
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Paavolainen, Santeri; Elo, Tommi; Nikander, Pekka
Risks from Spam Attacks on Blockchains for Internet-of-Things Devices

Published in:
2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)

DOI:
10.1109/IEMCON.2018.8614837

Published: 01/01/2018

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Paavolainen, S., Elo, T., & Nikander, P. (2018). Risks from Spam Attacks on Blockchains for Internet-of-Things
Devices. In 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference
(IEMCON) (pp. 314-320). IEEE. https://doi.org/10.1109/IEMCON.2018.8614837

https://doi.org/10.1109/IEMCON.2018.8614837
https://doi.org/10.1109/IEMCON.2018.8614837

Risks from Spam Attacks on Blockchains for

Internet-of-Things Devices

Santeri Paavolainen
School of Electrical Engineering

Aalto University, Helsinki, Finland

and LMF Ericsson, Finland

Email: santeri.paavolainen@aalto.fi

Tommi Elo and Pekka Nikander
School of Electrical Engineering

Aalto University, Helsinki, Finland

Email: {tommi.elo,pekka.nikander}@aalto.fi

Abstract—There has been increased interest in the use of

blockchains to control Internet of Things devices either directly,

or through smart contracts. Many blockchains, such as Ethereum

and Fabric, have support for smart contracts. The use of public

blockchains while attractive due to their decentralization and

availability, do pose challenges, such as unpredictable transaction

latencies and cryptocurrency price fluctuations. Transactions in

the Ethereum network, such as invokations of smart contracts

used to control an IoT device, have no fairness or eventuality

guarantees. In this work we describe a “spam attack” method

available to parties with sufficient cryptocurrency reserves to

delay a statistically significant portion of transactions submitted

to the Ethereum network. This paper derives estimations on the

costs and effects of such an attack, and is based on an analysis

of historical transactions.

Index Terms—Internet of Things, Blockchain, Ethereum, De-

nial of Service, Smart Contracts

I. Introduction
The interest in and the use of blockchains has increased in

recent years. The introduction of blockchains into the general

public knowledge came through the development of Bitcoin,

a blockchain focused on trading in a cryptocurrency of the

same name. The most common use of public blockchains

remains cryptocurrency trading, with an estimate of the public

cryptocurrency and cryptotoken market capitalization being in

excess of $250 billion1. While cryptocurrency transfers are a

foundation of all public blockchains, more recent blockchains,

such as Ethereum, have introduced new functionalities, of

which smart contracts are probably the most notable. Smart

contracts are pieces of program code that become part of

the blockchain, and can be used to implement features on

the generic programming model that is available. Ethereum

is the second most popular blockchain in terms of market

capitalization, and thus the most popular one that has smart

contract support.

The use of smart contracts to facilitate decentralized autho-

rization and control operations on IoT devices have recently

been investigated. In this context, Tapas et al. [1] describe a

system where a smart contract provides information on the

1From coinmarketcap.com, as of July 1st 2018.

allowed operations specific roles are allowed to take on an

IoT device. The use of smart contract allows auditability of

all access policy changes, and the inherent decentralized and

distributed nature of the blockchain removes the need of a

centralized access control server. Novo describes a similar

system in more detail [2], which takes the needs of resource-

constrained IoT devices into account by introducing manage-

ment nodes, that act as trusted proxies to the blockchain.

Regardless of the existence of separate management nodes, the

access policy is managed by a smart contract, and provides

transparency on the system. Both of the described systems

rely on the security of the blockchain, and, as we will show

later, to meet real-world security assurances they also rely on

timely execution of transactions for altering the authorization

policies, for example, to revoke a permission.

The underlying security challenge of public and permis-

sionless blockchains (such as Bitcoin and Ethereum) is the

need to protect against Sybil attacks [3]. To achieve the

needed distributed consensus in this situation, a proof-of-

work aka Nakamoto consensus is employed [4]. In a proof-

of-work consensus model, parties called miners continuously

attempt to generate a proof of work that allows them to

mine a new block (hence the name blockchain). Protection

against Sybil attacks is provided by using a proof of work

that is costly to produce, thus increasing the cost of mounting

such an attack substantially. With the proof being difficult to

produce, but easy to verify, other nodes on the network are

able to validate the block and its proof of work, and will

include the new block as the head of the blockchain. Thus,

each mined block becomes part of the chain of blocks, and

in turn, through its proof of work, validates earlier blocks.

