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Cortical Tracking of Global and Local Variations of Speech
Rhythm during Connected Natural Speech Perception

Anna Maria Alexandrou, Timo Saarinen, Jan Kujala, and Riitta Salmelin

Abstract

■ During natural speech perception, listeners must track the
global speaking rate, that is, the overall rate of incoming linguis-
tic information, as well as transient, local speaking rate variations
occurring within the global speaking rate. Here, we address the
hypothesis that this tracking mechanism is achieved through
coupling of cortical signals to the amplitude envelope of the
perceived acoustic speech signals. Cortical signals were recorded
with magnetoencephalography (MEG) while participants per-
ceived spontaneously produced speech stimuli at three global
speaking rates (slow, normal/habitual, and fast). Inherently to
spontaneously produced speech, these stimuli also featured
local variations in speaking rate. The coupling between cortical
and acoustic speech signals was evaluated using audio–MEG
coherence. Modulations in audio–MEG coherence spatially dif-

ferentiated between tracking of global speaking rate, highlight-
ing the temporal cortex bilaterally and the right parietal cortex,
and sensitivity to local speaking rate variations, emphasizing the
left parietal cortex. Cortical tuning to the temporal structure of
natural connected speech thus seems to require the joint con-
tribution of both auditory and parietal regions. These findings
suggest that cortical tuning to speech rhythm operates on two
functionally distinct levels: one encoding the global rhythmic
structure of speech and the other associated with online, rapidly
evolving temporal predictions. Thus, it may be proposed that
speech perception is shaped by evolutionary tuning, a prefer-
ence for certain speaking rates, and predictive tuning, associated
with cortical tracking of the constantly changing-rate of linguistic
information in a speech stream. ■

INTRODUCTION

A large part of human auditory perception consists of
listening to natural connected speech in everyday com-
municative situations. In these situations, speech percep-
tion is guided by the temporal regularities in natural
connected speech, also referred to as speech rhythm.
Speech rhythm is tied to speaking rate, that is, habitual
word (2–3 Hz) and syllable (4–5 Hz) production fre-
quencies (Alexandrou, Saarinen, Kujala, & Salmelin, 2016).
Especially in natural speech, the speaking rate is remark-
ably flexible and demonstrates two types of intraindividual
variation (Grosjean & Lane, 1976). First, the global speak-
ing rate can be increased or decreased on-demand, as
a speaker can voluntarily modulate speech production
speed (Alexandrou et al., 2016; Grosjean & Lane, 1976);
this induces changes in the global rhythmic structure of
an utterance (Smith, Goffman, Zelaznik, Ying, & McGillem,
1995). Second, within a given global speaking rate, local,
involuntary variations in speaking rate occur during the
course of a single utterance (Miller, Grosjean, & Lomanto,
1984). Local variations in speaking rate underlie the quasi-
rhythmic (as opposed to perfectly rhythmic) pattern
observed in natural speech (Tilsen & Arvaniti, 2013).

Behavioral work has shown that, during natural speech
perception, listeners track both the global rhythmic
structure of the input, that is, the overall rate at which
the linguistic information is transmitted over time, as
well as the local rate of change in linguistic information
(Reinisch, 2016; Baese-Berk et al., 2014; Dilley & Pitt,
2010). This behavioral evidence suggests that tracking
both these aspects of speaking rate is crucial for success-
ful speech comprehension. Specifically, it has been pro-
posed that tracking of the global speaking rate allows the
listener to extract global information in the speech
stream, including segmental, prosodic, and nonlinguistic
information. These, in turn, can influence perception
of local events in speech. On the other hand, tracking
the local speaking rate has been suggested to contrib-
ute to forming expectations about upcoming events
and to help resolve spectrally ambiguous cues in the
speech signal. This tracking has been shown to signifi-
cantly influence the recognition of both function and
content words (e.g., Miller, Green, & Schermer, 1984;
Summerfield, 1981; Lasky, Weidner, & Johnson, 1976;
Liberman, Delattre, Gerstman, & Cooper, 1956). How-
ever, the neural correlates of the tracking mechanism
during the perception of natural, connected speech re-
main unknown.
Neuroimaging studies suggest that the cortex tracks

incoming acoustic speech signals, which manifests asAalto University
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coupling between cortical signals and the amplitude
envelope of the acoustic speech signal (acoustic ampli-
tude envelope; Gross et al., 2013; Peelle, Gross, & Davis,
2013). Nevertheless, existing evidence that cortical sig-
nals track the global speaking rate stems from studies
focusing on the perception of single sentences with
artificially manipulated global speaking rate (Hertrich,
Dietrich, & Ackermann, 2013; Ahissar et al., 2001). More-
over, the cortical tracking of local variations in speaking
rate in spontaneously produced speech has not been
examined as of present (but see Kayser, Ince, Gross, &
Kayser, 2015, for a study of phase-locking dynamics when
artificially inducing local speaking rate variations in a read-
aloud text). These studies have presented evidence that
the coupling between brain signals and the acoustic am-
plitude envelope is modulated as a function of global
speaking rate and local variations of speaking rate. However,
these studies have employed non-naturalistic linguistic
stimuli, and the variations in speaking rate were generated
artificially. We suggest that this kind of stimuli, with their
quite regular speaking rate and thus salient rhythmic
patterning, do not represent instances of real-life language
use. Moreover, such stimuli are presented in a highly
controlled experimental setting, where the speech segments
appear from complete silence and at regular intervals. This is
at odds with the considerably quasi-rhythmic rhythm in
spontaneously produced speech encountered in everyday
life. Finally, artificial increases in speaking rate have been
shown to result in linear changes in the duration of
linguistic units, whereas in spontaneously produced speech
increases in speaking rate are carried out in a nonlinear
manner; this, in turn, affects speech comprehension (Janse,
2004; Janse, Nooteboom, & Quené, 2003).
This study aims to provide a cortical-level characteriza-

tion of the behaviorally observed tracking of speech
rhythm during the perception of continuous, spontane-
ously produced speech, as we encounter it in real-life
communicative situations. We assume that this tracking
would be neurally implemented through the coupling
of cortical signals with acoustic signals, and in line with
behavioral evidence, it would be sensitive to both global
speaking rate and local variations in speaking rate. Moti-
vated by our previous work focusing on both behavioral
and spectral analysis of the acoustic amplitude envelope
(Alexandrou et al., 2016), as well as by empirical evidence
(Park, Ince, Schyns, Thut, & Gross, 2015; Doelling, Arnal,
Ghitza, & Poeppel, 2014; Peelle et al., 2013) and theoret-
ical models (Ghitza, 2011, 2012; Giraud & Poeppel,
2012), we hypothesized that this tracking would occur
at frequency ranges corresponding to the word (2–
4 Hz) and syllable (4–7 Hz) production frequencies.
Although the lower delta band (0.5–2 Hz) would have
been potentially of interest (e.g., Molinaro, Lizarazu,
Lallier, Bourguignon, & Carreiras, 2016; Vander Ghinst
et al., 2016; Bourguignon et al., 2013), we chose to focus
on the 2–4 Hz and 4–7 Hz bands for two reasons: First, in
the acoustic amplitude, the frequency range of the lower

delta band (0.5–1 Hz) corresponds to fluctuations in
timescales that are mainly associated with prosodic
features in a speech stream (Bourguignon et al., 2013;
Poeppel, Idsardi, & van Wassenhove, 2008); these fea-
tures are presumably not modulated as a function of
speaking rate (Ramus, Nespor, & Mehler, 1999). Second,
the power spectrum of cortical activity in the lower delta
band is characterized by a notable 1/f trend (pink noise;
Voss & Clarke, 1975), which would potentially confound
subsequent data analyses (e.g., Demanuele, James, &
Sonuga-Barke, 2007).

