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We investigate the proximity effect in junctions between N = 3 superconductors under commensurate voltage
bias. The bias is chosen to highlight the role of transport processes that exchange multiple Cooper pairs coherently
between more than two superconductors. Such nonlocal processes can be studied in the dc response, where local
transport processes do not contribute. We focus on the proximity-induced normal density of states that we
investigate in a wide parameter space. We reveal the presence of deep and highly tunable pseudogaps and other
rich structures. These are due to a static proximity effect that is absent for N = 2 and is sensitive to an emergent
superconducting phase associated to nonlocal coherent transport. In comparison with results for N = 2, we
find similarities in the signature peaks of multiple Andreev reflections. We discuss the effect of electron-hole
decoherence and of various types of junction asymmetries. Our predictions can be investigated experimentally
using tunneling spectroscopy.

DOI: 10.1103/PhysRevB.95.205437

I. INTRODUCTION

Quantum transport in Josephson junctions has been the
focus of extensive research, predominantly studying junctions
between N = 2 superconductors. Short junctions exhibit a
strong proximity effect that manifests in equilibrium as an
induced minigap in the density of states. A finite minigap
is accompanied by a nondissipative superconducting current.
On the contrary, out of equilibrium dynamics due to voltage
bias leads to entirely dissipative quasiparticle transport in
two-terminal junctions. When the bias voltage V is below
the superconducting gap of the leads �, the dissipative quasi-
particle motion is described by multiple Andreev reflections
(MAR) [1]. Electrons and holes cross the structure, being
Andreev-reflected at each junction interface. Each crossing
provides the energy eV , giving rise to features in the I (V )
curve [2] at integer fractions of 2�/e. In the regime dominated
by MAR, the density of states no longer manifests a clear
minigap [3,4], instead exhibiting peaks located at energy
intervals separated by eV .

Recently, the study of junctions between N � 3 supercon-
ductors has attracted considerable interest, both theoretical
[5–8] and experimental [9–12]. Unique features have been
revealed, that do not manifest in the N = 2 junctions. In
equilibrium, mapping the subgap Andreev spectrum has
revealed level crossings at zero energy for nontrivial phase
values [12–15]. For N � 4, the crossing point was shown
to have analogous topological properties to Weyl points in
topological semimetals [15,16].

Voltage bias further emphasizes the complex phenomenol-
ogy of N � 3 junctions. When the voltages are chosen such
that the ratio of any two is a rational number (commensurate
bias), the transport is no longer entirely dissipative as is
the case in N = 2 junctions. Previous works have shown
that a nondissipative dc current component [5,7,8] arises in
the junction due to coherent exchange of multiple Cooper
pairs nonlocally between three or more superconductors. The

nonlocal current is sensitive to bias, as well as an emerging
stationary phase that is obtained by combining the phases of
multiple superconductors.

The simplest setup consists of the three-terminal Josephson
junction (TTJ) where the nondissipative current is expected to
be largest when the two independent phases are affected by
opposite voltage bias, V and −V , as shown in Fig. 1. Under
these conditions the elementary nonlocal transport process
has been termed the quartet process. It corresponds to the
exchange of two Cooper pairs, four quasiparticles, between
the three superconductors, as shown in Fig. 2. The situation
has been recently investigated in Refs. [9–11]. Two of the
first experiments study a diffusive TTJ, where robust transport
anomalies [9] and Shapiro steps [10] were observed as a
function of two applied voltages V1,3, that have been inter-
preted in terms of three quartet modes. The third experiment
studies a phase-coherent TTJ realized in a semiconducting
nanowire [11], showing positive current cross-correlation that
are interpreted as evidence of the nonlocal quartet processes.

