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Abstract. Image-quality assessment measures are largely based on the assumption that an image is only dis-
torted by one type of distortion at a time. These conventional measures perform poorly if an image includes more
than one distortion. In consumer photography, captured images are subject to many sources of distortions and
modifications. We searched for feature subsets that predict the quality of photographs captured by different
consumer cameras. For this, we used the new CID2013 image database, which includes photographs captured
by a large number of consumer cameras. Principal component analysis showed that the features classified con-
sumer camera images in terms of sharpness and noise energy. The sharpness dimension included lightness,
detail reproduction, and contrast. The support vector regression model with the found feature subset predicted
human observations well compared to state-of-the-art measures. © 2014 SPIE and IS&T [DOI: 10.1117/1.JEI.23.6
.061111]
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1 Introduction
The quality of photographs depends on many interacting fac-
tors and distortion sources. Consumer-level cameras, the
technology platform of this paper, are equipped with low-
quality optics and image sensors; their shooting process
causes motion blur and poor focus, and their low-sensitivity
pixels increase noise level. In addition, the conditions that
pictures are taken in, such as shooting distance and lighting
conditions, affect the quality of raw images. After shooting,
the raw images are processed by the image signal processing
(ISP) pipe of the camera. The ISP includes operations such as
color filter array demosaicking, automatic white balancing,
color correction, noise filtering, tone reproduction, gamma
correction, edge enhancement, color saturation enhance-
ment, and image compression.1,2 The parameters and the
order of operations affect the resulting image. Some opera-
tions, such as demosaicking, white balancing, and noise fil-
tering, seek to restore the image. Other components, such as
edge enhancement and color saturation enhancement, aim to
produce a pleasant image.

The quality of the photographs can be evaluated using
both subjective and objective methods. In this study, the
term subjective method denotes a test performed on test par-
ticipants. The term objective method refers to an algorithm
based on the computational process applied to the test
images. The output of an algorithm is a value related to
the image quality. In a subjective test, an observer rates
test images based on the overall quality or quality attributes.

In the current research of objective image-quality assess-
ment, image-quality measures are usually classified into full-
reference (FR), reduced-reference (RR), and no-reference

(NR) approaches depending on whether and how the refer-
ence image is used. The FR measures3–5 cannot be applied in
the case of consumer camera images because of the lack of
pixel-wise reference images; that is, the original image or a
reference image is not available. An RR measure6 requires
some information from the original or reference image.
RR measures have been applied to consumer camera images,
but the requirement for a calibrated reference camera makes
them cumbersome.7–9

NR measures10–17 do not need a reference or original
image and are applicable to consumer camera images.
However, NR measures tend to perform poorly in the case
of images with multiple distortion sources. In fact, the fun-
damental problem from the perspective of this paper is that
NR measures have been developed to characterize images
with only one distortion type at a time as is commonly
found in databases18–22 or images with two distortions.23

The types of distortions include JPEG or JPEG2000 com-
pression, noise contamination, low-pass filtering, or fast-fad-
ing distortion.

Our experience suggests that a measure developed with
training data of only one distortion type may respond to
other distortions in an undesirable manner.7,24 For example,
a dedicated sharpness measure may interpret noise energy as
image details. This behavior is not problematic if low-pass
filtering is the only distortion source, but such a measure fails
if the distortion space of the image is multidimensional.

A close research field with NR image quality is aesthetic
evaluation. Aesthetic measures incorporate low-level image
properties (brightness, contrast, color, edges, hue, etc.),
image composition rules (rule of thirds, golden ratio,
depth of field, and color harmonies), and content properties
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(face detection and scene types).25,26,27 Roughly speaking,
aesthetic research aims at differentiating professional from
nonprofessional photographs in a random stream and rank-
ing images with respect to professional skill or viewer
impression, whereas image-quality research strives toward
sorting images in terms of technical performance or image
processing. In this study, we focus on the latter approach.
Image composition and content properties are out of the
scope of the study.

Regardless of the measure (aesthetic and image quality),
algorithms combine one or more image features to form fea-
ture vectors. The term feature refers to a piece of information
computed from an image. The feature vectors are inputted
into a regression model or fed into a learning model to pre-
dict human-provided ground truth of aesthetics or quality.
The performance of a measure becomes as high as the fea-
tures and training data allow. The hypothesis of this study is
that a high-performance, reference-free quality measure for
images suffering from multiple distortions uses a combina-
tion of interacting features as inputs.

The aim of this study is to find an efficient feature subset
from a large feature set that could classify distortions and
predict the visual quality of photographs captured by differ-
ent consumer cameras. In the study, we applied several fea-
ture selection methods. Feature selection is a mature research
topic and has been used for many applications.28 However, to
the best of our knowledge, this is the first study that attempts
to find quality dimensions via feature selection for images
captured by different types of cameras. We used images
from the CID2013 image database,29 which contains images
captured by different consumer-level cameras under different
shooting conditions as well as subjective evaluations of those
images. The CID2013 image database provides distortion
types for more realistic application scenarios than images
used in the earlier studies. The results of this study are appli-
cable to consumer photographs, such as quality ranking of
images in photo-sharing sites or in image-retrieving systems.
Conventional methods are applicable only to cases with a
restricted set of distortions, such as image storage (JPEG
compression distortion), image scaling (blurring distortion),
or image transmission (white noise distortion).

The novelty of this study relates to finding the combina-
tions of features that account for the overall quality of con-
sumer-level photographs. Because the feature selection
process provides a systematic way of restricting the number
of features, we were able to find and to analyze the quality
dimensions of consumer camera images. The dimensions
were identified by principal component analysis and
included a sharpness dimension and a noise energy dimen-
sion. The sharpness dimension consisted of lightness, detail
reproduction, and contrast. The result strongly posits that the
multidimensionality of the image quality should be taken
into account in developing new measures. According to
our knowledge, the quality dimensions have earlier been
explored by subjective research30–32 only. The results of
Ref. 30 showed that the most important subjective image
quality dimensions are contrast, naturalness, darkness, and
sharpness. The authors concluded that the high-level attrib-
ute naturalness is a requirement for high-quality images,
whereas quality can fail for other reasons in low-quality
images. For example, a low-quality image can be dark and
unsharp, as our results also indicated.

This paper is divided into four sections. Following this
introductory section, Sec. 2 reviews the feature selection
methods, reference measures, and image material used in
this study. Section 3 presents the results of the study. We
compare the performance of the found-feature subsets and
state-of-the-art measures and explore the quality dimensions
of sharpness and noise energy for consumer photographs.
Section 4 concludes the study.

2 Methods

2.1 Feature Set
This study is based on the feature set S, which includes 270
features. The selection of these features was guided by their
coverage of well-known image attributes. The measures
derived from the features predict overall image quality, aes-
thetics, and attributes such as sharpness or blurriness, noise,
colorfulness, and JPEG or JPEG2000 distortions. Moreover,
the features f3 and f4 of the measure33 have been developed
to express the lightness of image, and features f113 and f117
of Ref. 34 to express the hue of image. Feature f221 of
Ref. 35 is developed to measure contrast, just to name a
few. Table 1 lists the features included in the feature set
S, as well as the origins and the types of measures in
which they were originally used.