The decentralized and costly process of mining guarantees

the integrity and immutability of the blockchain under the

assumptions of Nakamoto consensus.

Blockchains are known to be susceptible to various attacks

that can either break their security guarantees, or prevent them

from operating normally. These can be roughly categorized as

either 1) attacks on the security guarantees, such as integrity

of the blockchain, 2) attacks on the underlying infrastructure,

2018 IEEE 9th Annual Information Technology, Electronics and Mobile
Communication Conference (IEMCON)
©2018 IEEE

with either the goal of creation inconsistent blockchain views

for different network participants, or just causing straightfor-

ward disruption on the blockchain network’s operations, and

3) attacks on smart contracts, in which case the security of

the programs themselves are subverted.

Originally the integrity guarantees of a blockchain were

believed to be preserved as long as the majority of nodes

were honest, with any attack requiring a majority of the

network nodes2 to be under attackers control, thus giving

the name “51% attack” for these types of threats [4]. Later

research by Eyal and Sirer showed that for Bitcoin, the security

of the blockchain can be compromised if more than ⅓ of

the miners are colluding [5], thus significantly reducing the

potential cost of such an attack. Further research has looked

into optimal selfish mining strategies, and its efficiency with

various network and latency assumptions [6], [7].

Attacks against the blockchain infrastructure can take many

forms. In Bitcoin, several types of attacks causing delays

in transactions processing have been shown to be feasible.

Gervais et al. discussed a mechanism where an attacker

can manipulate the visibility of Bitcoin blocks on a victim,

and described how this could be extended to a denial-of-

service attack on the whole Bitcoin network [8]. Another

type of an attack on the Bitcoin mining infrastructure is to

hijack the Internet routing protocol and cause an increase in

forks [9]. Natoli and Gramoli discuss a mechanism where

the introduction of messaging delays into the Bitcoin network

could create disjoint groups with similar mining power [10],

allowing the attacker to manipulate the final chain selection

to his or her advantage (e.g. to double-spend).

It is also possible to use smart contracts as a conduit of

attacking the blockchain infrastructure. In Ethereum’s early

history, for example, an instruction executable by a smart con-

tract was underpriced compared to the real-world computing

resources required to execute it [11]. Finally, smart contracts

themselves are susceptible to security failures [12] that can

lead to monetary loss or prevent a particular smart contract

from operating correctly [13].

While an attack may attempt to either break or disable a

blockchain, sometimes even a minor attack can decrease the

usefulness of the blockchain to its users. Weber et al. [14]

analyzed the effect of an attack on the Ethereum blockchain

on network user’s transaction processing delays and costs.

Even when an attack does not misuse the blockchain network,

it is possible to cause service disruption by submitting oth-

erwise harmless transactions. A transaction spamming attack

against Bitcoin in 2015 was analyzed by Baqer et al. [15],

who found that in this case, 23% of all Bitcoin transactions

were associated with the attack during its 10-day run. They

estimated that for other network users the transaction costs in-

creased over 50%, and transaction processing times increased

to almost three hours (compared to the typical delay of 20

minutes before the attack started). Finally, they estimated that

2To be precise, what is needed for the attack is a majority of the puzzle-
solving capacity of the network, but for simplicity, we refer to nodes instead.

the transaction spamming attack cost the attacker 201 BTC

(approximately $49,000 at the time of the attack).

The possibility of a deluge of transactions causing dis-

ruptions can be witnessed through the sudden popularity of

a a social game called CryptoKitties. Its surging popularity

had a similar effect on Ethereum transactions as the previous

spamming attack had on Bitcoin — the increased demand for

trades in CryptoKitties, which at one point exceeded 15% of

all transactions in Ethereum, led to a significant increase in

transaction costs and transaction processing delays [16]. Even-

tually the increase in transactions fees and growth of block

gas limit normalized the situation, showing the long-term

adaptability of the network to a change, while demonstrating

the difficulty of adjusting to rapid usage pattern changes in

the short term.

In this paper we analyze transaction history of the Ethereum

blockchain, and look at the cost and effectiveness of a spam

attack as described by Baqer et al., e.g. one where the attacker

does not attack the infrastructure per se, but attempts to

influence the service quality and usage costs of the network.