Motivated by these recent experiments, in this paper we
describe the proximity effect in a short, metallic TTJ under
voltage bias, V and −V , as shown in Fig. 1. We argue
that driving a dc current in terminal 2, that is assumed at
zero voltage, enables the control of the static nonlocal phase
governing the quartet process, ϕQ. We calculate the normal
density of states (NDOS) in a wide parameter regime by
employing the quantum circuit formulation of the quasiclas-
sical Usadel equation [17–19]. For comparison, we study
the NDOS in the biased two-terminal junction. We reveal
the characteristic rich structure of the NDOS originating
from MAR, that is similar between two- and three-terminal
junctions. We additionally reveal features characteristic only
to the three-terminal junction. The most striking of these
are the pseudogaps appearing in the NDOS in the regime
where coherent nonlocal processes give rise to bound states.
Pseudogaps differ from the proximity-induced minigap in that
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FIG. 1. Schematic of the setup. Three superconducting electrodes
S1, S2, and S3 at voltages V1 = V, V2 = 0, and V3 = −V and with
superconducting phases ϕ1, ϕ2, and ϕ3 are connected to a short,
diffusive metallic region. The dc current, IDC, in S2 drives equal
dc currents IQ in S1 and S3, as explained in Sec. II.

their edges are not as sharp, they do not in all regimes resemble
the edges of the bulk gap, and may be less pronounced. What
makes pseudogaps unique is the combination of properties:
(i) they are tunable by the quartet phase and (ii) they depend
strongly on voltage bias.

Our study includes the importance of electron-hole deco-
herence, introduced phenomenologically using the quasiparti-
cle dwell time in the normal region, τd . Despite describing
a short junction on the scale of the coherence length, the
dwell time can become appreciable compared to h̄/� if the
contact resistance at the SN interfaces, Rb, is much larger
than the intrinsic resistance of the junction G−1

N . The Thouless
energy [20] is proportional to the inverse dwell time and
can be decreased by a factor RbGN � 1. For this reason,
the Thouless energy can become comparable to or smaller
than the superconducting gap, �, even in short junctions. The
magnitude of the proximity-induced minigap in the NDOS is
drastically modified by decoherence effects in a large variety
of Josephson junctions [21–24].

FIG. 2. Diagram of the four particle quartet process, i.e., the
lowest order nondissipative transport process. The resulting current
IQ is a dc current sensitive to voltage V as well as the quartet phase,
ϕQ = (ϕ1 − ϕ2) + (ϕ3 − ϕ2).

We begin our presentation in Sec. II with a phenomeno-
logical description of dynamics in a TTJ under voltage bias.
The theoretical method and equations of quasiclassical circuit
theory are presented in Sec. III. Section IV discusses the
NDOS of a voltage-biased two-terminal Josephson junction,
with peaks interpreted in terms of MAR processes. Section V
discusses the NDOS of a biased TTJ, revealing the signature
of MAR processes as well as pseudogaps originating from
nonlocal processes. Section VI presents our conclusions.

II. PHENOMENOLOGICAL DESCRIPTION

A. Local and nonlocal Josephson effect

The Josephson effect in an N -terminal Josephson junction
is governed by N − 1 independent superconducting phase
differences. Due to 2π periodicity, the phase-dependent part of
the junction energy can be expanded in harmonics. For N = 3,
we choose the gauge ϕ2 = 0 and express EJ as a Fourier series
in ϕ1 and ϕ3,

EJ (ϕ1,ϕ3) =
∑

m1,m3

E(m1,m3)e
i(m1ϕ1+m3ϕ3), (1)

where m1 and m3 are integers running along the entire real axis,
and the Fourier coefficients E(m1,m3) are generally complex
energies chosen such that EJ is real.

We explore nonlocal transport by choosing to evaluate the
current flowing from terminal 2 into terminals j = {1,3}, given
by Ij = (2e/h̄)∂EJ (ϕ1,ϕ3)/∂ϕj ,

Ij (ϕ1,ϕ3) =
∑

m1,m3

Ij,(m1,m3)e
i(m1ϕ1+m3ϕ3), (2)

where Ij,(m1,m3) = (2e/h̄)imjE(m1,m3). The total current flow-
ing into terminal 2 is obtained from current conservation,
I1 + I2 + I3 = 0. Any possible current flowing from terminal
1 into terminal 3 does not modify the discussion.

We define the nonlocal component of the current flow-
ing from terminal 2 into terminals j = {1,3} by Ij,NL =
∂2Ij /∂ϕ1∂ϕ3. The harmonic structure of the Josephson current
permits identification of local terms, giving Ij,NL = 0, and
nonlocal terms, giving rise to a finite Ij,NL. Three contributions
correspond to the local Josephson effect between terminals: 1
and 2 given by harmonics (m1,0); 2 and 3 given by harmonics
(0,m3), and 1 and 3 given by harmonics (−m,m), with
−m1 = m3 = m. All other pairs of harmonics correspond to
the nonlocal Josephson effect.