In this study, cortical signals were recorded with mag-
netoencephalography (MEG) while participants listened
to natural connected speech stimuli at three global speak-
ing rates: slow, normal (habitual), and fast. Audio–MEG
coherence was used to quantify how neural signals from
across the cortex track the acoustic amplitude envelope of
the perceived speech stimuli. Reaching beyond single
sentences, read-aloud text passages, or rehearsed narra-
tives used in earlier related studies, the present stimuli
consisted of unrehearsed, spontaneously produced con-
nected speech, featuring natural variations in the local
speaking rate. To our knowledge, there are no reports
on the coupling of cortical with acoustic signals during
perception of spontaneously produced speech. Sponta-
neously produced speech differs from the isolated sen-
tences, read-aloud and rehearsed speech stimuli used
by previous studies with regard to, for instance, articula-
tion rate (Jacewicz, Fox, O’Neill, & Salmons, 2009), artic-
ulatory patterns (Finke & Rogina, 1997), and prosodic
features (Nakajima & Allen, 1993). These features influ-
ence, in turn, the structure of the acoustic amplitude
envelope, which is one main factor that affects the cou-
pling between acoustic and cortical signals. In addition,
behavioral evidence suggests that speakers are able to dis-
tinguish between spontaneously produced and rehearsed
or read-aloud speech stimuli (Chawla & Krauss, 1994),
and the type of stimulus—rehearsed or spontaneously
produced—shapes subsequent speech comprehension
(Brennan & Schober, 2001). Therefore, this study is
aimed at elucidating, for the first time, the coupling
patterns that emerge during perception of real-life speech
and how this coupling is modulated by one of the most
important features of running speech: speaking rate.
Importantly, the modulations in global speaking rate
employed in this study were carried out naturally, without
a metronome, and the syllable production frequency for
stimuli at all three rates fell within the natural range
of syllable production frequencies (see, e.g., Tsao &
Weismer, 1997).

We propose that coherence between audio and MEG
signals is a neural mechanism that contributes to natural
speech comprehension by aiding listeners to track both
the global speaking rate and local speaking rate varia-
tions. We anticipate a spatial differentiation between
the audio–MEG coherence patterns associated with
tracking the global speaking rate and the local variations
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in speaking rate. Based on previous neuroimaging
evidence (Hertrich et al., 2013; Ahissar et al., 2001), we
hypothesize that the tracking of global speaking rate
engages the auditory cortex bilaterally. Regarding local
speaking rate variations, behavioral evidence suggests
that such tracking is inherently predictive in nature
(Brown, Dilley, & Tanenhaus, 2012; Koreman, 2006).
We thus hypothesize that local speaking rate variations
would highlight the auditory regions, which have been
suggested to be sensitive to temporal regularities in
speech stimuli (ten Oever et al., 2017), as well as addi-
tional regions, predominantly located in the parietal lobe,
that have been suggested to contribute in shaping and
updating internal predictive models (Bekinschtein et al.,
2009; Andersen & Buneo, 2002).

METHODS

Participants

The participants were 20 healthy, right-handed, native
Finnish-speaking adults (11 women, 9 men; mean
age = 24.5, range = 19–35 years) with normal hearing.
Sample size was determined based on the previous ob-
servation that, for more experimentally controlled con-
tinuous tasks, a sample size of 10 can be sufficient to
examine coherent cortical coupling (Saarinen, Jalava,
Kujala, Stevenson, & Salmelin, 2015). In this study, we
opted to double that sample size, estimating that it would
be sufficient to account for the possibly reduced effect
size in more naturalistic tasks. All participants gave their
informed written consent before taking part in the exper-
iment, in agreement with a prior approval of the Aalto
University ethics committee.

Stimuli

The participants listened to six 40-sec segments (4 min)
of connected speech stimuli spontaneously produced by
an unfamiliar to them, untrained male speaker at normal,
slow, and fast speaking rates. Speech production was
prompted by questions (in Finnish) derived from the
following thematic categories: own life, preferences,
people, culture/traditions, society/politics, and general
knowledge (see Alexandrou et al., 2016). The prompts
were quite general (e.g., What kind of hobbies do you
have or have had during your life? Describe a traditional
Christmas holiday. What kind of foods do you like?). The
speaker responded to 18 unique thematic questions, six
at each speaking rate. The function of the thematic ques-
tions was to help the speaker verbalize his own thoughts;
he was not required to provide a specific response to
each question. Instead, the primary aim was to help the
speaker produce fluent, uninterrupted speech at each
speaking rate. For the slow-rate, the speaker was asked
to reduce his normal speaking rate by 50% by preferably
increasing articulation time rather than the length of

pauses. For the fast-rate, he was instructed to produce
fluent, continuous speech at the highest speaking rate
possible while preserving speech intelligibility and mini-
mizing the occurrence of articulatory errors. During
speech production, the speaker varied his speaking rate
without the aid of any external pacing device. The speech
stimuli were recorded in a soundproof room. Raw acous-
tic signals were collected with a dual diaphragm con-
denser microphone (B-2 PRO, Behringer) at a 44.1-kHz
sampling frequency using Cool Edit 2000 (Syntrillium;
see Figure 1 for excerpts of acoustic speech signals at
each speaking rate). All stimuli were normalized to the
same average intensity using Praat software (Institute of

Figure 1. Examples of auditory stimulus waveforms for slow-rate
(top), normal-rate (middle), and fast-rate speech (bottom). Normalized
amplitude (in arbitrary units; y axis) is plotted against time (in seconds;
x axis). Each plot displays a 10-sec chunk of data taken from a 40-sec
auditory stimulus.
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Phonetic Sciences, University of Amsterdam). The acous-
tic signals recorded at each global speaking rate were
transmitted to a transcribing company (Tutkimustie Oy,
Tampere, Finland) for strict verbatim transcription (i.e.,
the acoustic signals were transcribed without editions
or modifications). The stimuli can be made available
upon request.
The mean syllable production frequency at each speak-

ing rate was obtained by averaging the syllable produc-
tion frequencies across the six responses at each rate.
Mean (±SD) word production frequencies were 1.8 ±
0.2 Hz for the normal-rate, 1.0 ± 0.1 Hz for the slow-rate
(58% of normal), and 2.8 ± 0.2 Hz for the fast-rate (157%
of normal). Mean (±SD) syllable production frequencies
were 4.7 ± 0.5 Hz for the normal-rate, 2.6 ± 0.3 Hz for
the slow-rate (55% of normal), and 6.8 ± 0.5 Hz for the
fast-rate (148% of normal). Henceforth, the term speak-
ing rate will refer to syllable production frequency. Short
pauses in speech were indicated with commas in the
transcriptions, allowing a quantitative assessment of the
pauses made by the male speaker at each global speaking
rate. The mean pause frequency at each global speaking
rate was first computed by averaging across the six re-
sponses; subsequently, the normalized pause frequency
was obtained by dividing the resulting value by the mean
syllable production frequency. Mean (±SD) normalized
pause frequency was 0.07 ± 0.2 for the normal-rate,
0.1 ± 0.2 for the slow-rate, and 0.07 ± 0.1 for the fast-
rate. ANOVA for nonparametric data (Friedman test) re-
vealed no significant differences in mean normalized
pause frequency across speaking rates, χ2(2) = 4.3,
p = .12. A qualitative evaluation of the transcriptions
further confirmed that the speaker was able to produce
fluent, connected speech with similar pronunciation and
without repetitions or excessive use of filler words at all
three global speaking rates.
The transcriptions included time stamps every 5 sec,