While this type of attack is known by the general Ethereum

community, we have found that it has not been generally

characterized in the scientific literature — there are even

assertions on the financial impossibility of this attack such as a

statement of “[Ethereum’s] execution fees also protect against

denial-of-service attacks” [12]. We show that performing a

spam attack on the Ethereum network is not only feasible,

but can be executed at a limited financial cost. Even if an

attacker does not aim to disrupt the network in general, the use

of limited time windows in smart contracts may open attack

venues where introducing a delay to a transaction through

transaction spamming may cause the transaction to miss the

limited time window.

The rest of this paper is structured as follows. In Section II,

we provide further background on the Ethereum blockchain

and how its economic and operational models work. In Sec-

tion III, we describe the transaction spam attack model. In

Section IV, we present the supporting results from our analysis

of the historical Ethereum transaction data, and show the

efficacy and costs associated with the transaction spam attack.

Then, in Section V we present our final conclusions, and

finally, in Section VI, we discuss some of the shortcomings

of this paper and present ideas for future work.

II. Ethereum blockchain
Ethereum is a distributed network of distrusting nodes

that are monetarily incentivized to provide a trustworthy

decentralized computing environment [17]. The integrity of

the Ethereum blockchain is guarded by a robust distributed

consensus algorithm, currently the proof-of-work Nakamoto

consensus. Ethereum supports smart contracts, pieces of pro-

gram code stored on the blockchain that are able to exe-

cute arbitrary state-changing computations. Operationally, the

nodes in the Ethereum network are incentivized through the

mining and transaction processing rewards that are provided

in Ethereum network’s native cryptocurrency, the ether (one

ether is further subdivided into units called wei with one

ether being equal to 1018 wei). The cryptocurrency can be

acquired through mining, or purchased for real-world money

at specialized exchange services.

The global state of the blockchain is manipulated through

transactions, which upon their execution are grouped into

blocks. To prevent Sybil attacks, a new block is accepted by

the network nodes only if contains a valid proof of work.

Thus, for miners to successfully generate a new block that is

accepted by the network, the miner must engage in the process

of mining where they attempt to solve the cryptographic puzzle

that acts as the required proof of work. The miner is rewarded

for creating a new block in the form of a block reward, and

they are also able to collect transaction fees of any transactions

they processed and included in the block.

Each block in Ethereum can contain only a limited number

of transactions. The number of transactions that fit into a block

is controlled by the block gas limit. The block gas limit is

adjusted by miners via a decentralized mechanism, where the

miner can slightly increase or decrease the block gas limit.

The use of a block gas limit allows Ethereum to adapt to the

transaction demand while keeping the number of transactions

per block bounded.

Transactions in Ethereum are executed under a formally

defined computational model called the Ethereum Virtual

Machine (EVM)3. The EVM executes smart contracts in a

deterministic manner, thus allowing all nodes in the network

to verify the correct execution of any smart contract. The

EVM model is Turing-complete, and thus cannot provide any

generic execution time bound guarantees. To provide bounded

execution time a concept of gas is used. Each EVM operation

consumes a specific and deterministic amount of gas. The

initiating transaction must supply the gas that the execution

requires — if gas runs out, the execution is terminated.

Conversely, any unused gas is deposited back to the transaction

initiator. The unit of gas used by transactions is arbitrary and

expressed as an integer number, and is simply called “gas”.

The initiator of a transaction controls transaction processing

fees through two transaction parameters, the transaction gas

limit and the gas price. The gas limit defines the maximum

amount of gas the transaction may consume, and the gas price

specifies the amount of cryptocurrency per unit of gas that the

initiator is willing to pay for. A typical gas price is in the order

of few to hundreds of billions of wei per gas (e.g. nanoethers).

The combination of the transaction gas limit and the gas price

allows the initiator to have an upper bound on the transaction

process fee. Finally, a transaction contains other parameters

such as value, which is the amount of cryptocurrency being

sent as part of the transaction.