We implemented features f1 to f131, f154 to f171, and
f173 to f270 in this study by loosely following their respec-
tive references. The code for computing features f132 to f153
and f172 originated from their authors. In addition to the
references listed in Table 1, we used some other toolboxes
and functions. Implementations of features f8 to f95 use
the PyrTool toolbox,47 which computes steerable pyramid
decomposition. Features f39 to f50 use the ssim_index
code48,49 for computing structural difference values between
different scales and orientations. Features f96 and f97 apply
the phasecong3 code50 when phase congruency images are
computed.

2.2 Feature Selection Process
We searched for the most efficient feature subsets from fea-
ture set S using different feature selection methods. Figure 1
shows the components of the selection process. Subset gen-
eration and subset evaluation are commonly used compo-
nents of feature subset selection.28,51,52 For this study, we
also implemented a method-comparison component, which
compares the best subsets obtained using different methods.

2.2.1 Subset generation

The most comprehensive strategy of candidate subset gener-
ation is a complete search. However, this strategy requires an
exponentially large search space OðN2Þ, where N is the num-
ber of features. Heuristic and random searches require less
computational power. The complexity of the heuristic search
isOðN2Þ or less, which can also be computationally demand-
ing for a large feature space.

A heuristic search is often based on a hill-climbing
approach, such as sequential forward selection (SFS) or
sequential backward elimination (SBE).28 SFS starts with
an empty set and adds one feature at a time from the original
set by maximizing the performance measure. SBE starts with
the original group and eliminates one feature at a time by
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maximizing the performance measure. The performance
measure is computed in the subset evaluation component.

In this study, we used the SFS method. We chose this
method because the complete search was computationally
too heavy due to the large size of the original feature set
S. Our selection of SFS instead of the SBE method is
borne out by the ratio of M and N, where M is the number
of assumed relevant features and N is the total number of
features. According to Liu and Yu,28 if M is small, then
the SFS strategy should be used, and if the number of irrel-
evant features (N minus M) is small, then the SBE strategy
should be used. We assume that the size of M of the feature
set S is small. The original feature set S includes many
redundant features; thus, we prefer the SFS strategy.

2.2.2 Subset evaluation: filter methods

The subset generation component feeds candidate subsets to
the subset evaluation. The component selects the most effi-
cient feature subset from the group of candidate subsets. The
evaluation methods can be divided into three types: filter,
wrapper, and hybrid.28 For this study, we implemented strat-
egies based on all three of these approaches.

Filter methods can be further divided into two types:
direct and subset ranking. Direct filter methods measure
how well any given feature in a subset classifies or ranks
the subjective evaluation data. In practice, direct filter meth-
ods remove irrelevant features, while subset ranking methods
filter both irrelevant and redundant features.

In this study, we used the correlation-based feature selec-
tion (CFS)51 method as our subset ranking filter method and
the Pearson linear correlation (LCC), symmetrical uncer-
tainty (SU), and relief51 as our direct filter methods.
Table 2 lists the filter methods used in this study with
their associated abbreviations.

The CFS filter method evaluates candidate subsets by
Eq. (1):

CFSvalue ¼
krcfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ kðk − 1Þrff
p ; (1)

where k is the size of the candidate feature set, rcf is the mean
correlation between perceived quality and individual feature
values, and rff is the average feature-feature intercorrelation.
The numerator of Eq. (1) expresses the performance of a sub-
set in its predictions of perceived quality. The denominator
indicates the redundancy among the features arising from
their mutual correlation.

Table 1 Original feature set S included 270 features, which were
inspired and implemented from different references.

Features Original measure typea Reference

f1 to f7 Image quality 33

f8 to f95 Image quality 15

f96 to f99 Image quality 36

f100 to f109 Image quality 37

f110 to f131 Aesthetic 34

f132 to f150 Image quality 14

f151 Sharpness 11

f152 Sharpness 38

f153 JPEG distortion 39

f154 Sharpness 10

f158 to f162 Sharpness 40

f163 to f169 Sharpness 41

f170 Noise 42

f171 JPEG2000 distortion 12

f172 Sharpness 42

f173 Sharpness 43

f174 to f217 Sharpness / noise 44

f218 to f221 Sharpness 35

f222 to f257 Image quality 17

f258 to f261 Image quality 45

f261 to f270 Colorfulness 46

aIn the original literature references, the features have been combined
to form a measure or algorithm for predicting some image property,
such as image quality, aesthetics, sharpness, noise, colors, or image
compression distortion.

Fig. 1 The framework of feature selection used in this study.
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We applied three versions of CFS: CFS(LCC), CFS(SU),
and CFS(relief). The correlation values of rcf and rff in
Eq. (1) were determined by LCC, SU, or relief measures.
LCC was calculated by Eq. (2):

LCC ¼ n
P

xiyi − ðP xiÞð
P

yiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðP x2i Þ − ðP xiÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðP y2i Þ − ðP yiÞ2

p ; (2)

where n is the number of compared pairs and xi and yi are the
samples of X and Y, respectively. SU was computed by
Eq. (3):

SU ¼ 2 ·

�
IGðYjXÞ

HðYÞ þHðXÞ
�
; (3)

where

IGðYjXÞ ¼ HðYÞ −HðYjXÞ; (4)

HðYjXÞ ¼ −
X
x∈X

pðxÞ
X
y∈Y

pðyjxÞlog2½pðyjxÞ�; (5)

HðYÞ ¼ −
X
y∈Y

pðyÞlog2½pðyÞ�; (6)

whereHðYÞ is the entropy of Y andHðYjXÞ is the entropy of
Y after observing X. The amount by which the entropy of Y
decreases reflects additional information about Y provided
by X; this amount is known as the information gain (IG).
According to this measure, feature Y is regarded as more cor-
related to feature X than to feature Z if IGðXjYÞ > IGðZjYÞ.
SU values range from 0 to 1; a value of 1 indicates that know-
ing the values of either feature completely predicts the values
of the other; a value of 0 indicates that X and Y are
independent.

The relief metric51 estimates the weight of features
according to how well their values distinguish samples
near to each other. The values of this metric range from
−1 to 1. Relief is calculated by Eq. (7):

ReliefX ¼
Gini 0 ·

P
x∈X

pðxÞ2

½1 − P
y∈Y

pðyÞ2�P
y∈Y

pðyÞ2 ; (7)

Gini 0 ¼
�X

y∈Y
pðyÞ½1 − pðyÞ�

�

−
X
x∈X

�
pðxÞ2P

x∈X
pðxÞ2

X
y∈Y

pðyjxÞ½1 − pðyjxÞ�
�
: (8)

In addition to CFS, we used three direct filter methods:
direct_LCC, direct_SU, and direct_relief with the correlate
measures of LCC, SU, and relief described in Eqs. (2),
(3), and (7).

2.2.3 Subset evaluation: wrapper and hybrid
methods

Wrapper methods seek efficient feature subsets for a measure
by using the same learning model that the measure uses.
Hybrid methods combine the steps of the filter and wrapper
methods. First, a hybrid method selects k features from the
original feature set using a filter method and then applies a
wrapper method to select a subset with l features (l ≤ k).

In this study, when applying wrappers, SFS fed candidate
feature subsets (subset generation component) to a learning
model (subset evaluation component). The learning models
used were the support vector regression (wrapper_SVR) and
linear regression (wrapper_REG) models. We utilized the
libSVM package53 in order to implement the SVR. The ker-
nel used for regression was the radial basis function kernel.
The weighting factors of the linear regressions were trained
by the regress function in MATLAB®.