allowing the estimation of syllable production fre-
quencies in 48 separate time segments per global speak-
ing rate. According to these segment-wise production
frequencies, the local speaking rate varied as a function
of time at each global speaking rate (Figure 2). The
segment-wise production frequencies enabled the identi-
fication of the time segments of relatively constant speak-
ing rate and changing speaking rate in the spontaneously
produced speech stimuli by calculating the first derivative
of the local speaking rate. First, the absolute difference in
syllable production frequency between consecutive 5-sec
segments was computed within each of the six blocks in
each global speaking rate. This yielded seven local speak-
ing rate variation values per block. From these seven lo-
cal speaking rate variation values per block, we identified
the two smallest values (indicating the two 5-sec seg-
ments in which the speaking rate had remained the most
constant relative to the preceding segment; assigned to
the constant-rate category) and the two largest values (in-
dicating the two 5-sec segments in which the speaking

rate had changed the most relative to the preceding seg-
ment; assigned to the changing-rate category). Sub-
sequently, the 5-sec segments assigned to each category
based on this behavioral analysis were matched to the
corresponding time points in the acoustic and MEG sig-
nals. Data from all three global speaking rates were
pooled together, yielding a total of thirty-six 5-sec seg-
ments of MEG data (180 sec in total) per participant for
each category (except for one participant for whom data
from one block of fast-rate speech perception were
missing due to a technical issue; for this participant, only
thirty-four 5-sec segments of MEG data were available in
each category).

The local speaking rate varied between 1.2 and 3.8 Hz
for slow-rate speech (mean ± SD, 2.5 ± 0.6 Hz), between

Figure 2. Local variation of speaking rate at different global speaking
rates. Syllable production frequencies were estimated for each 5-sec
segment (in Hz; y axis) across the entire 4 min of data at each speaking
rate and are plotted against time (in seconds; x axis). The dashed
line represents the mean syllable production frequency for the
slow (top), normal (middle), and fast (bottom) speaking rate.
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2.4 and 6.4 Hz for normal-rate speech (4.6 ± 1.0 Hz), and
between 4.0 Hz and 9.4 Hz for fast-rate speech (6.7 ±
1.3 Hz; also see Figure 2). The local variation in speaking
rate, from one segment to the next, ranged from 0 to
1.8 Hz (absolute values) for slow-rate speech, from 0 to
3.4 Hz in normal-rate speech, and from 0.4 to 4.6 Hz for
fast-rate speech. The mean syllable production frequency
did not differ between the constant-rate category (4.8 ±
2.1 Hz) and the changing-rate category (4.6 ± 2.3 Hz;
W = 0.001, p = .46, Wilcoxon signed-rank test), nor
did the distributions of normalized variations differ be-
tween the three global speaking rates (normal-rate speech
vs. slow-rate speech, D42, 42 = 0.10, p = .99; normal-rate
speech vs. fast-rate speech, D42, 42 = 0.19, p = .39; slow-
rate speech vs. fast-rate speech, D42, 42 = 0.19, p = .39,
two-sample Kolmogorov–Smirnov test).

Experimental Procedure

A single speech perception block consisted of a recorded
thematic question spoken by a male voice (duration =
3–9 sec; mean ± SD, 5.6 ± 1.3 sec), a 1-sec delay before
response onset, a 40-sec speech stimulus (i.e., the un-
known male speaker’s response to the thematic ques-
tion), and a 2.5-sec rest period between blocks. A signal
tone (50-msec, 1-kHz tone) indicated the beginning of a
block, and another signal tone (50-msec, 75-Hz tone) sig-
nified the beginning and end of the response. The
speech stimuli were grouped into three experimental
conditions according to speaking rate (normal, slow,
and fast). There were six blocks per experimental condi-
tion. Each 40-sec speech stimulus was presented only
once to avoid learning effects. The order of the experi-
mental conditions was randomized across participants.

During the experiment, participants were instructed to
keep their gaze on a fixation point projected on a screen
at ∼1 m from their sitting position. Head position was as-
sessed throughout the experiment by observing the par-
ticipants’ head position through a video connection with
the MEG room, by examining the measured MEG data for
motion-related artifacts in real time and by reminding the
participants between conditions, via intercom, to keep
their head position constant and avoid, for example,
slouching. Stimuli were presented binaurally at an indi-
vidually adjusted comfortable listening level through plas-
tic tubes and intracanal earpieces. The participants’ task
was to listen attentively to each stimulus. Task compli-
ance was evaluated by inserting a 2-sec repetitive audi-
tory segment (repeated four times, thus sounding like a
broken record) in one of the six stimuli of each experi-
mental condition. The repetitive segment occurred at a
random time point during the 40-sec stimulus. The par-
ticipant was instructed to indicate occurrence of a repet-
itive segment with an index finger lift, using an optical
response panel. To further verify that the participants
attended to the speech stimuli, at the end of the exper-
iment they were asked to fill in a surprise multiple-choice

questionnaire regarding the content of the stimuli they
had heard. After the last block of each condition, partic-
ipants were asked to rate the overall intelligibility of the
six stimuli they had just heard on a scale of 1–10 (1 =
completely unintelligible, 10 = completely intelligible).
The effect of global speaking rate on the mean stimulus
intelligibility scores (obtained by averaging the individual
intelligibility scores across the 20 participants) was tested
by ANOVA for nonparametric data (Friedman test).

Recordings

MEG signals were recorded with a 306-sensor (204 gra-
diometers, 102 magnetometers) Neuromag Vectorview
whole-head device (Elekta Oy) in a magnetically shielded
room at Aalto NeuroImaging MEG Core. Data were fil-
tered at 0.03–500 Hz and sampled at 1500 Hz. The partic-
ipants were seated, with the head covered by the MEG
helmet. Each participant’s head position with respect to
the MEG sensor array was determined by attaching five
head position indicator coils to the scalp and briefly
energizing them before the measurement. The coil loca-
tions were determined in reference to anatomical land-
marks (nasion and right/left preauricular points) using a
3-D digitizer (Isotrak 3S1002, Polhemus Navigation Science).
Blinks and eye movements (saccades) during the MEG
measurement were monitored using EOG. Structural MRIs
(3T Siemens MAGNETOM Skyra, Siemens Medical Systems)
at Aalto NeuroImaging Advanced Magnetic Imaging Center
were obtained for each participant after the MEG measure-
ment using a high-resolution T1-weighted 3-D MPRAGE
scan (32-channel head coil, 176 slices with 1-mm slice thick-
ness, voxel size = 1 mm × 1 mm × 1 mm, 7° flip angle,
1100-msec inversion time, repetition time/echo time =
2530/3.3 msec). During the analysis process, the MEG
coordinate system was aligned with individual MRIs based
on head position coils and anatomical landmarks using
MRI lab software (Elekta Oy).

