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Correlated bursts in temporal 
networks slow down spreading
Takayuki Hiraoka   1 & Hang-Hyun Jo   1,2,3

Spreading dynamics has been considered to take place in temporal networks, where temporal 
interaction patterns between nodes show non-Poissonian bursty nature. The effects of inhomogeneous 
interevent times (IETs) on the spreading have been extensively studied in recent years, yet little is 
known about the effects of correlations between IETs on the spreading. In order to investigate those 
effects, we study two-step deterministic susceptible-infected (SI) and probabilistic SI dynamics when 
the interaction patterns are modeled by inhomogeneous and correlated IETs, i.e., correlated bursts. By 
analyzing the transmission time statistics in a single-link setup and by simulating the spreading in Bethe 
lattices and random graphs, we conclude that the positive correlation between IETs slows down the 
spreading. We also argue that the shortest transmission time from one infected node to its susceptible 
neighbors can successfully explain our numerical results.

Characterizing the interaction structure of constituents of complex systems is of utmost importance to under-
stand the dynamical processes in those systems. The interaction structure has been modeled by a network, where 
nodes and links denote the constituents and their pairwise interactions, respectively1,2. When the interactions 
are temporal, one can adopt a framework of temporal networks3, where links are considered to exist only at the 
moment of interaction. Events in the temporal interaction patterns are often known to be non-Poissonian or 
bursty4–6, e.g., as shown in human communication patterns7–14. Here, bursts denote a number of events occur-
ring in short active periods separated by long inactive periods, which can be related to 1/f noise15–17. In general, 
non-Poissonian temporal patterns can be fully understood both by inhomogeneous interevent times (IETs) and 
by correlations between IETs18. Inhomogeneous and correlated IETs have been called correlated bursts5,19. Then, 
along with the information on who interacts with whom, one can comprehensively characterize the topological 
and temporal interaction structure of complex systems20.

Non-Poissonian bursty interactions between constituents of a system have been known to strongly affect the 
dynamical processes taking place in the system21–32; in particular, spreading dynamics in temporal networks 
has been extensively studied. An important question is what features of temporal networks are most relevant to 
predict the speed of propagation, e.g., of disease or information. One of the crucial and widely studied features is 
the inhomogeneity of IETs in the temporal interaction patterns. It was shown that the bursty interaction patterns 
can slow down the early-stage spreading by comparing the simulated spreading behaviors in some empirical net-
works and in their randomized versions21,23,29. The opposite tendency was also reported using another empirical 
network or model networks25,26,30.

In contrast to the IET distributions, yet little is known about the effects of correlations between IETs on the 
spreading, except for few recent works33,34. This could be partly because many previous works have considered the 
contagion dynamics, e.g., susceptible-infected (SI) dynamics31, with the assumption of an immediate infection 
upon the first contact between susceptible and infected nodes, hence without the need to consider correlated 
IETs. In another work35, probabilistic contagion dynamics, i.e., naturally involving multiple consecutive IETs, was 
studied by assuming inhomogeneous but uncorrelated IETs. Therefore, the effects of inhomogeneous and corre-
lated IETs on the spreading need to be systematically studied for better understanding the dynamical processes 
in complex systems.

In our paper, we study the effects of inhomogeneous and correlated IETs on the spreading taking place in 
temporal networks, by incorporating two contagion models, i.e., two-step deterministic SI and probabilistic SI 
dynamics. For modeling the inhomogeneous IETs, we consider power-law distributions of IETs, denoted by τ, as
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with power-law exponent α6. For characterizing the correlations between IETs, we adopt a memory coefficient 
M36 among others, e.g., bursty train sizes5. The memory coefficient M for a sequence of n IETs has been estimated 
by
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where μ1 (μ2) and σ1 (σ2) are the average and the standard deviation of the first (last) n� 1 IETs, respectively. 
Positive M implies the tendency of large (small) IETs being followed by large (small) IETs. Negative M points 
towards the opposite, while M �  0 for uncorrelated IETs. In our setup, both P(τ) and M are inputs of the model, 
requiring us to consider M as a parameter rather than an estimator. Then by controlling the shape of P(τ) and the 
value of M for interaction patterns between nodes, one can study the effects of correlated bursts on the spreading 
in temporal networks. By analyzing the contagion dynamics on a single link, and then by simulating the spreading 
in regular and random temporal networks, we conclude that the positively-correlated inhomogeneous IETs slow 
down the spreading.