The transaction processing fee forms the incentive for

miners to use their resources for processing other parties’

transactions. When no other relation exists between the miner

3Technically a transfer of cryptocurrency from an account to another does
not run an EVM computation, however these can be seen as implicit degen-
erate smart contracts, and in this manner they fit within the computational
model.

and transaction sender, an economically rational miner should

choose to process transactions expected to produce largest

rewards for the miner. Some miners specify a minimum

gas price to avoid running transactions that do not cover

their real-world costs such as electricity and capital expenses.

Consequently, all submitted transactions form a market in the

Ethereum network where each transaction is competing with

other transactions to be included in the next mined block.

An initiator of a transaction can analyze the current gas price

market, and decide on a suitable gas price they believe will

result in miners including the transaction in a future block.

Consequently the transaction processing market is dynamic

and there is no predetermined or fixed price for one unit of

gas.

In the Ethereum network, individual transactions are prop-

agated through the network via a peer-to-peer mechanism. If

a transaction is initially submitted to a sufficient number of

independent nodes, the transaction will propagate through the

Ethereum network, and has a very high likelihood of being

seen by a node which successfully mines a block [14]. Miners

will typically hold a large collection of pending transactions,

effectively buffering transactions until they can be fitted into a

block. The combination of dynamic peer-to-peer propagation,

the connectivity of nodes where the transaction is submitted

and the depth and behavior of miners’ transaction pool behav-

ior means that there is never a single, globally consistent state

of pending transactions on the whole network.

III. Transaction spamming
The underlying assumption of a decentralized blockchain is

that all miners are economically rational — they attempt to

selfishly maximize their own profits. The mining incentives

are designed to align the interests of miners with the global

utility, thus providing positive value to all participants on the

blockchain.

As described in the work of Luu et al. [18], transaction

processing and verification in Ethereum can be expensive.

While non-mining nodes may decide to skip transaction val-

idation and settle for lesser integrity guarantees, the full cost

of transaction processing must be carried by miners. Conse-

quently, a miner must balance the real-world costs associated

with transaction processing with fees gained from processing

them. Thus, a rational miner, when presented with multiple

transactions at different gas price levels, can be assumed to

preferentially select those transactions which offer a higher

transaction processing fee4. The effectiveness of a spam attack

is based on this selfish rationality of the miners.

As a consequence, we envision that an attacker with

sufficient resources, is able to preferentially get their

transactions included in future blocks by paying a higher

transaction processing fee. This is similar to the Bitcoin

transaction spam attack described by Baqer et al. [15]. The

effect of spamming the transaction queue is that transactions

4This has been verified to be the operating mode in popular Ethereum node
software such as Parity and Geth, e.g. when mining, transactions with a higher
gas price are preferred over transactions with a lower gas price.

at a lower gas price are not included in the next block.

By continuously generating spam transactions, the attacker is

able to indefinitely prevent any lower-value transactions from

completing (or until attacker’s resources, e.g. cryptocurrency,

is exhausted). While conceptually simple, in reality the ef-

fectiveness of an attack is limited due to four reasons: 1)

the transaction queue processing has asynchronous latencies

which introduce inherent randomness, 2) miners often pri-

oritize their own transactions, thus transactions from miners

themselves are difficult to block, and 3) block gas limit is

dynamic and miners may choose to increase it during an

attack, thus increasing the cost of the attack, and finally 4)

gas price itself is controlled by transaction initiators, and they

are likely to react to changes in the gas price market. Each of

these factors is discussed in detail below.

While it is reasonable to assume that an attacker would

actively seek out nodes with maximum transaction distribution

capabilities for transaction queue spamming, the dynamic

structure of the Ethereum network makes it possible that a

successful miner will see only a small subset of the attacker’s

transactions, thus allowing transactions with gas price lower

than the attacker’s threshold value to be included into the

mined block. Therefore, it is not possible to guarantee that all

lower-value transactions are blocked even if an overwhelming

amount of spam transactions are created. Regardless, we

hypothesize that a majority of lower-value transactions can be

blocked, especially in a situation where the attack is sustained

for a long period of time, allowing sufficient number of spam

transactions to reach all nodes in the network.

While miners are assumed to be economically rational, e.g.

maximizing their own rewards, miners also have the incentive

of not paying for transactions they themselves have initiated.

While successfully mining a block is highly unlikely for a

single machine, a collection of co-operating miners called

a mining pool, can have a sufficiently large likelihood of

successfully mining a block within a limited amount of time.