The subset evaluation component used a fivefold cross-
training method for parameter training and validation. We
used 80% of the data for model training and 20% for perfor-
mance testing. This random 80/20 division was performed
1000 times for each of the candidate subsets. The perfor-
mance measure was the average LCC between the output
of the trained model and perceived data.

The hybrid methods used in this study (hybrid_LCC,
hybrid_SU, hybrid_relief, and hybrid_IG) were based on
the measures of Eqs. (2), (3), (4), and (7), and SVR. The
hybrid methods used filter methods to filter 20 features
from the feature set S and used SVR (as a wrapper) to select
subsets of 1 to 20 features. Table 3 lists the wrapper and
hybrid methods used in this study for feature subset
searching.

2.2.4 Method comparison

The method comparison component compares the perfor-
mance of the feature subsets found by the various feature
subset selection methods listed in Tables 2 and 3.

The performance metric of this component is the mean
prediction accuracy (linear correlation between predicted
and subjective values) as a function of subset size. The subset
sizes are limited to 1 to 20 features, as larger subset sizes do
not increase the prediction performance and smaller subset
sizes reduce the risk of overfitting. The performance values
of the methods are computed using 1000 randomly selected

Table 2 Filter methods for feature subset evaluation used in this
study.

Subset evaluation Method type Abbreviation

CFS with LCC Subset ranking CFS(LCC)

CFS with SU Subset ranking CFS(SU)

CFS with relief Subset ranking CFS(relief)

LCC Direct filter direct_LCC

SU Direct filter direct_SU

Relief Direct filter direct_relief

Note: CFS, correlation-based feature selection; LCC, Pearson linear
correlation; SU, symmetrical uncertainty.
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training and testing image data (80/20%) as used with the
wrappers in the subset evaluation component.

2.3 Subjective Data for Performance Study
In this study, we used the CID2013 image database,29 which
is publicly available for research purposes and is freely
downloadable. CID2013 includes six image sets (I to VI),
each captured by 12 to 14 different consumer cameras at
a given time of the year. The quality levels of the cameras
range from low to high; the cameras comprise low-, moder-
ate-, and high-quality mobile-phone cameras, moderate-
quality compact cameras, and low- to moderate-quality
SLR cameras.

The images contained in the sets were captured at differ-
ent times of the year from the same eight scenes. The scenes
represent environments in which consumers typically shoot
photos, ranking from dark to bright indoors to bright outdoor
conditions. The types of scenes chosen for the database were
partly based on the photospace approach described in
Ref. 54. Figure 2 shows sample images of the different
scenes. In total, CID2013 includes 474 images, called test
images, captured by 79 different cameras, i.e., on average,
six images per camera.

The subjective experiments were performed in a dark
room with controlled lighting directed toward a wall behind
the displays to avoid flare. The lighting produced ambient
illumination of 20 lux. The setup included two colorimetri-
cally calibrated 24 in. 1920 × 1200 displays (Eizo Color

Edge CG210) for, respectively, displaying a test image at
a time and its reference images, with a third smaller display
underneath for presenting questions. The subject’s viewing
distance (∼80 cm) was controlled by a line hanging from the
ceiling, and they were instructed to keep their forehead
steady next to the line. Because of the display size, the
images were scaled to a size of 1600 × 1200 pixels using
the bicubic interpolation method.

The number of observers was 30, 32, 31, 26, 34, and 34
for image sets I, II, III, IV, V, and VI, respectively. All
observers were náive in terms of evaluating image quality
and had normal or corrected-to-normal vision. Of the sub-
jects, 67% were female. The observers’ vision were con-
trolled for near vision acuity EDTRS (Precision Vision,
La Salle, Illinois), near contrast vision F.A.C.T. (Stereo
Optical Co. Inc., Chicago, Illinois), and color vision
Farnsworth D-15 (Luneau Ophtalmologie, Chartres,
France) before participation. They received two movie tick-
ets as a reward. On average, the experiment lasted 93 min.
However, that time includes the visual testing, instructions,
and training for the observers. The observers were also able
to have a break if they felt they needed one.

Test images were presented in random order, one scene at
a time for each observer using the dynamic reference abso-
lute category rating (DR-ACR) method. The DR-ACR
method creates reference image series from the test images.
Before evaluating a test image of a given scene on one dis-
play, all of the test images of the scenes in question are
shown to the observer as a slide show for reference on
the other display. This process is repeated before the observer
evaluates each test image. In other respects, the DR-ACR
method very much resembles a basic ACR method,55 except
that the observers see a slideshow of all the other images in
the test depicting the same scene before every evaluation. By
seeing the other images in the test setup as reference, the
observers are more aware of the total variation of quality rep-
resented within a single image set. This improves their evalu-
ation as they do not need to avoid using the far ends of the
scale in case there would be better or worse images later on in
the experiment.

The observers first rated the overall quality of each image
in a test series and then evaluated its quality attributes of
sharpness, graininess, brightness, and color saturation. The
sharpness scale ranged from very blurry to very sharp (0
to 100), the graininess scale ranged from very grainy to
not grainy at all (0 to 100), the brightness scale ranged
from too dim to too bright (−100 to 100), and the color

Table 3 Wrapper and hybrid methods for feature subset evaluation
used in this study.

Subset evaluation Method type Abbreviation

SVR Wrapper wrapper_SVR

REG Wrapper wrapper_REG

LCC and SVR Hybrid hybrid_LCC

SU and SVR Hybrid hybrid_SU

Relief and SVR Hybrid hybrid_relief

IG and SVR Hybrid hybrid_IG

Note: SVR, support vector regression; REG, linear regression; IG,
information gain.

Fig. 2 The images used for feature searching and validation were captured from different scenes by 12 to
14 different cameras.
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saturation scale ranged from too pale to too saturated (−100
to 100).

For this study, we divided the image sets of CID2013 into
two parts: image sets I to III were used for exploring efficient
feature subsets (Sec. 3.1) and image sets IV to VI for com-
paring the performance of the best feature subsets and the
state-of-the-art measures (Sec. 3.2). In total, we used 240
images captured by 40 cameras for feature subset selection
and 234 images captured by other 39 different cameras for
performance analysis. We grouped the images in the two
parts because the subjective evaluation method differed
between image sets I to III and IV to VI. When image
sets I to III were evaluated, the observers fixed the best
and the worst image to the ends of the scale, which was
not required with image sets IV to VI. More details and
the data analysis of CID2013 can be found in Ref. 29.

In addition to image sets IV to VI of the CID2013 image
database, we explored the performance of the best feature
subset found in this study with the images of the LIVE multi-
ply distorted image quality database (MDIQD)23 (Sec. 3.4).

2.4 Reference Measures
In Sec. 3.2, we compare the performance of the two most
efficient feature subsets found in this study to the perfor-
mance of state-of-the-art NR measures of image quality.
These measures include NIQE,56 BRISQUE,17 BLIINDS-II,16

JNBM,38 CPBD,11 Wang et al.,39 Sheikh et al.,13 Marziliano
et al.,10 BIQI,14 and BIQAA.44 We required that implementa-
tions of these algorithms are publicly available on the Internet.
These algorithms follow different approaches: JNBM, CPBD,
Wang et al., Sheikh et al., and Marziliano et al. are distortion-
specific measures. BIQAA, BIQI, NIQE, BRISQUE, and
BLIINDS-II are distortion-agnostic measures, i.e., measures
designed to measure the quality of an image without knowl-
edge of the distortion type. However, these measures had been
trained using databases of test images with limited sets of
distortions.