The nonlocal Josephson term lowest in the order of
harmonics corresponds to (m1,m3) = (1,1). It has been named
the quartet term, as it implies a coherent exchange of two
Cooper pairs, four quasiparticles, between the superconductors
as shown in Fig. 2. In the following, we show how the quartet
term can be filtered from terms corresponding to the rest of
the harmonics when driving the junction under commensurate
voltage bias, V1 = −V3 = V .

B. Out-of-equilibrium dynamics

Under commensurate voltage bias, V1 = −V3 = V , V2 =
0, the phases are given by ϕ2 = 0, ϕ1 = ϕ10 + ωt , and ϕ3 =
ϕ30 − ωt , where ω = 2eV/h̄ is the Josephson frequency. The
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effect of biasing is to separate the harmonics of the Josephson
energy in frequency space.

Under these biasing conditions, the quartet term and its
harmonics (m,m) give rise to dc current in terminal j = {1,3},

Ij,DC(ϕQ,V ) = IQ =
∑
m

Im(V ) exp(imϕQ), (3)

where ϕQ = ϕ10 + ϕ30 is the quartet phase and Im =
(2e/h̄)imE(m,m). A detailed discussion of the coefficients Im

and their dependence on the bias voltage will be presented
elsewhere.

The quartet phase can be tuned independently of the bias
voltage by imposing an external current in terminal 2. Current
conservation leads to a current-phase dependence, IDC(ϕQ),
similar to the dc Josephson effect, IDC = −I2 = 2IQ(V,ϕQ).
The indirect control of the quartet phase by current bias is
similar to the control of the phase drop in a two-terminal
Josephson junction by dc current bias. In analogy, the dc
current is 2π -periodic in the quartet phase. If IDC surpasses
a certain critical value, depending on the details of the
junction, the dc behavior of the junction becomes resistive.
This situation, together with a discussion of the current
flowing between terminals 1 and 3, will be presented in
detail elsewhere. For discussing the proximity-induced normal
density of states (NDOS) in the junction, we will use V and
ϕQ as independent control parameters.

III. MICROSCOPIC MODEL

We describe transport in a metallic TTJ using quasiclassical
equations of nonequilibrium superconductivity. These take the
form of a diffusive equation for the quasiclassical Keldysh-
Nambu Green’s function [25], also known as the Usadel
equation (see also Ref. [18])

∂

∂x

(
D(x)Ǧ

∂

∂x
Ǧ

)
− i[Ȟ ,Ǧ] = 0,

Ǧ =
(

GR GK

0 GA

)
, Ǧ2 = 1̌, Ȟ =

(
Ĥ 0
0 Ĥ

)
;

Ĥ = Eσ̂z + 1

2
�(x)(iσ̂y + σ̂x) + 1

2
�∗(x)(iσ̂y − σ̂x). (4)

In addition to Keldysh-Nambu space (denoted with a check
hat, Ǧ), the quasiclassical Green’s function generally depends
on two times (or energies E) and on spatial coordinates Ǧ(E,x).
The Pauli matrices are defined in Nambu space (denoted with a
hat) �̂σ = σ̂x,σ̂y,σ̂z, and D(x) denotes the diffusion coefficient.
Matrix products in the Usadel equation are understood as
convolutions of the quantities in the double time (or energy)
representation, as detailed in Appendix.

The Usadel equation applies to the most common experi-
mental situation where the junction dimensions are larger than
the elastic mean-free path. It is a conservation equation for the
Keldysh-Nambu current density ǰ (x),

∂

∂x
ǰ (x) + ie2ν

h̄
[Ȟ ,Ǧ] = 0; ǰ = −σ (x)Ǧ

∂

∂x
Ǧ. (5)

Here, ν is the electronic NDOS and σ (x) is the conductivity.
The two quantities are related by σ = e2Dν.