Consequently, if transactions from within the mining pool

are prioritized, they will be included in the blockchain even

when priced at a lower level than the spam attack’s gas price

threshold. Thus, a spam attack is unable to prevent low-

value transactions from miners and mining pools that prioritize

transactions originating from participants in the mining pool.

The Ethereum protocol allows miners to modify the block

gas limit in a small relative increment or decrement. Miners

seeing a full transaction queue can increase the block gas

limit, allowing them to include more transactions in the mined

block and to collect a higher transaction processing reward.

This would also increase the number of spam transactions

included in the block, thus driving the attack cost up. The

block gas limit is dynamic, albeit its growth rate is limited to

about 26% increase over approximately an hour (240 blocks).

It is unlikely this cost increase would have an effect on a

short-term attack, but over a longer time span, it can increase

the attack costs prohibitively.

The transaction initiator is able to observe the current

Ethereum transaction market and select a gas price that meets

their transaction latency requirements. It seems likely that

during an attack, users of the network would either abstain

from creating new transactions, or would increase the gas price

of the submitted transactions to compensate. Thus, the market

forces of supply and demand would drive up the median gas

price of the new transactions. To block a certain portion of all

transactions the attacker would need to increase the gas price

of spam transactions, which in turn, would drive the attack

cost up.

In summary, while in practice a spam attack blocking 100%

of other parties’ transactions in not feasible, and a long attack

would progressively see increasing costs, there is nothing

that would prevent a short-term attack from blocking the

execution of a large number of transactions. The actual cost

and effectiveness of such an attack is analyzed in the next

section.

IV. Analysis
A. Methods

Ethereum blockchain data was collected by running the

Parity program in archival mode. In this mode, the program

will collect and store all blocks, transactions and the historical

blockchain state. After the archival node had successfully

performed a full synchronization of all of the blockchain

history, the data was queried over the Ethereum standard RPC-

JSON API and stored into a suitable format for later loading

into a Postgresql database, from which it was further narrowed

down and exported to the statistical analysis program R for

final analysis and generation of figures.

B. Historical block characteristics

The initial analysis range was from the genesis block

(block 0, July 30 2015) until block 5,325,329 (March 26

2018). There is a distinct development pattern during the

history of Ethereum showing that number of transactions per

block, block gas limit and block gas usage have increased

substantially over the the last few million blocks, as shown

in Figure 1. As shown in the figure, since about block

4,000,000 an increasing number of blocks have no space for

transactions, e.g. blocks are full. The graph also clearly shows

the remediation effort’s effects of a denial-of-service attack

against the network at around block 2,400,000 on the block

gas limit (the attack is described in [11]).

C. Transactions

As described above, the usage patterns of the Ethereum

network have changed substantially over time. For this reason

we limit further analysis to only recent history between blocks

3,000,000 up to block 5,299,999 for a total of 2.3 million

blocks. These blocks span the time interval from from January

15th 2017 to March 22nd 2018. This range contained a total

of 172,465,920 transactions with the gas price ranging from

0 wei/gas to 11.9× 1015 wei/gas, with the mean gas price of
29.8×109 wei/gas and median of 21.0×109 wei/gas. The 99th
percentile of transaction gas price is 129 × 109 wei/gas. The

data also shows that transaction gas prices are highly stratified,

0

2 × 106

4 × 106

6 × 106

8 × 106

0 2,000,000 4,000,000
Block

G
as

90% range

99% range

Average

Limit

Blocks 0−5325329
Block gas usage and limit

Each data point covers 1000 blocks

Figure 1: Gas usage and block gas limit by block, showing

the average, 90th and 99th percentiles of block gas usage of

blocks in increments of a thousand blocks, and the maximum

of the gas limit over the same ranges.

2.1 × 10^10
dp = 9.3%

sum p = 56.6%

2 × 10^10
dp = 17.4%

sum p = 46.6%
0.4 × 10^10
dp = 5.9%

sum p = 17.6%0%

25%

50%

75%

100%

0 2.5 × 1010 5 × 1010 7.5 × 1010 1 × 1011

Gas price (wei/gas)

Po
rti

on
 o

f t
ra

ns
ac

tio
ns

 a
t p

ric
e

le
ve

l o
r l

es
s

Blocks 3000000−5299999
Transaction gas price levels

Figure 2: Relative portion of transactions with gas price at or

less than a given level. Several of the highly stratified prices

are highlighted in the graph, representing distinct gas prices

that are used unusually frequently in transactions.

with 83.1% of all transactions having the gas price of an

integer multiple of 109. The cumulative gas price distribution
is shown in Figure 2.