The Marziliano et al., JNBM, and CBBD measures pre-
dict image sharpness. The measure proposed by Marziliano
et al. finds edges and calculates edge widths as pixels. JNBM
divides images into blocks. If the edge widths, calculated by
the Marziliano et al., inside blocks are higher than the just-
noticeable-blur (JNB) threshold, the probability that the
image is not sharp increases. The CPBD measure is based
on the JNB concept, but it computes the percentage of
edges at which blur cannot be detected.

The measure proposed by Wang et al. computes the qual-
ity of JPEG images by multiplying measures of blockiness
and activity. The measure proposed by Sheikh et al. is based
on joint distributions of the sub-bands of wavelet coefficients
to measure how JPEG2000 compression changes those
distributions.

BIQAA uses the Renyi entropy measure along various
orientations to determine anisotropy. The assumption in
this method is that blur or noise introduces a substantial
change in the directional information of the scene. Hence,
anisotropy decreases as additional blurring or noise is
added to the image.

The BIQI, BLIINDS-II, BRISQUE, and NIQE measures
use learning models, as our approach in this paper does, with
feature values computed from distorted images. The good-
ness of this kind of measures depends on the features and

images used for training. BIQI is based on a framework
with two phases; it fits the wavelet coefficients of the dis-
torted image to the generalized Gaussian distribution
(GGD) model and derives the features from the parameters
of GGD. In the first phase, the probabilities for the different
predetermined distortions are calculated using a support vec-
tor machine. These probabilities are used as weighting fac-
tors for the second phase, in which the values for the specific
distortion set are calculated using SVR.

BLIINDS-II fits discrete cosine transform coefficients of
the distorted image to the GGD model and derives features
from the parameters of the GGD model. BRISQUE fits
locally normalized luminance values to the GGD and asym-
metric generalized Gaussian distribution (AGGD) models;
feature values are derived from the parameters of the models.
NIQE also uses the features derived from the GGD and
AGGD models. First, these features are computed for distor-
tion-free natural image patches (model training) and fit to
obtain the multivariate Gaussian (MVG) model density.
NIQE computes the quality of the distorted image as the dis-
tance between the parameters of the MVG model for the
natural image and those for the distorted image.

3 Results

3.1 Performance of Feature Subsets Found by
Different Selection Methods

Figures 3 and 4 show the performance of the feature subsets
found by different selection methods as a function of the sub-
set size: Fig. 3 shows the high-performance subsets and
Fig. 4 shows the low-performance subsets. The performance
values are determined using the LCC values between the
subjective overall quality and values predicted by the feature
subsets. The best-performing subsets have LCC values of 0.6
to 0.8. The performance saturated at subset sizes of 10 to 15
features. According to Fig. 3, the wrapper_SVR, wrapper_
REG, and CFS(LCC) methods found the most efficient fea-
ture subsets for the data used in this study.

Table 4 shows the LCC values for the feature subsets
found by various methods. The selected feature subset
sizes in the table maximized the LCC value of the individual
method. The best method was wrapper_SVR, the second

Fig. 3 Performance of feature subset selection methods as a function
of the number of features (high-performance methods).
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best was CFS(LCC), and the third best was wrapper_REG.
The wrapper_SVR method used 20 features. Note that the
size of the best feature subset found by the CFS(LCC) method
was small (14 features) compared to the wrapper methods.

According to the student’s t tests,57 the average LCC
values of 1000 (80/20% train and test) samples for the
wrapper_SVR, wrapper_REG, and CFS(LCC) methods dif-
fered statistically from each other: wrapper_SVR versus CFS
(LCC) (df ¼ 1998, p < 0.0001), wrapper_SVR versus
wrapper_REG (df ¼ 1998, p < 0.0001), and CFS(LCC) ver-
sus wrapper_REG (df ¼ 1998), p < 0.0001).

The wrapper_SVR method found the feature subset with
the highest prediction accuracy for image sets I to III. The

size of the subset, however, should be taken into account. As
the subset size increases, so does the risk of data overfitting.
To compare the measures in this paper with the state-of-the-
art measures presented in Sec. 3.2, we selected two feature
subsets: wrapper_SVR and CFS(LCC). The feature subset
found by the wrapper_SVR was selected because its LCC
value was the highest, while the subset found by the CFS
(LCC) was selected because its LCC value was the second
highest and we wanted to favor small subset sizes.

3.2 Performance of the Efficient Feature Subsets
and Reference Measures

In this section, we compare the performance of the most effi-
cient feature subsets and the reference measures using image
sets IV to VI from the CID2013 image database.

The feature subsets were fed to the SVR model, which
was trained using a content-based sixfold cross-training
method. First, we divided the images into six groups. The
images in group 1 are close-up photos in dark lighting con-
ditions with illuminance values of 2 lux. The images in
groups 2 and 3 are close-up photos in typical dim indoor
lighting conditions with illuminance levels of 100 and 10
lux, respectively. The images in group 4 had illuminance lev-
els equivalent to high indoor lighting levels. The images in
groups 5 and 6 are images in typical cloudy to sunny out-
doors lighting conditions taken of small groups of people
(group 5) or landscapes (group 6). The parameters of SVR
were estimated using data from five groups; these data were
used as the training data. The sixth group was used as the
testing data. Testing was performed six times, and all of
the groups acted as the testing data once through these tests.

Figure 5 shows example images from the different groups.
These images were grouped according to illuminance levels.
The illuminance level greatly impacts the distortion types
present in images captured by consumer-level cameras.
The division of six groups and the usage of these groups
for the cross-training of the methods were justified by the
different distortion types in the different groups.

Note that before the SVR parameters were estimated, the
feature values were normalized in image-set and group-spe-
cific ways, and the values of the reference measures were
also normalized. We normalized these feature values and
reference measures because the subjective values of the
image groups and sets in the CID2013 database were evalu-
ated independently of each other. The observers evaluated
one image group from one image set at a time. Thus, we
expect that the same quality ratings for images from different
groups are not equivalent to each other because the quality
scales of the various groups differ. For example, a quality
value of 10 for group 3 in image set IV is not the same
as a quality value of 10 for any of the other groups.

Before evaluating the performance of an algorithm, it is
common to apply a logistic transform to the predicted objec-
tive scores to bring the predicted and measured (subjective)
scores on the same scale and to account for the typically non-
linear relationship between the two scores. The trained SVR
model performs this transform for the feature subsets. For the
reference measures, we used a logistic function18 with an
added linear term

fðxÞ ¼ β1

�
1

2
−

1

1þ exp½β2ðx − β3Þ�
�
þ β4 · xþ β5; (9)

Fig. 4 Performance of feature subset selection methods as a function
of the number of features (low-performance methods).

Table 4 The performance of feature subsets found by different selec-
tion strategies (LCC values between the best feature subsets and
subjective overall quality).

Strategy LCC Number of features

wrapper_SVR 0.821 20

CFS(LCC) 0.793 14

wrapper_REG 0.759 19

CFS(SU) 0.719 17

hybrid_relief 0.718 10

direct_relief 0.709 17

direct_LCC 0.691 10

hybrid_LCC 0.681 5

hybrid_MI 0.652 2

hybrid_SU 0.626 8

direct_SU 0.607 9

CFS(relief) 0.591 8
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where β1, β2, β3, β4, and β5 are the model parameters chosen
to minimize the root-mean-square error (RMSE) between the
reference measures and the subjective quality values.