Acoustic Signal Analysis

The amplitude envelope of the 4-min-long acoustic signal
recorded at each global speaking rate was computed by
full-wave rectifying and low-pass filtering (<10 Hz,
fourth-order Butterworth filter, forward and backward)
the band-pass filtered acoustic signal (80–2500 Hz,
fourth-order Butterworth filter, forward and backward).
The signal was filtered in this frequency range to empha-
size the voiced signal portions that encode the rhythmic
features of speech (Alexandrou et al., 2016; Hertrich
et al., 2013). The spectrum of the downsampled (by a fac-
tor of 10), Tukey-windowed (r = .2), and zero-padded
envelope was calculated by taking the squared magnitude
of the fast Fourier transform using an 8192-point window
(for more details, see Alexandrou et al., 2016). The mean
rate around which the acoustic amplitude envelope fluc-
tuated as a function of time reflected the global speaking
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rate while the quasi-regular pattern of the amplitude
envelope fluctuations captured the local variations in
speaking rate (5-sec long example; Figure 3, left). The
acoustic power spectra estimated across the whole
4-min of data featured salient spectral peaks that approx-
imately aligned with word and syllable production fre-
quencies (Figure 3, right). It is noteworthy that power
spectral peaks associated with prosodic frequencies

(i.e., <1 Hz) did not demonstrate any shifts as a function
of global speaking rate, possibly indicating similar
prosodic patterning across stimuli at all three speaking
rates.

MEG Data Analysis

Only gradiometers were included in MEG data analysis as
they have a narrow spatial sensitivity pattern and are
optimal for recording data from superficial sources; in
contrast, magnetometers more readily pick up signals
from distant sources, including external artifacts. First,
MaxFilter software (Elekta Oy) was used to remove exter-
nal disturbances from the MEG data with spatiotemporal
signal space separation (Taulu & Simola, 2006). Sub-
sequently, blink artifacts were removed from MEG signals
using a PCA-based routine (Uusitalo & Ilmoniemi, 1997)
implemented in Graph software (Elekta Oy).

The cortical areas showing coherent activity with the
amplitude envelope of the acoustic signals were esti-
mated with dynamic imaging of coherent sources (DICS;
Gross et al., 2001) using a spherical head model. In DICS,
spatial filtering is employed to estimate oscillatory power
and coherence in the brain based on a cross-spectral
density (CSD) matrix, which represents the oscillatory
components and their linear dependencies. DICS is well
suited for performing source modeling of continuous
MEG data recorded during complex cognitive tasks
(Alexandrou, Saarinen, Mäkelä, Kujala, & Salmelin, 2017;
Saarinen et al., 2015; Kujala et al., 2007); in addition, it
has proven its efficiency for examining coherence be-
tween MEG and acoustic speech signals (Peelle et al.,
2013).

DICS analysis and the subsequent computation of
audio–MEG coherence were carried out in MATLAB soft-
ware (The MathWorks, Inc.) using custom-made scripts.
The covariance computation was done in the form of
CSD matrices, which were computed between all planar
gradiometer MEG signals and the amplitude envelope of
the acoustic signal using Welch’s averaged periodogram
method (4096-point Hanning windowing, 50% window
overlap, 4096-point fast Fourier transform, 0.4 Hz resolu-
tion) separately for 10 frequency bins (starting from 1 Hz
up to 10 Hz, 1 Hz spacing, 2 Hz spectral width). CSD
matrices were calculated for the MEG data recorded dur-
ing perception of speech at each of the three global
speaking rates, as well as for the MEG data in the constant-
rate and changing-rate speech categories. Based on these
CSD matrices, the cortical-level DICS-based estimates of
audio–MEG coherence were computed separately for
each frequency bin in a spatially equivalent search grid
across participants. The grid sampled the gray matter sur-
face, excluding the cerebellum (20482 points, atlas brain,
Freesurfer 5.3; Fischl, 2012). This common grid was
transformed to each participant’s anatomy via a surface-
based transformation (Fischl, Sereno, Tootell, & Dale,
1999). The DICS estimation used a regularization of

Figure 3. Global speaking rate and the rhythmic structure of acoustic
speech signals. Data for slow-rate speech are shown on the top, data for
normal-rate speech are shown in the middle, and data for fast-rate
speech stimuli are shown at the bottom. Left: The acoustic amplitude
envelope (normalized amplitude in arbitrary units; y axis) is plotted
against time (in seconds; x axis). Each plot displays a 5-sec chunk of
data taken from a 40-sec auditory stimulus. Right: Acoustic power
spectra computed across the 4 min of data at each speaking rate.
Normalized power (in arbitrary units; y axis) is plotted against frequency
(in Hz; x axis). The scale of the x axis (0–8 Hz) was chosen to cover the
range of syllable production frequencies at the different speaking rates.
The arrowheads indicate the mean word and syllable production
frequencies at each global speaking rate.
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0.01% of the maximum eigenvalue of each frequency and
condition-specific CSD matrix.

Subsequent statistical tests were carried out using IBM
SPSS statistics (IBM) and MATLAB software (The Math-
Works, Inc.). The effect of the global speaking rate on
the relationship between cortical signals and the acoustic
amplitude envelope of the perceived speech signals was
evaluated by examining differences in audio–MEG coher-
ence between the main experimental conditions (normal-
rate speech vs. slow-rate speech, normal-rate speech vs.
fast-rate speech). The effect of local variations in speaking
rate on the relationship between cortical signals and the
acoustic amplitude envelope of the perceived speech sig-
nals was evaluated by examining differences in audio–
MEG coherence between the constant-rate speech and
changing-rate speech. For group-level statistics, the
audio–MEG coherence maps were averaged across the
2–4 Hz and 4–7 Hz frequency bins. The behaviorally
estimated syllable production frequencies, spanning the
2–7 Hz range across the three global speaking rates,
prompted us to focus subsequent statistical analysis on
delta-band (2–4 Hz) and theta-band (4–7 Hz) cortical ac-
tivity. Moreover, these frequencies have been extensively
linked with cortical tracking of speech stimuli (e.g.,
Kayser et al., 2015; Peelle et al., 2013; Luo & Poeppel,
2007).

Statistical significance was determined using group-
level cluster-based statistics controlling for multiple
comparisons (cluster-based permutation procedure per-
formed on the statistically significant results obtained
from a Student’s two-tailed t test for paired samples,
10,000 permutations, statistical significance threshold
p < .05, family-wise error corrected, cluster threshold
p < .05, weighted distance algorithm for linking adjacent
grid points, 15-mm cutoff threshold for cluster size; Maris
& Oostenveld, 2007). In accordance with the procedure
described in Maris and Oostenveld (2007), the t values
were summed within spatially contiguous clusters (for
adjacent voxels with p < .05). For each round of the
permutation testing, the labels of the two conditions be-
ing compared were randomized across participants, and
new t statistics were computed in all grid points. For each
permutation, the largest cluster t value was collected,
yielding a distribution of 10,000 cluster-level t values.
Subsequently, the original t statistics were compared with
this distribution. An effect was considered significant if
the cluster p value exceeded the 95% threshold of the
permuted maximum cluster t scores. For each cortical
region demonstrating statistically significant differences
in audio–MEG coherence, we obtained the Talairach
coordinates and Brodmann’s area numbers of the center
of the region using the Talairach Daemon (Lancaster
et al., 2000).