D. Costs of a transaction spam attack

For further calculations the block gas limit was assumed to

be 8 × 106 gas/block5. This cost model is based only on the

distribution of transaction gas prices as shown in Figure 2, and

the portion of blocked transactions is simply the percentage of

transactions below a specific threshold gas price. The blocking

ratios compared to attack costs are shown in Figure 3.

5The average block gas limit has fluctuated consistently around 8 million
gas per block during early 2018.

p = 56.6%
gas price = 21.0 Gwei/gas

cost = 0.10 eth

p = 91.2%
gas price = 60.0 Gwei/gas

cost = 0.44 eth

p = 99.0%
gas price = 129.0 Gwei/gas

cost = 1.02 eth

0%

25%

50%

75%

100%

0.0 0.5 1.0 1.5 2.0
Cost per block (ether)

Po
rti

on
 o

f t
ra

ns
ac

tio
ns

 b
lo

ck
ed

Blocks 3000000−5299999
Transaction starving costs per block

Assumes block gas limit of 8 million

Figure 3: The effect of cost per block of the transaction spam

attack on the portion of transactions blocked. The cost is based

on block gas limit of 8× 106 gas per block. Some examples

of attack cost versus the portion of blocked transactions p are
highlighted.

The costs and effectiveness of a spam attack at several gas

price levels is shown in Table I. The table provides costs in

ethers per hour for assumptions of a static block gas limit, and

a dynamic block gas limit that increases with the maximum

rate after the onset of the attack. The maximum block gas

limit increase rate is 1 unit in 1024 per block which equates

to the attacker needing to pay an increase of 12.6% over the

unchanging block gas limit scenario. The block gas limit itself

would have increased to over 10 million gas per block after

one hour6. The attack costs in Table I are in Ethereum’s own

cryptocurrency unit. The conversion rate between ethers and

dollars fluctuates greatly — according to ethereumprice.org

the peak ether cost has been $11,422.47 on January 14th 2018,

and the lowest value after the peak until March 22nd was

$454.80. If we consider these as lower and upper costs of

ether for the spam attack at 95% effectiveness, its execution

for one hour would have cost between $78 590 and $276 800.

V. Conclusions
We have analyzed the potential costs and effectiveness of

mounting a spam attack on the Ethereum network based on the

distribution of gas prices of historical transactions. The ability

of an adversary to delay transactions may severely affect the

real-world security assurances that an IoT system using the

public Ethereum network can provide.

This type of a denial of service attack itself is generally

known by the Ethereum community, and has also been de-

scribed earlier in the context of Bitcoin by Baqer et al. We

6The block period in Ethereum is approximately 15 seconds, thus about 240

blocks are mined in an hour. The sum of the geometric series
∑n−1

k=0 ark =

a
(

1−rn

1−r

)
for n = 240, a = 1 and r = 1025/1024 is 270.3, a relative

increase over the baseline of (270.3–240)/240 = 12.6%. The last 240th block

would have a block gas limit increased from the initial value by
(
1025
1024

)240−1
= 26%.

Costs

Coverage Gas price Static Static Dynamic

wei ether/block ether/h

50.0 % 21 000 000 000 0.2 40.3 45.4

90.0 % 60 000 000 000 0.5 115.2 129.7

95.0 % 90 000 000 000 0.7 172.8 194.6

99.0 % 129 000 000 000 1.0 247.7 279.0

99.9 % 280 609 467 870 2.2 538.8 606.8

Table I: Cost of a transaction spam attack based on the

distribution of transaction gas prices in the analysis range.

The costs are based on an assumption of an initial block gas

limit of 8× 106 gas per block.

would like to point out that the spam attack is a denial of

service type of attack that operates within the economic model

of the blockchain. It does not try to attack the integrity of the

blockchain, and neither does it try to prevent the Ethereum

nodes from functioning or from processing transactions. From

the viewpoint of the mining nodes there is no attack occur-

ring — all of the transactions initiated by the attacker are

normal transactions. The miners are incentivized to prefer the

attacker’s transactions by the use of the elevated gas price.