Tables 5 to 7 show the LCC, Spearman rank-ordered
correlation, and RMSE values for the feature subsets, respec-
tively, found by the wrapper_SVR and CFS(LCC) methods
and the reference measures. The methods are sorted by their
overall performance values. These results suggest that the
performance of the CFS(LCC) and wrapper_SVR methods
are higher than those of the reference measures. The overall
LCC of the CFS(LCC) method is 0.76, while the best refer-
ence measure is BRISQUE, with an LCC value of 0.62. The
group-specific performance of the wrapper_SVR method
was the highest except for groups 1 and 5. In these cases,
the performance of either the CFS(LCC) or Marziliano
et al. measure was best. Figure 6 compares the subjective
and predicted quality for the CFS(LCC) and wrapper_
SVR measures.

To determine which differences between the feature sub-
sets found by the wrapper_SVR and CFS(LCC) methods and
the reference measures were statistically significant, we used

a variance test. This test is the same as that used in Ref. 18.
The assumption of this test is that the residuals (the
differences between the subjective scores and the predicted
scores) are normally distributed. We tested the normality
using a kurtosis-based criterion, according to which the
residuals are Gaussian if the kurtosis is between 2 and 4.18

The assumption of the Gaussian distribution was met for all
the methods.

We used an F test to test whether the variances of the
residuals were identical, i.e., whether two sample sets
came from the same distribution. The null hypothesis is
that the residuals of both measures are expressions from
the same distribution and are statistically indistinguishable
with 95% confidence. According to this variance test,
there is a significant difference between the methods based
on the feature subsets found in this study and all tested refer-
ence measures. The difference between wrapper_SVR and
CFS(LCC) is not significant with 95% confidence.

Next, we try to determine how the accuracy of the best-
performing measure compares to the accuracy of random
human observers—in other words, whether time-consuming

Fig. 5 Example images of six different groups used for feature subset performance comparison study.

Table 5 LCC values between the subjective overall quality evaluations and algorithmic predictions (feature subsets and referencemeasures). The
best performers are bolded.

Measure Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Overall

CFS(LCC) 0.796 0.817 0.862 0.762 0.658 0.796 0.757

wrapper_SVR 0.718 0.859 0.874 0.807 0.553 0.844 0.733

BRISQUE 0.618 0.644 0.643 0.383 0.760 0.692 0.615

BIQI 0.358 0.753 0.619 0.751 0.559 0.695 0.540

JNBM −0.300 0.543 0.695 0.600 0.544 0.530 0.430

BLIINDS-II 0.505 0.552 0.485 0.454 0.400 0.297 0.381

Martziliano et al. −0.342 0.487 0.356 0.586 0.810 0.509 0.368

NIQE 0.485 0.287 0.214 0.386 0.489 0.510 0.341

BIQAA −0.130 0.343 −0.025 0.601 0.581 0.412 0.300

CPBD −0.413 0.395 0.409 0.486 0.692 0.397 0.260

Sheikh et al. 0.286 0.309 0.026 0.163 −0.206 0.421 0.175

Wang et al. 0.104 −0.329 0.401 0.055 −0.277 0.339 0.048
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subjective studies can be replaced by the measures found in
this study.

We compared the accuracy of our measure and n random
human observers by computing RMSE values. Figure 7
shows the RMSE values for the subjective data as a function

of the number of observers for image sets IV to VI. These
RMSE values were calculated by comparing the mean value
of n observers with the mean values of all of the observers.
For example, if n ¼ 3, the mean value of three selected
observers was compared with the mean of all observers.

Table 6 Spearman rank-ordered correlation (SROCC) values between the subjective overall quality evaluations and algorithmic predictions (fea-
ture subsets and reference measures). The best performers are bolded.

Measure Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Overall

CFS(LCC) 0.792 0.828 0.830 0.651 0.666 0.769 0.753

wrapper_SVR 0.719 0.820 0.812 0.706 0.595 0.803 0.746

BRISQUE 0.545 0.675 0.672 0.224 0.690 0.712 0.583

BIQI 0.191 0.774 0.656 0.678 0.485 0.585 0.524

JNBM −0.177 0.527 0.677 0.476 0.400 0.377 0.418

BLIINDS-II 0.581 0.483 0.473 0.404 0.461 0.273 0.373

NIQE 0.480 0.294 0.238 0.458 0.475 0.536 0.358

BIQAA −0.044 0.432 −0.022 0.637 0.441 0.404 0.316

Martziliano et al. −0.311 0.454 0.340 0.380 0.719 0.358 0.308

CPBD −0.347 0.389 0.354 0.389 0.613 0.175 0.207

Sheikh et al. 0.314 0.315 −0.084 −0.077 −0.129 0.314 0.178

Wang et al. 0.113 −0.2821 0.278 0.081 −0.172 0.355 0.065

Table 7 Root-mean-square error values between the subjective overall quality evaluations and algorithmic predictions (feature subsets and refer-
ence measures). The best performers are bolded.

Measure Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Overall

CFS(LCC) 17.73 11.05 15.00 14.11 18.47 13.23 14.93

wrapper_SVR 20.45 9.35 15.60 14.07 19.87 12.20 15.26

BRISQUE 21.58 14.31 21.61 19.79 15.78 15.46 18.09

BIQI 26.48 12.78 22.79 14.98 19.30 18.31 19.11

JNBM 31.11 15.31 21.84 16.53 19.64 18.28 20.45

Martziliano et al. 31.25 16.21 25.62 17.76 16.93 18.74 21.08

BIQAA 28.94 17.23 27.19 18.52 19.88 19.94 21.95

CPBD 30.91 17.05 26.33 18.91 19.59 20.19 22.16

NIQE 24.06 19.84 30.67 19.97 21.19 20.21 22.66

Sheikh et al. 26.95 17.59 27.08 19.75 24.53 20.82 22.79

Wang et al. 27.63 18.83 27.29 20.23 23.39 21.79 23.19

BLIINDS-II 25.35 22.18 21.03 32.74 30.91 28.71 26.82
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We randomly selected different observer combinations from
the group containing all observers, and the subjective RMSE
was the average value computed from all combinations.

The RMSE values of the feature subset found by CFS
(LCC) method for image sets IV, V, and VI were 16.48,
14.99, and 13.33, respectively, as shown in Fig. 7. It should
be noticed that these values are image set specific. The
RMSE values in Table 7 are averages over image sets IV,
V, and VI. Figure 7 shows that the accuracy of the CFS
(LCC) method equals the accuracy of a single random
observer (n ¼ 1). Figure 7 shows that standard deviations
between subjects stabilize the actual value with 10 to 15
observers. This means that the goal in developing objective
measure would be to approximately reach an RMSE value
of 4.

3.3 Characteristics of the Feature Subset Found by
CFS(LCC) Method

In this section, we explore the efficient feature set more
closely. According to our knowledge, this is the first
study that attempts to link quality dimensions of photographs
and features selected using feature selection methods.
Table 8 shows descriptions of features F1 to F14 of the subset
selected by the CFS(LCC) method and how they correspond
to the feature codes of Table 1. Table 9 shows descriptions of
the features of the subset selected by the wrapper_SVR.