The spatial and spectral specificity of the observed
effects was further explored by plotting the frequency
spectra in the 1–10 Hz frequency range for each contrast
(normal-rate speech vs. slow-rate speech, normal-rate

speech vs. fast-rate speech, constant-rate speech vs.
changing-rate speech). Audio–MEG coherence spectra
in the contrasted conditions were compared in each
frequency bin using Student’s two-tailed t test (statistical
significance threshold p < .05, 19 df, in spatially
combined clusters in the case of close-by significant
clusters).
To further examine the possibility that the modulation

in audio–MEG coherence for the constant-rate speech
versus changing-rate speech reflects dynamic tracking
of local speaking rate, we computed the across-subject
standard deviation (SD) of the cosine of the instanta-
neous phases of cortical activity for the constant-rate
and changing-rate speech categories. This was done to
describe the origin and nature of the observed modula-
tions in audio–MEG coherence and further explore the
hypothesis that tracking of the local variations in speak-
ing rate is predictive in nature. Because this kind of anal-
ysis is statistically dependent on the results of the
contrast between constant-rate speech and changing-rate
speech, it was made for illustrative purposes and not in-
tended to yield novel findings. The number of 5-sec seg-
ments considered in this analysis was 34, determined by
the minimum number of such segments identified in in-
dividual participants. Across-subject SD was the measure
of choice because, in contrast to audio–MEG coherence,
it provides a reliable estimate of the phase alignment of
cortical activity across subjects even for MEG data
sections as short as 5 sec. The segment-wise mean SD
values, obtained by averaging SD values across the time
bins in each 5-sec segment, were computed for cortical
activity in 10 frequency bins in the 1–10 Hz frequency
range (1 Hz spacing, bin width ±0.5 Hz). We compared
SD values between constant-rate speech and changing-
rate speech in each frequency bin using a Student’s
two-tailed t test for independent samples (statistical sig-
nificance threshold p < .05, 66 df ). The range of phase
variability in the constant and changing-rate speech cate-
gory was computed as the difference between the maxi-
mum and the minimum phase variability. The mean
difference in phase variability between constant-rate
speech and changing-rate speech was quantified by aver-
aging the difference in mean SD across the thirty-four
5-sec MEG data segments included in the analysis.

RESULTS

Behavioral Results

Attentional Control Tasks

For all three experimental conditions, all participants (20
of 20) were able to detect the repetitive segments em-
bedded in one of the stimuli. The answers to the surprise
questionnaire presented at the end of the experiment
regarding the content of the speech stimuli were 100%
correct for all 20 participants.
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Intelligibility Scores

The mean (±SD) intelligibility scores were 9.9 ± 0.5 for
the normal-rate speech stimuli, 9.9 ± 0.3 for the slow-
rate speech stimuli, and 9.5 ± 0.7 for the fast-rate speech
stimuli (a score of 10 representing perfect intelligibility).
There were no significant differences in intelligibility
scores between different rate speech stimuli, χ2(2) = 2,
p = .37 (Friedman test).

Effect of Global Speaking Rate on Audio–MEG
Coherence Patterns

Global speaking rate was found to be associated with
modulations in audio–MEG coherence in the temporal
regions bilaterally, as well as in the right paracentral lob-
ule and the right parietal region (Figure 4A). Specifically,
there was significantly stronger audio–MEG coherence
for perceiving normal-rate speech than fast-rate speech
in the superior temporal areas bilaterally (left: −61,
−15, 1; BA 22, and right: 61, −9, 1; BA 22) in the 2–
4 Hz frequency range (left: cluster p value = .02, cluster
size = 140; right: cluster p value = .01, cluster size =
135; cluster threshold p < .05, 10,000 permutations) as
well as in the right paracentral lobule (7, −33, 67;
BA 6) in the 4–7 Hz frequency range (cluster p value =
.03, cluster size = 128, cluster threshold p < .05, 10,000
permutations; Figure 4A, left). Furthermore, significantly
increased audio–MEG coherence for perception of slow-
rate than normal-rate speech was observed in the right
parietal region (50, −38, 40; BA 40) in the 4–7 Hz
frequency range (Cluster 1: cluster p value = .03, cluster
size = 134; Cluster 2: cluster p value = .01, cluster size =
144; cluster threshold p < .05, 10,000 permutations;
Figure 4A, left).

Effect of Local Variations in Speaking Rate on
Audio–MEG Coherence Patterns

Local variations in speaking rate were associated with
modulation of audio–MEG coherence in the left hemi-
sphere, where significantly stronger audio–MEG coher-
ence was observed for constant-rate speech than
changing-rate speech in the 4–7 Hz frequency range of
interest (Figure 4B). Specifically, this effect encompassed
the left parietal region, particularly highlighting the left
postcentral gyrus (−44, −24, 37; BA 2) as well as the left
inferior parietal lobule (−33, −20, 41; BA 3; Cluster 1:
cluster p value = .03, cluster size = 132; Cluster 2: cluster
p value = .04, cluster size = 131; cluster threshold p <
.05, 10,000 permutations; Figure 4B, left).

Spatial and Spectral Specificity of the Observed
Modulations in Audio–MEG Coherence

Next, we examined the spatial and spectral specificity of
the observed modulations in audio–MEG coherence. The

audio–MEG coherence spectra were plotted in the 1–
10 Hz frequency range for each contrasted condition in
each of the cortical regions in which modulations of
audio–MEG coherence were observed (Figure 4A and B,
right). Paired t tests on the coherence spectra in these
ROIs confirmed that the modulations of audio–MEG
coherence determined in the 2–4 Hz and 4–7 Hz bands
were spatially and spectrally specific. In the left and right
superior temporal region, in the right paracentral lobule,
as well as in the right and left parietal region, significant
differences in audio–MEG coherence (based on the
paired t tests; shown as vertical lines in the spectral plots)
were observed primarily for the contrast for which the
statistically corrected effects had been first discovered
(cf. Figure 4A and B, left), and only rather sporadic
(i.e., mostly observed in a few isolated frequencies)
differences in audio–MEG coherence occurred for the
other two contrasts. Significant modulations in audio–
MEG coherence were also limited to the frequency
ranges in which these effects had been first identified.
Specifically, in the left superior temporal region, the
paired t tests revealed differences in audio–MEG coher-
ence only for the normal-rate speech versus fast-rate
speech contrast (2 Hz: p = .03, 3 Hz: p = .01, 4 Hz: p =
.02). In the right superior temporal region, differences
were found for the normal-rate speech versus slow-rate
speech contrast (1 Hz: p = .03, 8 Hz: p = .003, 9 Hz:
p = .02) and for the normal-rate speech versus fast-rate
speech contrast (1 Hz: p = .003, 2 Hz: p = 5 × 10−4,
3 Hz: p = .003, 4 Hz: p = .03). In the right parietal lobule,
differences were observed for all three contrasts (normal-
rate speech vs. slow-rate speech, 7 Hz: p= .02; normal-rate
speech vs. fast-rate speech, 4 Hz: p = .01; constant-rate
speech vs. changing-rate speech, 2 Hz: p = .01). In the
right parietal region, differences were observed only for
the normal-rate speech versus slow-rate speech contrast
(3 Hz: p = .01, 4 Hz: p = .01, 5 Hz: p = .02, 6 Hz: p =
.01, 7 Hz: p = .01). Finally, in the left parietal region,
differences were found only for the constant-rate speech
versus changing-rate speech contrast (4 Hz: p = .02,
5 Hz: p = .01, 6 Hz: p = .02; Figure 4A and B, left).