Models
In order to study the spreading dynamics, we consider one of the extensively studied epidemic processes, i.e., 
susceptible-infected (SI) dynamics31: A state of each node in a network is either susceptible (S) or infected (I), and 
an infected node can infect a susceptible node by the contact with it. Here we assume that the contact is instanta-
neous. One can study a probabilistic SI (PSI) dynamics, in which an infected node can infect a susceptible node 
with probability η (0 �  η �  1) per contact, as depicted in Fig. 1(a), i.e.

S I I2�� �
η

Due to the stochastic nature of infection, multiple IETs can be involved in the contagion, hence the correlations 
between IETs in the contact patterns can influence the spreading behavior. The case with η �  1 corresponds to 
the deterministic version of SI dynamics, which we call one-step deterministic SI (1DSI) dynamics: A suscepti-
ble node is immediately infected after its first contact with an infected node, see Fig. 1(b). This dynamics can be 
described by

� � �S I I2

Finally, for studying the effect of correlations between IETs on the spreading in a simpler setup, we introduce 
two-step deterministic SI (2DSI) dynamics as a variation of generalized epidemic processes37–40, see Fig. 1(c). 

Figure 1. Schematic diagrams for (a) the probabilistic susceptible-infected (SI) dynamics, (b) the one-step 
deterministic SI dynamics, and (c) the two-step deterministic SI dynamics. For each node, the susceptible or 
intermediate state is represented by a dashed horizontal line, while the infected state is by a solid horizontal line. 
In each panel, a node u gets infected in the time denoted by an upper vertical arrow, then it tries to infect its 
susceptible neighbor v whenever they make contact (vertical lines). The successful infection of v by u is marked 
by a lower vertical arrow. The time interval between the infection of u and that of v (striped band) defines the 
transmission time r. For the definitions of r0 and �s, see the text.
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Here a susceptible node first changes its state to an intermediate state (S�) upon its first contact with an infected 
node; it then becomes infected after the second contact with the same or another infected node. This can be 
written as

� � � �
� � � �
S I S I

S I I
,

2

For modeling the interaction structure in a population, we focus on Bethe lattices as networks of infinite size, 
while regular random graphs and Erdös-Rényi random graphs will be later considered for finite network models. 
As for the temporal contact patterns, we assume that the contacts between a pair of nodes or on a link connecting 
these nodes are instantaneous and undirected. Moreover, the contact pattern on each link is assumed to be inde-
pendent of the states of two end nodes as well as of contact patterns on other links. The contact pattern on each 
link is modeled by a statistically identical event sequence with inhomogeneous and correlated IETs. For this, the 
shape of IET distribution P(τ) and the value of memory coefficient M are inputs of our model. Firstly, we consider 
a power-law IET distribution with a lower bound τmin and an exponential cutoff τc as follows:
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where �  is the upper incomplete Gamma function. We fix τmin �  1 without loss of generality and set τc �  103 in 
our work. We note that our conclusions are robust with respect to the choice of τc. Thus, we are left with one rele-
vant parameter, i.e., the power-law exponent α. Based on the empirical findings for α6, we consider the case with 
1.5 �  α �  3. Secondly, only the positive memory coefficient M is considered, precisely, 0 �  M �  0.4, based on the 
empirical observations36,41–43.

Results
Two-step deterministic contagion.  Single-link transmission.  For understanding the spreading behavior 
on temporal networks, we first focus on how long it takes for the infection to transmit across a single link, say, 
from a node u to its neighbor v. If u gets infected from its neighbor other than v in time tu, and later it infects v in 
time tv, the time interval between tu and tv defines the transmission time r �  tv �  tu. Here we assume that v is not 
affected by any other neighbors than u, for the sake of simplicity. In order for the infected u to infect the suscep-
tible v, u must wait at least for the next contact with v. This waiting or residual time is denoted by r0, see Fig. 1. 
For the one-step deterministic SI dynamics, r �  r0. Due to the independence of contact patterns of neighboring 
links, we can consider the infection of u to occur at random in time. In addition, since only the IETs larger than 
r contribute to the probability of having the transmission time r, we have the transmission time distribution as
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with μ denoting the mean IET, see Methods for the detailed derivation. The average transmission time is directly 
obtained as
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where σ2 denotes the variance of IETs6. Note that a larger variance of IETs results in a larger average transmission 
time, expected to slow down the spreading.