Features F1 to F5 calculate the image properties in the
wavelet domain. Features F2, F3, and F5 (Ref. 14) decom-
pose images into three scales and three orientations using the
Daubechies 9/7 wavelet basis. Features F1 and F4 (Ref. 15)
decompose images into two scales and six orientations using
the steerable pyramid decomposition. The wavelet coeffi-
cients are parameterized using the generalized Gaussian den-
sity (GGD) model. The GGD is

fXðx; μ; σ2Þ ¼ ae−½bjx−μj�γ ; (10)

where μ, σ2, and γ are the mean, variance, and shape param-
eter of the distribution, and

a ¼ bγ
2Γð1∕γÞ ; (11)

b ¼ 1

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð3∕γÞ
Γð1∕γÞ

s
; (12)

where Γð·Þ is the gamma function.
Features F1 and F4 incorporate the divisive normalization

transform (DNT) before GGD. Features F1 to F3 are the vari-
ance (σ2) parameters of GGD and features F4 and F5 are the
shape (γ) parameters.

Table 8 The descriptions of features found by CFS(LCC) strategy.

Feature Description Reference

F1 (f8) Variance parameter of the GGD model for wavelet coefficients after DNT (steerable pyramids decomposition,
first scale, orientation 0 deg)

15

F2 (f135) Variance parameter of the GGD model for wavelet coefficients (Daubechies 9/7 decomposition, first scale, vertical
orientation)

14

F3 (f136) Variance parameter of the GGD model for wavelet coefficients (Daubechies 9/7 decomposition, second scale,
vertical orientation)

14

F4 (f31) Shape parameter of the GGD model for wavelet coefficients after DNT (steerable pyramids decomposition,
second scale, orientation 150 deg)

15

F5 (f148) Shape parameter of the GGD model for wavelet coefficients (Daubechies 9/7 decomposition, second scale,
diagonal orientation)

14

F6 (f223) Variance parameter of the GGD model for locally normalized luminance values 17

F7 (f57) Parameter of the spatial correlation value function computed between central pixel and pixels from chess board
distance (parameter a1, steerable pyramids decomposition, first scale, orientation 30 deg)

15

F8 (f58) Parameter of spatial correlation value function computed between central pixel and pixels from chess board
distance (parameter a2, steerable pyramids decomposition, first scale, orientation 30 deg)

15

F9 (f54) Parameter of spatial correlation value function computed between central pixel and pixels from chess board
distance (parameter a3, steerable pyramids decomposition, first scale, orientation 0 deg)

15

F10 (f130) Magnitude of wavelet coefficients in saturation channel between image center and foreground (Daubechies 9/7
decomposition, third scale, average of the diagonal, vertical and horizontal orientations)

34

F11 (f116) Average intensity value of image center area 34

F12 (f260) The width of the middle 98% mass of the gray level histogram 45

F13 (f158) Comparison between kurtosis values computed from edge areas of image and its low-pass filtered version
(Gaussian low-pass filter: size 100 pixels; standard deviation 1 pixel)

40

F14 (f168) Shape of histogram of gradient profiles from edge areas 41

Note: GGD, generalized Gaussian distribution; DNT, divisive normalization transform.
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Feature F6 (Ref. 17) functions in the spatial domain.
Image luminance values, Lði; jÞ, are locally normalized by

L
͡ ði; jÞ ¼ Lði; jÞ − μði; jÞ

σði; jÞ þ 1
; (13)

where (i; j) are spatial indices, and

μði; jÞ ¼
X3
k¼−3

X3
l¼−3

wk;lLk;lði; jÞ; (14)

σði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
k¼−3

X3
l¼−3

wk;l½Lk;lði; jÞ − μði; jÞ�2
vuut ; (15)

where w is a two-dimensional circularly symmetric Gaussian
weighting function. The normalized luminance values are fit-
ted to the GGD model and feature F6 is the variance (σ2)
parameter of GGD.

Features F7 to F9 (Ref. 15) capture the spatial correlation
statistics. The image is decomposed into six orientations
using the steerable pyramid decomposition. After the
DNT, the correlation coefficients pðdistÞ are estimated
between the central pixel and the pixels from the chess
board distances as a function of distance (dist). Once
pðdistÞ is obtained, a curve is parameterized by fitting it
with polynomial function fðxÞ ¼ a3x3 þ a2x2 þ a1xþ a0.
Feature F7 is the parameter a1 and feature F8 is the param-
eter a2 for the decomposition orientation of 30 deg. Feature
F9 is the parameter a3 for the orientation of 0 deg.

Feature F10 (Ref. 34) decomposes hue, saturation, value
image (I) into three scales and three orientations using the
Daubechies 9/7 wavelet basis. The average of wavelet coef-
ficients, w ¼ ðwd þ wh þ wvÞ∕3, of the third wavelet scale
for saturation channel IS, is divided into 16 blocks
{B1; : : : B16} and the value of F10 is obtained by

F10 ¼
P

i;j∈B6∪B7∪B10∪B11
wði; jÞP

16
b¼1

P
i;j∈Bb

wði; jÞ : (16)

Feature F11 (Ref. 34) is obtained by

F11 ¼ 9

HW

X2 H∕3

i¼H∕3

X2 W∕3

j¼W∕3
IVði; jÞ; (17)

where H and W are the height and width of the image.
Feature F12 (Ref. 45) computes histogram HðiÞ ¼

HðrÞ þHðgÞ þHðbÞ, where r, g, and b are the red,
green, and blue channels of the image. Feature 12 is the
width of the middle 98% mass of the histogram H.

Feature F13 (Ref. 40) detects the edges of the image using
the Sobel operator. The edge pixels are set as the central
block. Each block is divided into four overlapping sub-
blocks capturing directional information. The sub-blocks
having the largest variance are chosen to characterize the
edge areas. The statistic computed on the sub-block
L ¼ fli; 1 ≤ i ≤ Mg, where li denotes the gray level is

Fig. 6 Subjective overall quality as a function of predicted quality: the
feature subset selected by the correlation-based feature selection
(Pearson linear correlation) CFS(LCC) strategy (a) and the feature
subset selected by the wrapper_SVR strategy (b).

Fig. 7 Subjective root-mean-square error as a function of the number
of observers for image sets IV to VI.
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kurt ¼ 1

M

XM
i¼1

ðli − μÞ4; (18)

where μ is the mean intensity value of the area. Feature F13
is obtained by

F13 ¼
P

N
j¼1 kurt

test
j −

P
N
j¼1 kurt

blur
jP

N
j¼1 kurt

test
j þ 0.01

; (19)

where N is the number of edge blocks in the image, and
kurttest and kurtblur are indexed statistics kurt in the test
image and its low-pass filtered version.

Table 9 The descriptions of features found by wrapper_SVR strategy.

Feature Description Reference

G1 (f8) Variance parameter of the GGD model for wavelet coefficients after DNT (steerable pyramids decomposition, first
scale, orientation 0 deg)

15

G2 (f135) Variance parameter of the GGD model for wavelet coefficients (Daubechies 9/7 decomposition, first scale, vertical
orientation)

14

G3 (f144) Shape parameter of the GGD model for wavelet coefficients (Daubechies 9/7 decomposition, first scale, horizontal
orientation)

14

G4 (f31) Shape parameter of the GGD model for wavelet coefficients after DNT (steerable pyramids decomposition, second
scale, orientation 150 deg)

15

G5 (f124) Sum of vertical, horizontal, and diagonal wavelet coefficients in value channel (Daubechies 9/7 decomposition, second
scale, average of the diagonal)

34

G6 (f68) Parameter of spatial correlation value function computed between central pixel and pixels from chess board distance
(parameter a2, steerable pyramids decomposition, first scale, orientation 90 deg)

15

G7 (f54) Parameter of spatial correlation value function computed between central pixel and pixels from chess board distance
(parameter a3, steerable pyramids decomposition, first scale, orientation 0 deg)

15

G8 (f83) Structural correlation [structural similarity (SSIM) measure] between orientations of wavelet coefficients (steerable
pyramid decomposition, second scale, orientations 0 and 90 deg)

15

G9 (f93) Structural correlation (SSIM measure) between orientations of wavelet coefficients (steerable pyramid decomposition,
second scale, orientations 90 and 120 deg)

15

G10 (f116) Average intensity value of image center area 34

G11 (f4) It is assumed that value 128 corresponds to a well-exposed image. If mean value of pixels >128, then overexposure
value is (255 – mean)/128.