Dynamic Readjustment of Cortical Signal Phase in
Response to Local Variations in Speaking Rate

The origin and potential dynamic nature of modulations
in audio–MEG coherence in response to local variations
in speaking rate was further described by computing the
variability of the instantaneous phase of cortical signals
originating from the left parietal region (Figure 4B, left)
for each 5-sec segment included in the constant-rate and
changing-rate speech categories (Figure 5). The mean SD
was significantly larger ( p = .02), indicating greater across-
subject variability of the instantaneous phase of MEG sig-
nals, for perception of changing-rate speech (gray) than
constant-rate speech (black) in the left parietal region
(Figure 5). This effect was found for cortical activity in
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Figure 4. Cortical tracking of global speaking rate and to local variations of speaking rate. Cortical areas (left) demonstrating significant modulations
(white color) in audio–MEG coherence at 2–4 Hz or 4–7 Hz as a result of variations in speaking rate and group-level wide-band audio–MEG
coherence spectra (right) for these areas. (A) Effect of global speaking rate (normal-rate speech vs. fast-rate speech; normal-rate speech vs. slow-rate
speech). (B) Effect of local variations in speaking rate (constant-rate speech vs. changing-rate speech). The frequency range in which significant
group-level modulations in audio–MEG coherence (corrected for multiple comparisons) are observed is indicated to the left of each cortical surface
image. Audio–MEG coherence ( y axis) for each cortical area for which significant effects were observed, plotted as a function of frequency
(0–10 Hz; x axis). Data from each contrast are shown in separate columns: on the left, normal-rate speech (black) versus slow-rate speech (red);
in the middle, normal-rate speech (black) versus fast-rate speech (blue); on the right, constant-rate (black) versus changing-rate (green). The
group-level mean audio–MEG coherence is represented by a solid line. The shaded area around each line demonstrates the SD of audio–MEG
coherence values. The horizontal lines in the plots represent the frequency bins (width ±0.5 Hz) for which significant effects were observed
based on a Student’s paired t test with 19 df (uncorrected statistics).
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the 6-Hz frequency bin, thus aligning with the 4–7 Hz
frequency range in which modulations in audio–MEG co-
herence were initially observed (Figure 4B, left). Plotting
the mean SD for the unsorted 5-sec segments (Figure 5,
left) demonstrated that the difference in phase variability
between constant-rate and changing-rate speech is quite
subtle; this is also illustrated by the mean SD range (0.04
for constant-rate speech; 0.03 for changing-rate speech)
and by the absolute average difference in mean SD be-
tween constant-rate speech and changing-rate speech
(0.005). Yet, the data sorted in ascending order by the
mean SD magnitude reveal that the statistically significant
difference between constant-rate speech and changing-
rate speech reflects a systematically higher phase vari-
ability for the changing-rate speech (Figure 5, right),
indicating that cortical signal phase is dynamically re-
adjusted in response to local variations in speaking rate.

DISCUSSION

The present results suggest that cortical signals track
multiple features of speech rhythm. The global speaking
rate (normal-rate speech vs. fast-rate speech, normal-rate
speech vs. slow-rate speech) and local variations in speak-
ing rate (constant-rate speech vs. changing-rate speech)
were associated with modulations in audio–MEG coher-
ence in the 2–4 Hz (delta) and 4–7 Hz (theta) frequency
ranges. These modulations encompassed cortical regions
in both hemispheres. Global speaking rate was associated
with modulations in audio–MEG coherence in the tem-
poral areas bilaterally, as well as in the right parietal
and paracentral regions. Local variations in speaking rate
were accompanied by modulations of audio–MEG coher-
ence only in the left parietal region, instead. These spa-
tially and functionally distinct cortical tracking patterns

reveal a dual nature of the cortical tracking mechanism
of speaking rate.

This study found evidence of two spatially and func-
tionally distinct components of cortical tracking of
speech rhythm. The first component is associated with
modulations in audio–MEG coherence as a function of
global speaking rate. In line with previous studies, there
was an emphasis on the 2–4 Hz and 4–7 Hz frequency
ranges, and the middle superior temporal regions bilater-
ally were highlighted (Park et al., 2015; Peelle et al., 2013;
Hertrich, Dietrich, Trouvain, Moos, & Ackermann, 2012;
Aiken & Picton, 2008; Luo & Poeppel, 2007). We propose
that this effect may be conceptualized as evolutionary
tuning, which signifies an innate preference in the motor
system for certain frequencies of output (∼5 Hz). This
preference is thought to be reflected in the remarkable
constancy of habitual speaking rates across languages
(Liberman & Whalen, 2000) and has been suggested to
have shaped a similar preference in the auditory system
(Assaneo et al., 2016). The preference for the 5-Hz
frequency has been proposed to have an evolutionary
origin, stemming from primate oromotor vocalizations
(Ghazanfar, Morrill, & Kayser, 2013; Morrill, Paukner,
Ferrari, & Ghazanfar, 2012), and has been shown to be
already present in infants (Telkemeyer et al., 2009). No-
tably, the global rate of the normal-rate speech stimuli
employed here was ∼5 Hz, aligning with this proposed
innate preference of the motor system and hence with
the habitual speaking rates across languages (Alexandrou
et al., 2016; Ruspantini et al., 2012; Levelt, Roelofs, &
Meyer, 1999). The present findings importantly also point
to a preference for the habitual rate of input in the audi-
tory modality: The audio–MEG coherence between audi-
tory cortical activation and the external audio signal was
enhanced for normal-rate speech compared with fast-
rate speech, an effect thought to facilitate subsequent

Figure 5. Variability of the
instantaneous phase of cortical
signals. Results are shown for
the 6-Hz frequency bin of the
cortical signals generated in the
left parietal region (constant-
rate > changing-rate speech;
see Figure 4B). The mean
SD values of the cosine of the
instantaneous phase ( y axis) of
cortical signals are plotted for
each 5-sec segment (x axis) for
both the constant-rate (black)
and changing-rate (gray)
speech: unsorted data (left);
data in ascending order, sorted
by mean SD values (right). Mean
SD was significantly larger for
changing-rate speech than
constant-rate speech in the
6-Hz frequency bin ( p = .02).
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processing (Schroeder, Wilson, Radman, Scharfman,
& Lakatos, 2010; Lakatos, Karmos, Mehta, Ulbert, &
Schroeder, 2008). This interpretation is in line with our
earlier analysis of MEG signal power in this same data
set, which found decreased power for global speaking
rates deviating from the habitual rate (Alexandrou et al.,
2017), as well as with the observation that normal-rate
speech is processed even in the absence of attention
(Wild et al., 2012).

