, which are the loadings

related to the second tICS component. The largest and smallest

loadings can be conveniently verified from, for example, the

peak of the second tICS component in Figure 5.

Figure 4. The differences between the observed cervical cancer incidence curves and the estimated incidence curves using the tICS
components. The tICS components are estimated using Equation 1. tICS indicates time series version of invariant coordinate selection.
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The first set of curves, c�1, are ordered based on the trend of

cancer incidence in a specific age-group. The curves represent-

ing age groups, where the incidence has been decreasing, that

is, the behavior is similar to the mean curve, have a positive

loading in this component. The largest positive loading is for

the age-group 50 to 54, which is the age-group where the

incidence has decreased the most. The age groups that have a

negative loading with respect to the first component have the

first tICS component mirrored in Figure 5. The age-group of

older than 75 has the largest negative loading with respect to

the first component. The behavior of the incidence in this age-

group is the opposite compared to the mean cancer incidence

(see Figure 1).

The second set of curves, c�2, provide clustering based on the

second component in Figure 5. Visual clustering reveals that

the second component splits the age groups according to the

age of menopause. Age groups of older than 60 have a positive

loading, the age-group of 55 to 59 has a loading close to zero,

and the age groups younger than 50 have a negative loading.

Visual clustering based on the remaining components,

including the third tICS component in Figure 5, reveal nothing

interesting, as was expected from random variation.

Discussion

In our case study of cervical cancer incidence in Finland, tICS

produced interesting findings. The uncovered latent structures

support recent findings discovered using other methods.9 The

first component clustered the age groups with respect to trend.

It separated the age groups where cancer incidence has been

decreasing from those where the incidence has been increasing

or has stayed relatively same. The information provided by the

clustering of the first component could also be easily be ver-

ified from Figure 1, and thus, the clustering provided by this

component is not particularly interesting. The components after

the second one seemed to be random variation, that is, unin-

teresting noise. The tICS components 4 to 10 are presented in

the Online Appendix.

The loadings with respect to the second tICS component

clustered the different age groups into three separate clusters.

The average age of the occurrence of menopause is the factor

that separates these clusters. Finnish women usually experience

menopause between the ages 45 and 55, where the median age

of natural menopause has been estimated to be 51.31 The first

cluster contains age groups with negative loadings, which are

the groups of younger than 55. The second cluster contains age

groups with positive loadings, which are the groups of older

than 59. The third cluster contains only the age-group of 55 to

59 and this group has an almost zero loading with respect to the

second component.

The behavior of the second component supports the findings

of the calendar time varying contribution of early and late age-

related components in cervical cancer.9 The first crossing point

of the curves is soon after starting the cervical cancer screening

in 1963. Hidden structures in the incidence in age groups close

to menopause are different from those in the age groups far

away from menopause. This cooccurs at same age as meno-

pause, suggesting potential role of hormonal changes in the

etiology of cervical cancer.

For future work, we could consider alternative stratifications

in our analysis, for example, stratification according to cohort.

Furthermore, we could try to find new explaining variables that

have similar shapes as the second tICS component. We could

end up finding previously ignored variables that give us new

insight into the etiology of cervical cancer.

Generally, the tICS procedure is sensitive to the choice of

the lag parameter t. In order to solidify our findings, we per-

formed the tICS procedure with several different values of t,
and the best separation was obtained using lag t ¼ 1: The

corresponding lag produced the most distinct values for the

Figure 5. Clustered age-stratified cervical cancer incidences for the first three tICS components. The curves are the tICS components
multiplied with the corresponding loadings. tICS indicates time series version of invariant coordinate selection.

Lietzén et al 7



diagonal elements of the estimated matrix L and the best esti-

mated curves in Figures 3 and 4. However, the most interesting

findings - the cluster structures visible in Figure 5 - stayed

almost identical with lag parameters t ¼ 1; 2; 3; 5. Hereby, in

our case study, the procedure was not highly sensitive to

changes in the choice of t. The results with lag parameters

t ¼ 2; 3; 5; 15 are presented in the Online Appendix.

For comparison, we also applied the second-order blind

identification (SOBI)25 procedure. In SOBI, the second diag-

onalization is replaced with a joint diagonalization with respect

to multiple autocovariance matrices with distinct lags. This

makes the choice of the lag parameter less decisive. The shapes

of the first two components were similar to our findings. We

performed a similar estimation using the first three SOBI com-

ponents as in Figures 3 and 4. The performance of the first two

and three SOBI components, with every set of lags that we

tried, was considerably worse in explaining the variation of the

centered versions of the original time series. One can always

diagonalize multivariate data with respect to two scatter

matrices. However, if one is outside of ICA/BSS settings, diag-

onalization of more than two scatter matrices is not always

possible. This could explain that the SOBI method gives worse

results here. Thus, we decided to use the tICS procedure instead

of SOBI in this case study.

Since the tICS procedure is affine invariant, it ensures that

the findings are not simply artifacts of the used coordinate

system. Exploratory tools such as PCA are not affine invariant.

Affine transformations of the original data would yield com-

pletely different results in PCA, whereas tICS would remain

unaffected. For further comparison, we also applied the PCA

transformation to this data set. The first two principal compo-

nents were similar in shape to the first two tICS components.

However, like in the case of SOBI, the estimation using the first

two and three principal components yielded worse results in

comparison to the estimation of the first two and three tICS

components visible in Figures 3 and 4.

We are facing increasing cancer burden in Western coun-

tries.1 There have been extensive studies of the risk factors of

specific cancers. However, attributable fraction to known risk

factors is often quite low, leaving us with the need of further

understanding the etiology. Identification of latent components

of cancer incidence may open new prospects. Furthermore, if

age-related latent components explaining the cancer incidence

rates are modifiable, they are important in future efforts of

reducing cancer burden in Finland and worldwide.
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