33

G12 (f6) The number of saturated pixels in 1/3 top image area 33

G13 (f220) The image is filtered by the human visual system response,58 and its variance is computed and divided by the mean
luminance value of the image

35

G14 (f260) The width of the middle 98% mass of the gray level histogram. 45

G15 (f264) Standard deviation of chroma values in the CIELAB space 46

G16 (f118) Sum of vertical, horizontal, and diagonal wavelet coefficients in hue channel (Daubechies 9/7 decomposition, second
scale)

34

G17 (f122) Sum of vertical, horizontal, and diagonal wavelet coefficients in saturation channel (Daubechies 9/7 decomposition,
third scale)

34

G18 (f161) Comparison between kurtosis values computed from edge areas of image and its low-pass filtered version (Gaussian
low-pass filter: size 100 pixels; standard deviation 4 pixels)

40

G19 (f162) Comparison between kurtosis values computed from edge areas of image and its low-pass filtered version (Gaussian
low-pass filter: size 100 pixels; standard deviation 5 pixels)

40

G20 (f168) Shape of histogram of gradient profiles from edge areas 41
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Feature F14 (Ref. 41) calculates the gradient histograms
of the image edge areas. The horizontal and vertical gradient
images, gx and gy, are computed by the Sobel operator. If
gx > gy, the gradients are calculated along the horizontal
direction; otherwise, they are calculated along the vertical
direction. The gradient profile of an edge is calculated by
taking the standard deviation of the gradients for the edge
area. The gradient profile histogram of an image is divided
into 100 bins. Feature F14 is obtained by

F14 ¼ σmin

ðσmax − σminÞ
100

b; (20)

where σmin and σmax are the minimum and maximum stan-
dard deviations of the gradient profile histogram, and

b ¼
P

i≤Ti · hiP
i≤T

hi
; (21)

where hi is bin value and T is

T ¼ argT max

��X
i≤T

hi∕
X
i≤100

hi

�
< 0.03

�
: (22)

The hypothesis of this study was that the features of the
efficient feature subset interact with and complement each
other. To analyze the relationships of features F1 to F14
and the image quality, we used attribute data from the
CID2013 image database. We computed LCC values
between the features and the subjectively evaluated attributes
of sharpness, graininess, lightness, and saturation. Principal
component analysis (PCA) was used for dimension reduc-
tion to explore whether or not the features clustered as
dimensions, which are expressions of different characteris-
tics of the images.

Figure 8 shows the LCC values between the features F1 to
F14 and the attributes. Features F1, F2, F3, and F6 correlate
especially well with sharpness. Features F7, F8, and F9

correlate with graininess and sharpness. Feature F11 corre-
lates strongly with lightness.

The LCC values between the features and the attribute of
saturation were low. This result does not mean that saturation
variations do not occur in the images; it can also mean that
saturation was not as important as the other attributes in the
perception of overall quality. The features of the most effi-
cient feature subsets contributed more to the other factors;
subjective evaluation data indicate the same result.
Table 10 shows a cross-tabulation of LCC values for the sub-
jective attribute data. The LCC values for the attributes of
overall quality, graininess, and sharpness are high compared
to the attributes of lightness or saturation. In addition, the
LCC values of lightness are higher than those of saturation.
The scales of lightness and saturation originally ranged from
−100 (too dark/pale) to 100 (too bright/colorful). Note that
before the LCC calculations, these scale values were recal-
culated as distances from neutral (value ¼ 0).

Figure 9 shows the two first principal component scores
of the images from image sets I to III and the principal com-
ponent coefficients for each feature. The principal compo-
nents were found with the princomp function in
MATLAB® (R2012a). The scores of the images are the
coordinates of the original feature data in the new coordinate
system defined by the principal components. Each of the 14
features is represented in this plot by a vector; the direction
and length of this vector indicate how the feature contributes
to the two principal components in the plot. It is evident that
the features point to two main directions, which are inter-
preted as two dimensions: features F7, F8, F9, and F12
point in one dimension (DIM2), and the other features
point in the other dimension (DIM1).

From DIM1, we can identify two groups of strong vec-
tors. Features F1, F2, and F11 form one group, while features
F3, F5, and F6 form the other. According to the LCC values,
features F1, F2, and F3 aligned with the DIM1 measure
sharpness. Features F1, F2, and F3 make the wavelet decom-
position. For decomposition purposes, feature F1 uses the
steerable pyramid technique, while features F2 and F3 use
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Fig. 8 LCC values for the attributes of graininess (1), sharpness (2), lightness (3), and saturation (4) for
features found by the CFS(LCC) method.
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the Daubechies 9/7 wavelet basis. In addition, feature F1
applies DNT. The sub-band coefficients are parameterized
using GGD. The GGD model has parameters of variance
(σ2) and shape (γ). One difference between features F1
and F2 and feature F3 is the scale of the decomposition; fea-
tures F1 and F2 use the first scale and feature F3 uses the
second scale. A low variance value in the first scale can
mean detail loss (unsharp image) or an image without infor-
mation (dark image). A high variance in the first scale means
that the image has high-frequency energy, which may imply
that the image contains many small details or noise energy.
The second scale of decomposition handles mid-frequency
energy; a high variance in the second scale relates to
image contrast. High image contrast relates more to strong
edges in the image than to small details.

The functional principles of features F1, F2, and F3 and
that of feature F6 are the same: they compute the variance of
intensity distribution. However, feature F6 functions in the
spatial domain and features F1, F2, and F3 function in
the wavelet domain. The PCA shown in Fig. 9 suggests
that feature F6 and feature F3 measure similar properties
(related to image contrast) from the image.

Based on the LCC values of Fig. 8, when in the direction
DIM1, feature F11 measures a different image property than
the other features; it computes the average intensity for the
area near the center of the image. Feature F11 correlates
strongly with the lightness attribute, while the other features
pointing in the same direction correlate strongly with sharp-
ness. Based on the computation process (average intensity)
of feature F11, the high correlation between feature and the
lightness attribute is expected.

Features F7, F8, F9, and F12 function in the DIM2 direc-
tion. Features F7, F8, and F9 compute spatial correlation val-
ues after wavelet decomposition and DNT. The values are
computed for the center pixel and the pixels from the
chess board distances as a function of distance. The com-
puted values are fitted to a third-degree polynomial.
Feature F7 is the second parameter of that polynomial, fea-
ture F8 is the third, and feature F9 is the fourth. The calcu-
lated spatial correlation values are higher if an image consists
of smooth areas and its neighboring pixels correlate with
each other. The spatial correlation is low if an image contains
random-intensity variation, such as noise.

Feature F12 computes the gray-level histogram and mea-
sures the width of the middle 98% gray-level mass; a high
value can mean a noisy image.