Beyond our original hypothesis, cortical tracking of
global speaking rate was additionally associated with
modulations of audio–MEG coherence in the right para-
central lobule and right parietal cortex. We propose that
this finding is linked to the reliance of comprehension
of connected speech on the progressive integration
and analysis of information (Bourguignon et al., 2013;
Lieberman, 1963) related to semantic context (Federmeier,
Wlotko, & Meyer, 2008; St. George, Kutas, Martinez, &
Sereno, 1999) and prosody (e.g., Hari & Kujala, 2009;
Belin, Fecteau, & Bedard, 2004; Kriegstein & Giraud,
2004). The observed effects in the right paracentral lob-
ule and right parietal area may be seen as evidence of the
general organization of integration of linguistic informa-
tion in postcentral parietal regions (Sepulcre, Sabuncu,
Yeo, Liu, & Johnson, 2012). Indeed, the right paracentral
lobule has been associated with linking information in
memory and gradually building comprehension when lis-
tening to a continuous story (Maguire, Frith, & Morris,
1999). Enhanced audio–MEG coherence in the right
parietal region for the more slowly unfolding slow-rate
speech compared with normal-rate speech may reflect
the temporal flexibility of linguistic information processing
and integration; this region has been shown to scale its
activity to match global speaking rate (Lerner, Honey,
Katkov, &Hasson, 2014; Small, Andersen, & Kempler, 1997).

The second component of cortical tracking of speech
rhythm was associated with local variations in speaking
rate. Although we initially hypothesized contributions of
both the auditory cortices and the parietal regions, our
empirical results exclusively emphasized the left parietal
region. The left parietal region has been linked to predic-
tive timing and the encoding of “when” something hap-
pens, a process that also interacts with attention (Arnal &
Giraud, 2012; Schwartze, Tavano, Schröger, & Kotz, 2012;
Nobre, Correa, & Coull, 2007). The emphasis on the 4–
7 Hz frequency range is in line with reports suggesting
that low-frequency cortical oscillations play a role in pre-
dicting future, behaviorally relevant cues (Calderone,
Lakatos, Butler, & Castellanos, 2014; Arnal & Giraud, 2012;
Saleh, Reimer, Penn, Ojakangas, & Hatsopoulos, 2010).
Indeed, the presently observed modulation in audio–
MEG coherence with respect to local variations in speak-
ing rate was found to reflect a dynamic re-adjustment of
cortical signal phase.

Based on this spatiospectral pattern, we propose that
tracking local speaking rate is a process linked to the
inherent predisposition of the brain to continuously seek

and extract patterns of temporal regularity from the sur-
rounding, ever-changing sensory environment. This pre-
disposition may be conceptualized as predictive timing
and predictive coding, a cortical operation mode that
governs perceptual processes (Friston, 2012; Schroeder,
Lakatos, Kajikawa, Partan, & Puce, 2008; Bar, 2007;
Bonte, Mitterer, Zellagui, Poelmans, & Blomert, 2005)
and supports subsequent sensory and cognitive process-
ing (Sohoglu, Peelle, Carlyon, & Davis, 2012). This track-
ing has been suggested to operate in an anticipatory
manner, in which the phase of low-frequency cortical
activity is reset before the next relevant sensory event
(Arnal & Giraud, 2012). Indeed, based on the present
evidence suggesting a dynamic tracking of local variations
in speaking rate, it appears that the brain actively makes
predictions: the tracking of a quasi-regular stimulus (such
as the acoustic amplitude envelope) could be highly pre-
dictive and quickly adjustable in nature. In this study, the
emphasis on the left parietal region could presumably be
associated with a predominant top–down nature of this
predictive tuning during spontaneous speech perception
(e.g., Andersen & Buneo, 2002; Engel, Fries, & Singer,
2001); future studies could further explore this topic. It
has been reported that cortical signals track more ac-
curately temporally regular visual (Cravo, Rohenkohl,
Wyart, & Nobre, 2013) and auditory stimuli (ten Oever
et al., 2017; Kayser et al., 2015). The presently observed
enhanced audio–MEG coherence for the temporally reg-
ular constant-rate speech may thus be interpreted as a
marker of successful temporal predictions, leading to
more efficient subsequent processing (ten Oever et al.,
2017; Rohenkohl, Cravo, Wyart, & Nobre, 2012; Schroeder
et al., 2010; Lakatos et al., 2008).
Considering the present spatiospectral patterns as a

whole, we observe dissociations of both spatial and spec-
tral nature which could potentially reflect differences in
cortical processing of natural connected speech. It was
found that cortical signals from the right parietal region
are sensitive to global speaking rate whereas cortical sig-
nals from the left parietal regions track local variations in
speaking rate. This functional differentiation might be
linked to different cortical processing modes in the right
(ad hoc, integrative) and left hemisphere (post hoc, an-
ticipatory) during natural, connected speech perception
(Federmeier et al., 2008). Furthermore, this study ex-
tends the theoretical framework presented in Giraud
and Poeppel (2012), as well as previous evidence gained
through experimental paradigms based on the percep-
tion of isolated sentences, proposing that cortical signals
originating mainly from the auditory regions track speech
signals (Peelle & Davis, 2012). Thus, the findings of this
study are of special interest: As the first report of entrain-
ment patterns in the context of natural connected speech
perception, it extends previous knowledge by suggesting
that signals from both auditory and parietal regions track
a perceived speech signal. Frontal and parietal regions
have been suggested to exert a modulatory influence
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on the relationship between cortical signals and acousti-
cal speech signals (Keitel, Ince, Gross, & Kayser, 2017;
Kayser et al., 2015; Park et al., 2015; Gross et al., 2013).
This study further extends the role of these regions by
showing that the bilateral parietal regions do not merely
exert a modulatory influence on auditory regions but also
directly contribute to tracking an incoming speech signal,
aligning with recent findings (Puschmann et al., 2017).
Regarding the spectral aspect of the observed tracking

of speaking rate, theoretical and empirical work both
highlight the delta and theta frequency bands (e.g.,
Ghitza, 2012; Peelle & Davis, 2012), which are also
observed in this study. Here, the emphasis on this fre-
quency range may be related to exogenous parameters,
namely, the frequency content of the stimuli and specif-
ically the timescales of linguistic elements in speech: In
the present stimuli, the word and syllable production fre-
quencies spanned the range 2–7 Hz. In line with previous
studies, we could potentially interpret the modulations
in audio–MEG coherence in the delta band (2–4 Hz) as
reflecting the processing of words, whereas modulations
in coherence in the theta band (4–7 Hz) could be related
to the processing of syllables. Providing support for this
view, we found that local variations in speaking rate,
which are usually assessed at the syllabic level due to
the quick timescale on which they occur (Quené,
2007), were tracked by theta-band cortical activity. An
alternative explanation may be related to an intrinsic cor-
tical preference for certain timescales of processing, irre-
spective of the input. It is especially noteworthy that, in
the auditory regions, modulations in audio–MEG coher-
ence were observed in the delta band, whereas in the
parietal regions and the right paracentral lobule such
modulations were observed in the theta band. This ob-
served dissociation regarding cortical signaling frequen-
cies might provide evidence in favor of the existence of
a hierarchy of timescales in the cortex during complex
perceptual tasks (cf. Hasson, Yang, Vallines, Heeger, &
Rubin, 2008; Kiebel, Daunizeau, & Friston, 2008).
Coherence describes the frequency–domain correla-