In general, r can be given as the sum of r0 and subsequent IETs, as depicted in Fig. 1(a,c), for the generalized 
epidemic processes, including our two-step deterministic SI (2DSI) dynamics. In the case with 2DSI dynamics, 
the transmission process involves two consecutive IETs. If the infection of u occurs during the IET of τi, then the 
transmission time is written as

τ� � �r r , (6)i0 1

with τi � 1 denoting the IET following τi. Information on the correlations between τi and τi� 1 is carried by the 
joint distribution P(τi, τi� 1) or the conditional distribution P(τi � 1|τi). Using P(τi � 1|τi) with τi � 1 �  r �  r0, Q1D(r) in 
equation (4) can be extended to obtain the transmission time distribution for the 2DSI case as
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where it is obvious from equation (6) that τi �  r0 and 0 �  r0 �  r, see Methods for the detailed derivation. The aver-
age transmission time is calculated as
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In order to relate this result to the memory coefficient in equation (2), we define a parameter as
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to finally obtain the analytical result of the average transmission time:
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In the case with M �  0 for uncorrelated IETs, one gets �r� 2D �  �r� 1D �  μ.
We remark that our result in equation (11) is valid for arbitrary functional forms of IET distributions as long 

as their mean and variance are finite. M is coupled with σ2/μ, implying that the impact of correlations between 
IETs becomes larger with broader IET distributions. More importantly, we find that a stronger positive correlation 
between consecutive IETs leads to a larger average transmission time. This can be understood in terms of the role 
of the variance of IETs in the average transmission time, as shown in the 1DSI case. That is, the variance of the 
sum of two consecutive IETs is amplified by the positive correlation between those IETs. Based on the result of the 
single-link analysis, the positive correlation between IETs is expected to slow down the spreading in a population.

Spreading in Bethe lattices.  In order to investigate the effects of correlations between IETs on the spreading in a 
population, we numerically study spreading dynamics in a Bethe lattice, i.e., a regular tree of infinite size in which 
every node has exactly k neighbors. One can relate this dynamics to the early-stage dynamics in regular random 
graphs, in which cycles are rare as long as the network size is sufficiently large. As mentioned, the contact pattern 
on each link is modeled by an independent and identical point process with the same P(τ) and M. Precisely, for 
each link, we draw n random values from P(τ) to make an IET sequence T �  {τi}i �  1, � ,n, for sufficiently large n. 
Using equation (2), we measure the memory coefficient from T, denoted by M� . Two IETs are randomly chosen in 
T and swapped only when this swapping makes �M  closer to M, i.e., the target value. By repeating the swapping, 
we obtain the IET sequence whose �M  is close enough to M, and from this IET sequence we get the sequence of 
contact timings for each link. Then the temporal network can be fully described by a set of contact timings for all 
links. Each simulation begins with one node infected at random in time, which we set as t �  0, while all other 
nodes are susceptible at this moment. For each simulation, we measure the number of infected nodes as a func-
tion of time, I(t). The average number of infected nodes � I(t)�  is found to exponentially increase with time, e.g., as 
shown in Fig. 2(a):

Figure 2. Two-step deterministic SI dynamics in Bethe lattices. (a) Average numbers of infected nodes as a 
function of time, �I(t)�, in Bethe lattices with k  �  4 for the same IET distribution with power-law exponent 
α �  1.5 in equation (3), but with various values of memory coefficient M. For each value of M, the average 
(dashed curve) and its standard error (shaded area) were obtained from 103 runs with different initial 
conditions. (b–g) Estimated exponential growth rates a, defined in equation (12) (top panels) and their relative 
growth rates a/a0 with a0 �  a(M �  0) (bottom panels) are plotted for various values of k, α, and M. The lines are 
guides to the eye.
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where a �  a(k, α, M) denotes the exponential growth rate, known as the Malthusian parameter44. a turns out 
to be a decreasing function of M, indicating the slowdown of spreading due to the positive correlation between 
IETs, see Fig. 2(b–d). The slowdown can be more clearly presented in terms of the relative growth rate a/a0 with 
a0 �  a(M �  0) for all cases of k and α, as shown in Fig. 2(e–g). We summarize the main observations from the 
numerical simulations as follows:

	 (i)	 a decreases with M.
	 (ii)	 a increases with α.
	(iii)	 a increases with k.
	(iv)	 The deviation of a/a0 from 1 tends to be larger for smaller α.

The observation (i) is expected from equation (11), so is (ii) as both μ and σ2/μ decrease with α. (iii) is trivial. 
(iv) implies that the effect of M becomes larger for smaller α, which can be roughly understood by a larger value 
of σ2/μ coupled to M in equation (11). We remark that equation (11) is the result for a single-link transmission, 
requiring us to study the transmission time in networks.