We deduce that DIM2 measures image information from
the perspective of the uncertainty in predicting the value of a
pixel in the image. If an image consists of random pixels
without spatial correlation, DIM2 is low. If image lacks
details, DIM2 is higher.

Figure 10 shows example images selected from the regu-
lar spatial locations of the principal component plane. First,
we calculated the polar coordinates for the images on the
plane. We then formed eight constant-size segments on
the plane. The image from image group 3 with the longest
radius vector was selected for each segment. The eight
selected images (1 to 8) are indicated in Fig. 9 and shown
in Fig. 10. It is evident that the example images suffer
from different types of distortions. Image 1 has a low
DIM1 value because it is dark; it has no detail energy or

Table 10 Cross-tabulated LCC values of subjectively evaluated
image quality attributes.

Overall
quality Graininess Sharpness Lightness Saturation

Overall
quality

1.00 — — — —

Graininess 0.80 1.00 — — —

Sharpness 0.86 0.85 1.00 — —

Lightness −0.61 −0.57 −0.57 1.00 —

Saturation −0.40 −0.35 −0.36 0.09 1.00

Fig. 9 Principal component scores of images (image sets I to III). Each of the features F1 to F14 is
represented in this plot by a vector; the direction and length of the vector indicate how the feature con-
tributes to components 1 and 2. Arrows point to the images shown in Fig. 10.
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any information, which would increase the value of features
directed in the direction of DIM1. Example images 3 and 7
are in the mid-range of DIM1. These images differ from each
other: for example, image 3 has a high value in DIM2, while
image 7 has a low value. Image 3 has some detail energy, but
it is not sharp. Image 7 includes details, but it is noisy. Image
7 has more information, as its pixel values are more random
than those of image 3. Image 5 has a high value in DIM1; it is
sharp, bright, and noise-free.

Example images in Fig. 10 explain why feature F11 was
projected in the same direction (DIM1) as the features F1,
F2, F3, and F6, which measure variance values associated
with details and sharpness of image. Feature F11 measures
brightness (darkness) of image and a low value of DIM1
indicates dark images, such as images without details. A
high value of DIM1 indicates bright images with details.

3.4 Performance Using the LIVE MDIQD
The performance of features F1 to F14 found by the CFS
(LCC) method was evaluated and validated with the images
of the LIVE MDIQD.23 In this evaluation, we used the LIVE
MDIQD images which simulate the camera image acquisi-
tion process. The 15 original images were first blurred by
simulating narrow depth of field or other defocus and
then corrupted by white noise by simulating sensor noise.
Totally, the image set includes 225 images with subjective
evaluation data.

Figure 11 shows the LCC values between features F1 to
F14 and the LIVE MDIQD images. By comparing the LCC
values and the strong features (long vectors) of dimensions
DIM1 and DIM2 shown in Figs. 9 and 10, it can be noticed
that DIM2 characterizes the LIVE MDIQD images more
than DIM1. The LCC values of the strong features F7,
F8, and F9 from the direction of DIM2 are high and the
LCC values of the strong features F1, F2, and F6 from
the direction of DIM1 are low, respectively.

Features F7, F8, and F9 of DIM2 measure image infor-
mation from the perspective of the uncertainty in predicting
the value of a pixel in the image. If an image consists of ran-
dom pixels without spatial correlation (as white noise

component in the LIVE MDIQD), DIM2 is low. If image
lacks details (as blur component in the LIVE MDIQD),
DIM2 is higher.

Figure 11 shows that the strong features F3 and F5 from
DIM1 characterize, to some degree, the LIVE MDIQD
images. A difference between the correlated strong features
(F3 and F5) and the low-correlated strong features (F1, F2,
and F6) from the direction of DIM1 is the scale of decom-
position. Features F1, F2, and F6 were computed from the
first scale of decomposition. The white noise component of
the LIVE MDIQD images randomizes the values of the first
scale coefficients. Features F3 and F5 were computed from
the second scale of decomposition. The second scale of
decomposition is robust to high-frequency white noise.
Features F3 and F5 characterized the contrast (as blur com-
ponent in the LIVE MDIQD images).

Comparing the CID2013 and the LIVE MDIQD we can
reason that the quality space of the LIVE MDIQD is simpler.

Fig. 10 Images (group 3) representing given locations of the principal component plane.

Fig. 11 Absolute LCC values for the features F1 to F14 found by CFS
(LCC) method and images of the LIVE multiply distorted image quality
database (study 2).
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The CID2013 images are corrupted by real different cameras
and include at least one more dimension (characterized by
features F1, F2, and F6), covering the scale of dark and
noise-free images to sharp, bright, and detailed images.

We also tested the performance of the found features to
predict the subjective evaluation values of LIVE MDIQD
images. The SVR model was trained by two separate sets:
the image sets I to VI [CFS(LCC)-1] and the LIVE
MDIQD itself [CFS(LCC)-2]. With the CFS(LCC)-2, the
performance was computed using 1000 randomly selected
training and testing data (80/20%). We also report the per-
formance of the state-of-the-art NR image quality assessment
algorithm (BRISQUE) as provided in Ref. 23. The
BRISQUE-1 was trained by LIVE standard database18 and
the BRISQUE-2 was trained by the LIVE MDIQD itself.

The results are shown in Table 11. The performance of the
CFS(LCC)-1 using CID2013 for training of SVR parameters
was higher than the performance of BRISQUE-1. The fea-
tures found by the CFS(LCC) method and trained with the
CID2013 database were more efficient than the state-of-the-
art NR metric trained with the standard LIVE image database
for predicting the quality of simulated camera acquisition
process.

4 Conclusions
Studying consumer camera images has been a neglected
domain in the field of image-quality research, as most com-
putational measures are only useful for images suffering
from a single type of distortion. This study systematically
compared feature subset selection methods to find feature
combinations that measured the image properties best linked
to the subjectively assessed overall quality of images with
multiple distortions. We used PCA and correlation analysis
to find the underlying dimensions of overall quality percep-
tion. The analysis found two main dimensions: one associ-
ated with image contrast, detail reproduction, and lightness,
and the other with the effect of noise energy. These results
proved the hypothesis of the study: measuring the quality of
real photographs requires interacting and compensating
features.

According to the results, the two underlying dimensions
of overall quality perception were not related to color. No
doubt, color is an important feature in perceptual image qual-
ity. One reason why the best performing feature subset did
not contain color-related features may be that color error is

rarely the dominant distortion in the images of CID2013
although it often appears in images that suffer from blur
and noise. Another reason may be that human color percep-
tion of natural images is a complex process and the feature
subset simply did not include good enough features. In the
future, more efficient features for predicting color error in the
natural images should be developed.

This study was possible because we had access to a data-
base of real photographs captured by a large number of cam-
eras with multidimensional subjective evaluation data
(CID2013). The other publicly available image databases
include images that have undergone some specific type of
distortion or two specific distortions, such as the LIVE
MDIQD, and have been evaluated only for overall quality
but not for quality attributes. In contrast, CID2013 includes
data on the quality attributes of graininess, sharpness, color
saturation, and lightness.

This study expanded the traditional scope of research by
comparing the performance of objective measures and
human subjects. We found that the performance of the opti-
mal subset was comparable to the accuracy of one random
human assessor. This result suggests that the optimum fea-
ture subset can be used prior to manual selection in applica-
tions that filter large image sets, such as image retrieval and
editorial software systems.
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