The attack thus is an attack against Ethereum transactions, not

against the infrastructure, the blockchain, or smart contracts.

This poses a problem for IoT devices that use the Ethereum

blockchain for control or management information, or use it

to transmit information. While it is possible to characterize

“normal” blockchain latency and transaction price variation,

and define a gas price strategy to provide a high guarantee

of timely transaction execution, such strategies are unlikely to

work reliably against a purposeful spam attack. Thus, from

IoT-DLT integration point of view, even a blockchain that

provides security guarantees of integrity and non-repudiation

may still prove to be manipulatable in ways that can be used

to break security or safety models in the real world.

While this type of an attack is unlikely to be economically

within the reach of an individual, we have shown that a time-

limited attack is within the reach of well-resourced organiza-

tions such as large corporations, criminals and nation-states.

We believe that given a sufficiently lucrative target, this type

of attack is economically feasible and profitable to implement.

While the cost of an attack is likely to increase during a

prolonged spam attack, the changes are likely to be initially

small and lagged, leaving a window of opportunity for such

an attack to be successful.

VI. Further work
The cost estimation model in this paper assumes that all

transactions are random and memoryless samples from the

existing distribution. In reality, transaction gas prices vary

throughout the day and month, exhibiting delayed reactions

to sudden changes in transaction demand and gas prices. For

example, instead of making a static assumption on the gas

price distribution, the existing distribution could be taken as

a repository of transaction traces against which the effective-

ness of the attack could be compared against. Similarly, an

analytical model of the market behavior to gas price changes

would be an interesting proposition.

Looking from an attacker’s point of view, an interesting

question is the feasibility of an adaptive attack, where the

attacker is assumed to be able to inspect the transaction queue

and adapt the gas price of spam transactions accordingly. Here,

the attack could be even tailored to attack transactions of a

specific account, potentially having a significantly lower cost

of the attack. An another possibility is to use of an eclipse

attack to trick targeted parties into a network partition where a

critical transaction is delayed, yet, when the eclipsed portion of

the blockchain network joins the main network, all attack costs

are voided since the eclipsed portion and all its transactions

are “lost”.

While not described here in detail, we performed some ad

hoc analysis of the blockchain’s history and found several

sequences of blocks with transactions that appear to have no

other purpose than to take all the transaction space. However,

as hiding the source and purpose of a spam transaction is easy,

a statistical clustering approach such as taken by Baqer et al.

would be necessary to reliably distinguish between regular and

spam transactions.

Acknowledgment
This project has received funding from the European

Union’s Horizon 2020 research and innovation programme

under grant agreement No 779984. We would also like to thank

Jenni Huttunen for her feedback and comments on this paper.

References
[1] N. Tapas, G. Merlino, and F. Longo, “Blockchain-

Based IoT-Cloud Authorization and Delegation,” in

2018 IEEE International Conference on Smart Com-

puting (SMARTCOMP), 2018-06, pp. 411–416. DOI:

10.1109/SMARTCOMP.2018.00038.

[2] O. Novo, “Blockchain Meets IoT: An Architecture for

Scalable Access Management in IoT,” IEEE Internet of

Things Journal, vol. 5, no. 2, pp. 1184–1195, 2018-04,

ISSN: 2327-4662. DOI: 10.1109/JIOT.2018.2812239.

[3] J. R. Douceur, “The Sybil Attack”, in Peer-to-Peer Sys-

tems, ser. Lecture Notes in Computer Science, Springer,

Berlin, Heidelberg, 2002-03-07, pp. 251–260, ISBN:

978-3-540-44179-3. DOI: 10.1007/3-540-45748-8_24.

[4] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash

system, 2008. [Online]. Available: https://bitcoin.org/

bitcoin.pdf.

[5] I. Eyal and E. G. Sirer, “Majority Is Not Enough: Bit-

coin Mining Is Vulnerable”, in Financial Cryptography

and Data Security, ser. Lecture Notes in Computer

Science, Springer, Berlin, Heidelberg, 2014-03-03,

pp. 436–454, ISBN: 978-3-662-45471-8. DOI: 10.1007/

978-3-662-45472-5_28.