In order to comprehensively understand the above observations, in particular, the k-dependence of a, we need 
to study the effect of time-ordering between infections to different neighbors45. For this, we introduce the shortest 
transmission time as

�"� �r r rmin { , , }, (13)k
s

(1) ( 1)

where r(j) for j �  1, � , k �  1 denotes the transmission time from an infected node to its jth neighbor. Here we 
focus on the average of rs, denoted by � rs� , which is a function of k, α, and M. In Fig. 3(a), we numerically find 
that a�r s� is independent of M, implying that the effect of the correlations between IETs on spreading can be fully 
understood by �r s�. Then we write a as follows:

Figure 3. Two-step deterministic SI dynamics in Bethe lattices: The exponential growth rate a can be explained 
in terms of the average shortest transmission time �r s�, where r s is defined in equation (13). (a) a�r s� is overall 
independent of M for all values of k and α. (b) a�r s�, averaged over M, is an increasing function of k. The error 
bars represent standard deviation. (c) For the case of α � 1.5, �r s� is plotted as a function of k �  1 for various 
values of M. Each point was averaged over 5 � 10 5 realizations. In (a–c), the lines are guides to the eye. (d–f) 
Using a functional form of �r s� �  f �  g(k � 1) �δ  in equation (15), f, g, and δ are estimated for all values of α and 
M. In (e), using g �  g0 �  g1M, we estimate g0 and g1 and plot (g �  g0)/g1 against M, compared to the black line of 
y �  x. The estimated g0 and g1 are shown in the inset of (e).
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Here h(k, α) is generally expected to be a function of k and α, while only its k-dependence is clearly shown in 
Fig. 3(b), where h(k, α) increases with k. In Fig. 3(c) we observe that as k increases, � rs�  algebraically decays before 
converging to a constant, enabling us to assume that

� � � � � δ�r f g k( 1) , (15)s

where f, g, and δ are non-negative constants independent of k. By fitting the numerical results of �r s� using equa-
tion (15), we find how these constants depend on α and M, as summarized in Fig. 3(d–f).

Firstly, we find that f is overall independent of M. In the limit of k �  
 , � rs�  should asymptotically approach 
the smallest possible transmission time, denoted by rmin, leading to f �  rmin. For the 2DSI dynamics and by our 
setup, f �  τmin �  1 is expected, while the estimated values of f show systematic deviations from 1, possibly due to 
finite-size effects of k. Secondly and most importantly, g turns out to linearly increase with M such that

g g g M, (16)0 1� �

with positive coefficients g0 and g1, eventually leading to the linear dependence of � rs�  in equation (15) on M. 
Moreover, both g0 and g1 are found to decrease with α, shown in the inset of Fig. 3(e). These findings are compara-
ble to the analytical result of average transmission time in equation (11). Finally, the estimated values of δ appear 
to slightly increase with M, while we consider δ to be constant of M in our argument. In sum, we rewrite � rs�  in 
equation (15) as

� � � � � � �δ�r r g g M k( )( 1) (17)s min 0 1

Combining a in equation (14) and �r s� in equation (17), we obtain the relative growth rate a/a 0 as
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by which the observation (iv) can be understood: In one limiting case when � δ���r g k( 1)min 0 , the relative 
growth rate is approximated as

�
�

a
a

g
g g M

,
(19)0

0

0 1

which is independent of k but clearly showing the M-dependence. This can explain the numerical findings in the 
case with small α in Fig. 2(e). In the other limiting case when r g g M k( )( 1)min 0 1�� � � δ� , one gets

� � � δ�a
a

g M
r

k1 ( 1) ,
(20)0

1

min

i.e., a/a0 linearly but slightly decreases with M, showing a good agreement with the numerical results for large α 
in Fig. 2(g).

Conclusively, it turns out that the statistical properties of the shortest transmission time can account for the 
numerical results, while more refined approach needs to be taken for better understanding the effect of network 
structure on spreading, e.g., k-dependence of a in the case of Bethe lattices.