Hereafter we employ a discretized version of the Usadel
equation that describes the system in terms of finite quantum
circuit elements [17,18]. The bulk superconducting terminals
Si are described by coordinate-independent Keldysh-Nambu
Green’s functions Ǧi . The junction area is represented by a
single node described by the unknown Green’s function Ǧc.
The node is separated from each terminal Si by a connector
that models the transparency of the contact via transmission
coefficients T (i)

n corresponding to channel n in contact i. The
Keldysh-Nambu matrix current flowing between terminal Si

and the node takes the compact form [17],

Iic = 2e2

πh̄

∑
n

T (i)
n [Ǧi,Ǧc]

4 + T
(i)
n ({Ǧi,Ǧc} − 2)

. (6)

The fraction notation for matrix inversion is justified since Ǧi

and Ǧc commute with {Ǧi,Ǧc}.
Decoherence between electrons and holes is accounted for

phenomenologically by connecting the node to a fictitious
terminal [17]. In contrast to the other three terminals, that cor-
respond to the superconductors, the Keldysh-Nambu current
flowing in the fictitious terminal does not contain particle or
energy currents. The Green’s function of the fictitious terminal
is chosen such that the corresponding Keldysh-Nambu current
describes only the leakage of electron-hole coherence. The
Keldysh-Nambu current matrix to the fictitious terminal is
given by

Ifc =2e2

πh̄

∑
i

∑
n

T (i)
n

4
[Ǧf ,Ǧc],

Ǧf = − i
Eτd

h̄

(
σ̂z 0
0 σ̂z

)
, (7)

where τd is the dwell time of quasiparticles in the junction,
including the connectors. By including Ifc, the transport
equation can be written as a conservation of the current of
coherences, ∑

i

Ǐic + Ǐfc = 0 . (8)

Since each of the currents are given by a commutation relation
between the unknown Green’s function of the central node
Ǧc and a matrix defined by Eqs. (6) and (7), it is convenient
to rewrite the current conservation as a commutation relation
[Ǧc,M̌] = 0, where the matrix denoted by M̌ adds up the terms
corresponding to the four currents,

M̌ =
∑
i,n

T (i)
n

(
Ǧi

1 + T
(i)
n

4 ({Ǧi,Ǧc} − 2)
+ Ǧf

)
. (9)

It is important to note that matrix M̌ depends nonlinearly
on the unknown Green’s function of the central node Ǧc, as
well as on the known Green’s functions of the terminals. The
relation [Ǧc,M̌(Ǧc)] = 0 is a nonlinear equation to be solved
numerically for Ǧc.

A. Green’s functions of superconducting terminals

In equilibrium, transport is stationary and the Green’s
functions depend on a single energy (or, in time representation,
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on the difference of the two times and independent of their
sum). As a function of energy, the Green’s functions of the
superconducting terminals are given by

GR
i = 1

ξ

(
ε �i

−�∗
i −ε

)
; GA

i = − 1

ξ ∗

(
ε∗ �i

−�∗
i −ε∗

)
,

(10)

where complex energies have been introduced ε = E + i0+
and ξ = √

ε + |�|√ε − |�|. Here, �i = |�|eiϕi . The posi-
tive, vanishing imaginary part of ε specifies the position with
respect to the branch cut of the square root function in the
complex plane.

The advanced and retarded Green’s functions are related by
GA = −σ̂z(GR)

†
σ̂z and the Keldysh Green’s function GK is

obtained from

GK = (GR − GA) tanh(βE/2), (11)

where β = (kBTe)−1 (Te is the temperature).
We consider voltage biased terminals, V1 = −V3 =

V,V2 = 0. According to the second Josephson relation, ϕ̇i =
2eVi/h̄, constant voltage bias gives rise to time-dependent
superconducting phase differences that in general give rise to
nonstationary transport. As a result, Green’s functions acquire
a nontrivial dependence on both energies, or equivalently in
time representation, on both the difference, (t1 − t2), as well
as the sum, (t1 + t2) of the two times. We relate the out-of-
equilibrium Green’s function of terminal i to its equilibrium
value by the following gauge transformation:

Ǧi(t1,t2) = eiσ̂zeVi t1Ǧi(t1 − t2)e−iσ̂zeVi t2 . (12)

B. Numerical implementation

The theoretical framework outlined so far is sufficiently
general to describe out-of-equilibrium transport for arbitrary
bias. However, the nonlinear equations that determine the
unknown Green’s function of the node, Ǧc(t1,t2), are very
difficult to solve in general. The dependence on two times
(or two energies) must be solved on a discrete grid, where
each grid point corresponds to an entry of the unknown
matrix Ǧc(t1,t2) (keeping in mind that each entry is a 4 × 4
matrix in Keldysh-Nambu space). In the general case, the
size of matrices involved grows quickly giving rise to an
overwhelming computational problem.