[6] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn

Mining: Generalizing Selfish Mining and Combining

with an Eclipse Attack,” in 2016 IEEE European Sym-

posium on Security and Privacy (EuroS P), 2016-03,

pp. 305–320. DOI: 10.1109/EuroSP.2016.32.

[7] J. Göbel, H. P. Keeler, A. E. Krzesinski, and P. G.

Taylor, “Bitcoin blockchain dynamics: The selfish-mine

strategy in the presence of propagation delay,” Perfor-

mance Evaluation, vol. 104, pp. 23–41, 2016-10-01,

ISSN: 0166-5316. DOI: 10.1016/j.peva.2016.07.001.

[8] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun,

“Tampering with the Delivery of Blocks and Transac-

tions in Bitcoin,” in Proceedings of the 22Nd ACM

SIGSAC Conference on Computer and Communications

Security, ser. CCS ’15, New York, NY, USA: ACM,

2015, pp. 692–705, ISBN: 978-1-4503-3832-5. DOI:

10.1145/2810103.2813655.

[9] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijack-

ing Bitcoin: Routing Attacks on Cryptocurrencies,” in

2017 IEEE Symposium on Security and Privacy (SP),

2017-05, pp. 375–392. DOI: 10.1109/SP.2017.29.

[10] C. Natoli and V. Gramoli, “The Balance Attack or Why

Forkable Blockchains are Ill-Suited for Consortium,” in

2017 47th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN), 2017-06,

pp. 579–590. DOI: 10.1109/DSN.2017.44.

[11] J. Wilcke. (2016-09-22). The Ethereum network is cur-

rently undergoing a DoS attack, [Online]. Available:

https : / / blog . ethereum . org / 2016 / 09 / 22 / ethereum -

network-currently-undergoing-dos-attack/ (visited on

2018-03-28).

[12] N. Atzei, M. Bartoletti, and T. Cimoli, “A Survey

of Attacks on Ethereum Smart Contracts (SoK)”, in

Principles of Security and Trust, ser. Lecture Notes

in Computer Science, Springer, Berlin, Heidelberg,

2017-04-24, pp. 164–186, ISBN: 978-3-662-54454-9.

DOI: 10.1007/978-3-662-54455-6_8.

[13] L. Kiffer, D. Levin, and A. Mislove, “Stick a Fork

in It: Analyzing the Ethereum Network Partition,” in

Proceedings of the 16th ACM Workshop on Hot Topics

in Networks, ser. HotNets-XVI, New York, NY, USA:

ACM, 2017, pp. 94–100, ISBN: 978-1-4503-5569-8.

DOI: 10.1145/3152434.3152449.

[14] I. Weber, V. Gramoli, A. Ponomarev, M. Staples, R.

Holz, A. B. Tran, and P. Rimba, “On Availability

for Blockchain-Based Systems,” in 2017 IEEE 36th

Symposium on Reliable Distributed Systems (SRDS),

2017-09, pp. 64–73. DOI: 10.1109/SRDS.2017.15.

[15] K. Baqer, D. Y. Huang, D. McCoy, and N. Weaver,

“Stressing Out: Bitcoin “Stress Testing””, in Financial

Cryptography and Data Security, ser. Lecture Notes

in Computer Science, Springer, Berlin, Heidelberg,

2016-02-26, pp. 3–18, ISBN: 978-3-662-53356-7. DOI:

10.1007/978-3-662-53357-4_1.

[16] M. Hrones. (2017-12-05). CryptoKitties Creates Mas-

sive Backlog on the Ethereum Network, [Online]. Avail-

able: http : / / bitcoinist . com / cryptokitties - creates -

massive - backlog - on - the - ethereum - network/ (visited

on 2018-03-28).

[17] G. Wood, “Ethereum: A secure decentralised gener-

alised transaction ledger,” Ethereum Project Yellow Pa-

per, vol. 151, 2014.

[18] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena, “De-

mystifying Incentives in the Consensus Computer,” in

Proceedings of the 22Nd ACM SIGSAC Conference on

Computer and Communications Security, ser. CCS ’15,

New York, NY, USA: ACM, 2015, pp. 706–719, ISBN:

978-1-4503-3832-5. DOI: 10.1145/2810103.2813659.