tion of two time series. Increased coherence signifies en-
hanced synchronization between the two signals and,
with regard to neural signaling, has been interpreted as
more efficient information transfer between two neural
populations (Fries, 2005). Here, we computed coherence
between cortical signals and the acoustic amplitude enve-
lope. In the context of this study, modulations in coher-
ence signify changes in synchronization and thus in the
tracking of a speech signal. Because we experimentally
manipulated global speaking rate and also examined
the inherently occurring local variations in speaking rate,
modulations in coherence were considered as a direct
consequence of these two kinds of variations in speaking
rate. As reflected in the power spectra of the acoustic
amplitude envelope of our stimuli, variations in speaking
rate affect the temporal structure of the acoustic ampli-
tude envelope which, from a computational perspective,

is the main factor affecting coherence values. However,
we also acknowledge that global speaking rate does not
only affect the amount of linguistic content per time unit
but it may also be accompanied by changes in the syntac-
tic and semantic structure of an utterance (e.g., Cohen
Priva, 2017). Variations in global speaking rate may also
be associated with altered prosodic features (e.g.,
Fougeron & Jun, 1998), although this was likely not the
case in this study as the low-frequency components of
the acoustic amplitude envelope remained essentially
constant. Local variations in speaking rate may, in turn,
be associated with higher-level linguistic events in
speech: For instance, speaking rate has been suggested
to change locally at the phrasal level and co-occur
with specific lexical events in speech (e.g., Byrd, Kaun,
Narayanan, & Saltzman, 2000). Furthermore, it has been
shown that coherence is not only dependent on the
characteristics of an incoming stimulus but receives
top–down modulations as a function of, for instance,
expected syntactic structure (Meyer, Henry, Gaston,
Schmuck, & Friederici, 2017). Therefore, even though
we here base our interpretations primarily on the rate
of speech, which was the variable specifically controlled
in the present parametric experimental design, we cannot
exclude the possibility that discourse-level features might
also contribute to the presently observed coherence
patterns. Future studies should further examine the ori-
gins of the modulation of audio–MEG coherence during
perception of spontaneous speech at different rates.

Spontaneous speech, as opposed to single sentences,
read-aloud text passages, or rehearsed narratives used in
previous related studies, is the kind of speech we are
mostly exposed to in real-life social situations. The pres-
ently employed experimental paradigm was designed to
approximate a real-life listening context. Unlike previous
studies examining the effect of global speaking rate on
the relationship between cortical and acoustic signals
(Hertrich et al., 2013; Ahissar et al., 2001), this study
did not involve artificially time-compressed stimuli or
impose external pacing on global speaking rate mod-
ulations. Because of the noncontrolled nature of the
stimuli, the absolute audio–MEG coherence values were
lower than those reported in earlier studies; nonetheless,
the wide-band audio–MEG coherence spectra demon-
strate that the observed effects are salient and occur at
clearly delimited frequency ranges. Both theoretical
models (Ghitza, 2011) and studies examining artificially
time-compressed stimuli (Hertrich et al., 2013; Ahissar
et al., 2001) propose that coherence peaks should shift
as a function of global speaking rate. In this study, we
did not observe such clear-cut effects in the wide-band
audio–MEG coherence spectra. This may be due to
natural speech showing some overlap in syllable produc-
tion frequencies between global speaking rates as shown
by a previous study from our research group that char-
acterized speech rhythm through acoustic and EMG
signals (Alexandrou et al., 2016). The study addressed
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spontaneously produced speech at three global speaking
rates (normal, slow, fast) in the same 20 individuals con-
sidered in this study. However, the fairly stable frequency
of coherence peaks across the different global speaking
rates may also suggest that, when tracking complex,
spontaneously produced speech, the brain employs its
own, internal signaling, instead of being passively driven
by the frequency content of the input. Finally, stimulus
intelligibility did not significantly vary across experimen-
tal conditions nor did the attention level of the partici-
pants, as assessed through the local attentional task of
repetitive segment detection and the surprise multiple-
choice questionnaire that probed the level of global
stimulus comprehension. In addition, no significant dif-
ferences were found either in the mean speaking rate
between the constant and changing-rate categories or
in the distributions of local speaking rate variations
among the three global rates. Although it is not possible
to completely rule out that attention to aspects of the
speech stimulus that are not related to meaning per se
may have affected the coherence between speech and
cortical signals, we nevertheless suggest that the present
findings reliably assess the neural correlates of the dual
tracking mechanism of speaking rate during natural
speech perception.

The observed audio–MEG coherence patterns offer
new insights to the existing framework of cortical track-
ing of incoming speech signals as a mechanism support-
ing speech perception. In accordance with an emerging,
more integrative view of speech processing (Alexandrou
et al., 2017; Poeppel, Emmorey, Hickok, & Pylkkänen,
2012; Federmeier et al., 2008), cortical tracking of natu-
ral, connected speech extended beyond the previously
reported emphasis on the temporal regions (Peelle
et al., 2013; Ahissar et al., 2001) and was found to also
engage the parietal regions bilaterally and the right
paracentral lobule (see Giordano et al., 2017, for similar
findings during perception of continuous, but not spon-
taneously produced speech). On a broader level, this
finding supports the notion that perception is not a pas-
sive reaction to incoming stimuli but a highly construc-
tive process that undergoes optimization in both the
auditory regions, as well as in the parietal and paracentral
regions (Morillon & Schroeder, 2015; Zion-Golumbic
et al., 2013; Engel et al., 2001). Indeed, perception of
real-life speech entails a continuous perceptual adjust-
ment. First, we encounter a multitude of speakers on
an everyday basis, with global speaking rates that demon-
strate some individual variation around the habitual
speaking rate of ∼5 Hz (Alexandrou et al., 2016; Tsao &
Weismer, 1997). This natural interindividual variability is
analogous to the experimentally generated intraindi-
vidual variations in global speaking rate examined here.
Tuning in to faster or slower speakers requires an active
adaptation from the listener’s part (Dupoux & Green,
1997). It could be suggested that tracking the global
speaking rate (characteristic of a given speaker) would

afford a solid sensory basis onto which the more fine-
grained predictions related to local variations in speaking
rate are embedded upon. In the auditory cortex, this pre-
sumed sensory basis has been thought to be represented
by the frequency of neuronal spiking, which would be
proportional to the speaking rate. For instance, a speaker
demonstrating a high global speaking rate would induce
faster neuronal spiking compared with a speaker who
demonstrates a lower global speaking rate (Gütig &
Sompolinsky, 2009). Second, building up-to-date predic-
tions of future events based on previous input is para-
mount for adjusting to the dynamically changing, real-life
communicative contexts, in which speech is typically
heard only once (Schwartze et al., 2012). Thus, in this
dynamic sensory mode, the robust evolutionary tuning is
proposed to form a hard-wired perceptual basis, whereas
predictive tuning continuously updates this basis as a
function of expectation, attention, and sensory input.

Conclusion

This study is the first to examine the neural basis of track-
ing the speaking rate in perception of spontaneously pro-
duced natural connected speech. The present results
indicate that cortical tracking of incoming speech is a
multidimensional phenomenon. The tracking mecha-
nism of speaking rate is dual in nature, manifesting two
spatially and functionally distinct components of cortical
tuning in speech perception: evolutionary tuning that is
associated with global rhythmic structure and predictive
tuning that is driven by local changes in speaking rate. These
findings complement previous evidence and propose that,
during the perception of spontaneously produced natural
connected speech, the functional role of cortical tracking
of the acoustic amplitude envelope is not merely confined
to achieving syllabic segmentation of the input but extends
to temporal predictions and expectations.
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