To proceed, we use the properties of commensurate bias. In
general, transport is governed by two Josephson frequencies
corresponding to the two independent voltage differences. For
commensurate bias, the two Josephson frequencies are har-
monics of a single frequency ω0, the greatest common divisor.
For the specific bias V1 = −V3 = V, V2 = 0, the greatest
common divisor is the Josephson frequency ω0 = 2eV/h̄. We
take advantage of this property by performing a double-time
Fourier transform, (detailed in Appendix) previously used in a
different context in Ref. [30]. In the transformed representation
the Green’s functions depend on a single energy (as in
equilibrium) and on the harmonics of ω0 counted by two
indices, Ǧ(E,n,m). The definition contains redundancy in the
indices, Ǧ(E,n,m) = Ǧ(E − pω0,n + p,m + p), therefore
the Green’s functions are determined by the value in the
energy interval [−ω0/2,ω0/2] (here we have set h̄ = 1). An

alternative representation with only one harmonic index has
been used in Ref. [28] for a two-terminal Josephson junction
in the tunnel limit.

The practical numerical implementation involves the trun-
cation of the harmonics by a value Nm, whereby the Green’s
functions are square matrices of dimension 4(2Nm + 1)
defined on a one-dimensional grid in the energy interval
[−ω0/2,ω0/2]. The matrix entries decay quickly at large
harmonics. It is sufficient to truncate the harmonic expansion
at Nm = (2�/eV ).

We take the following steps to solve for the unknown
Green’s function of the central node, Ǧc, iteratively at each
energy: (i) we start with a guess value for Ǧc,n, (ii) obtain
and diagonalize M̌n(Ǧc,n), (iii) obtain a new value, Ǧc,new that
commutes with M̌n and has as eigenvalues the signs of the real
part of the eigenvalues of M̌n, (iv) we check if Ǧc,new is within
a certain tolerance of Ǧc,n, to ascertain convergence, and
finally, (v) if convergence was not achieved, we use a modified
matrix as the guess of the next iteration step, Ǧc,n+1 =
||Ǧc,n + αǦc,new||, where α < 1 is a convergence parameter
that must be reduced at energies where the transport depends
sharply on energy, and || . . . || denotes the normalization that
ensures Ǧ2

c,n+1 = 1. In the calculation, a finite imaginary part
is added to the energy, ε = E + iη, with η/� � 1, to generate
numerically smooth transport resonances. The parameter η

may be understood as a phenomenological description of weak
inelastic effects. Convergence to the η = 0+ limit is especially
slow for all superconducting multi-terminal calculations [26],
requiring small convergence parameters of the order α � η/�.
In the numerical calculation, we have used η = 0.01.

C. The density of states (NDOS)

The NDOS can be measured using a tunnel probe, as
has been already realized for a three terminal junction in
equilibrium [12]. We model the tunnel probe by adding a
normal terminal tunnel coupled to the junction. The current to
the tunnel probe is given by

It = e2

2πh̄
TtunTr(σ̂z[Ǧt ,Ǧc]K ), (13)

where K denotes the Keldysh part of the matrix and Ttun �
1 describes the coefficient of the tunnel contact. Given that
G

R,A
t = ±σ̂z and GK

t = 4 tanh (( β

2 (εσ̂z + Vt )), one can rewrite
It as

It = e2

2πh̄
TtunTr

[
2GK

c + 4 tanh

(
β

2
(ε + σ̂zVt )

)(
GA

c −GR
c

)]
.

(14)

For small tunnel coefficients Ttun, the effect of the probe voltage
Vt on Ǧc can be neglected. In this case, the tunnel conductance,
Gt = dIt/dVt , is given by

Gt = 8e2

πh̄
Ttun

d

dVt

Tr

[
tanh

(
β

2
(ε + σ̂zVt )

)(
GA

c − GR
c

)]
.