Probabilistic contagion.  Single-link transmission.  In a more realistic scenario than the two-step deter-
ministic contagion dynamics, the infection can be described by a stochastic process, i.e., probabilistic SI (PSI) 
dynamics: An infected node infects a susceptible node with probability η upon contact. Similarly to the deter-
ministic cases, we begin with the analysis for a single-link transmission. If the infection of u occurs during the IET 
of τi as depicted in Fig. 1(a), the transmission time for a successful infection of v after l failed attempts for l � 0 is

r
r l

r l

for 0,

for 0
(21)j

l

i j

0

0
1

� τ
�

�

�

��������

�
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�

�

Information on the correlations between τi, � , τi� l is carried by the joint distribution P(τi, � , τi� l) for l �  1 
consecutive IETs. The distribution of r, denoted by QP(r), can be written as the weighted sum of transmission time 
distributions for multi-step deterministic dynamics, similarly done in the previous work35:

Q r Q r( ) (1 ) ( ),
(22)l

l
lP

0
� η η� �
�




where Ql(r) denotes the distribution of transmission time after l failed attempts. Note that Q0(r) �  Q1D(r) in equa-
tion (4) and Q1(r) �  Q2D(r) in equation (7). Ql(r) for general l �  1 is obtained using the joint distribution P(τi, �, 
τi �l ) as
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where it is obvious from equation (21) that τi �  r0 and 0 �  r0 �  r, and δ denotes a Dirac delta function. Then one 
gets the average transmission time as follows:

� �μ
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For the details of the derivation, see Methods. We define the generalized memory coefficient between two IETs 
separated by j � 1 IETs 36 as
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We then obtain the analytical result of the average transmission time for the PSI dynamics as
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As we introduce only the correlations between two consecutive IETs in our model, we expect Mj to exponentially 
decay according to j, where the decaying coefficient is denoted by γ with |γ| �  1: Mj �  γMj� 1 �  �  �  γj� 1M1, where 
M1 �  M in equation (10). Finally, we have

r M1
2

1 1
2

(1 )
1 (1 ) (29)
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We note that this result is valid for arbitrary functional forms of IET distributions as long as their mean and vari-
ance are finite. Similarly to the deterministic case in equation (11), the average transmission time for the PSI case 
turns out to be a linearly increasing function of the memory coefficient M.

Spreading in Bethe lattices.  Next, we numerically examine the spreading behavior for the PSI dynamics with 
η �  1 in Bethe lattices. Similarly to the two-step deterministic case, we observe an exponential growth in the aver-
age number of infected nodes as well as the slowdown of spreading when the memory coefficient is positive. For 
example, the case with η �  0.1 is depicted in Fig. 4. As η approaches 1, the slowdown effect due to the correlated 
IETs becomes weak, as expected (not shown). Based on the results in Fig. 5, we make overall the same conclusions 
as in the 2DSI case: a is a decreasing (increasing) function of M (both α and k), and the deviation of a/a0 from 1 
tends to be larger for smaller α.

The above observations in the PSI case can be understood by the same argument made for the 2DSI case, 
namely, the functional form of a in equation (14) with � rs�  in equation (17), but with some important differences: 
Firstly, the shortest possible transmission time is rmin �  0, although the estimated values of f show systematic 
deviations from 0 in Fig. 5(d). This deviation is denoted by a small positive value ε, leading to f �  ε. Secondly, δ 
appears to be an increasing function of M rather than a constant in Fig. 5(f), which we assume to be δ �  δ0 �  δ1M 
with positive coefficients δ0 and δ1. We therefore modify �r s� in equation (17) as follows:

ε� � � � � � �δ δ� �r g g M k( )( 1) (30)
M

s 0 1
( )0 1

We note that due to the positive δ1, the above � rs�  may decrease with M but only for sufficiently large k and M. 
However, we find no evidence for the decreasing behavior in the ranges of k and M studied in our paper. Using 
equation (30), the relative growth rate is obtained as

ε

ε
�

� �

� � �
�

δ

δ δ

�

� �

a
a

g k

g g M k

( 1)

( )( 1) (31)
M

0

0

0 1
( )

0

0 1
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Since ε is a small number, we consider only the case of g k( 1)0
0��ε � δ�  to get the approximated relative growth 

rate as

a
a

g
g g M

k( 1) ,
(32)

M

0

0

0 1

1�
�

� δ

which can account for the k-dependence of a/a0, including the case with α �  1.5 in Fig. 4(e). In Fig. 4(e–g), we 
observe that the difference between curves of a/a0 for different ks increases and then decreases as α increases from 

Figure 4. Probabilistic SI dynamics with η �  0.1 in Bethe lattices. All notations and simulation details are the 
same as in Fig. 2.

Figure 5. Probabilistic SI dynamics with η �  0.1 in Bethe lattices. All notations and simulation details are the 
same as in Fig. 3.
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