(15)

The expression of the tunnel conductance is identical to its
expression in equilibrium, with the exception that here the
term (GA

c − GR
c ) includes the dynamics driven by the bias V .
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FIG. 3. Normal density of states (NDOS) for a symmetric SNS
junction (T = 0.3), for the small decoherence case (left column, τd =
0.05), and for the large decoherence case (right column, τd = 5.0). (a)
NDOS as a function of the phase ϕ and of the energy E, for τd = 0.05.
(b) Same as (a), with τd = 5.0. (c) Cut of (a) for the phase ϕ = 2π/3.
(d) Cut of (b) for the phase ϕ = 2π/3. Energy E is measured in units
of � and τd in units of h̄/�. (� = h̄ = e = 1.)

We conclude that the out-of-equilibrium NDOS can be probed
by tunneling spectroscopy, with the following observation.
Care must be taken at energies where the NDOS presents
sharp structures that result from the divergence of the bulk
superconductor NDOS. At these energies the perturbative
treatment of the tunnel probe may fail. For this reason, tunnel
measurement of the NDOS may give rise to a rounding of
the sharpest features of the NDOS that we predict in absence
of the probe. In the following we will neglect the effect of
the probe on transport and calculate the NDOS given by
N (E) = ReǦ11

c (E,0,0).

IV. THE TWO-TERMINAL JUNCTION

As a preliminary, we present the results of quantum circuit
theory for the conventional, two-terminal Josephson junction,
both in equilibrium as well as in a symmetric junction biased

at (V, − V ), for arbitrary transparency. This last problem has
been considered by Bezuglyi et al., in the tunneling limit
[27,28]. The choice of bias, 2V , helps us make a direct
comparison with the biasing conditions of the N = 3 terminals
junction.

A. Equilibrium

As a reference, the NDOS of a symmetric equilibrium
SNS junction (with transparencies T = 0.3) is represented in
Fig. 3, for small (τd � 1) and large (τd > 1) decoherence.
(Throughout the paper we have set h̄ = 1, the elementary
charge e = 1 and, unless explicitly shown, � = 1. The dwell
time τd is presented in units of h̄/�.) The NDOS vanishes
within the well-known minigap. The minigap persists for all
parameters, except at ϕ = π for the symmetric case, where
the resonance gives rise to perfect transmission. For strong
decoherence, the NDOS exhibits a sharp minigap that scales
as the Thouless energy.

B. Biased junction

When the two-terminal junction is biased, the NDOS shows
a series of sharp resonances that are strongly affected by
decoherence, as can be seen in Fig. 4 (τd = 0.05) and in
Fig. 5 (τd = 5.0) for small transparency, T = 0.1. For weak
decoherence, Figs. 4(a) and 4(b) shows the peaks of the
NDOS for voltages V = 0.42 and 0.58. The sharp peaks
resemble the divergence of the density of states of the bulk
BCS-superconductor at the edges of the gap. The position
of the peaks corresponds to the voltages, −V and V . The
transport in this regime is well described by coherent MAR.
The peaks can be explained by a MAR diagram as in Fig. 6(a).
The bulk gap edges of the two superconductors induce by
proximity the peak structure of the junction NDOS. For
instance, a quasiparticle leaving S1 at energy −� + V , is
reflected as a hole in S3 at energy � − 3V . Higher p-order
MAR processes give rise to peaks at ±(� ± (2p + 1)V ). The
dotted lines in Figs. 4(a) and 4(b) correspond to the position
of the peaks predicted by the MAR diagram. They agree well
with the computed NDOS. Larger structures appear, centered
at ±(� ± V ), weaker ones at ±(� − 3V ), and increasingly
weaker ones at ±(� − 5V ), corresponding to the reduction

FIG. 4. Normal density of states (NDOS) as a function of energy E in a biased junction at transparency T = 0.1, for small decoherence
(τd = 0.05). (a) and (b) show the NDOS for V = 0.42 and 0.58, (c) shows the density plot of the NDOS as a function of the energy E and
the voltage V . In (a) and (b), the vertical dotted lines show the positions of the expected peaks at voltages ±(� ± (2p + 1)V ) due to MAR
processes. (� = h̄ = e = 1.)
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FIG. 5. Same as Fig. 4, but for large decoherence (τd = 5.0). In (a) and (b), the vertical dotted lines show the positions of the expected
minigaps peaks at voltages ±V corresponding to the chemical potentials of the two electrodes. The inset in (a) shows the NDOS computed for
a SNN junction were the S electrode is biased at voltage V = 0.45, with τd = 5.

of the MAR amplitude for transparency T < 1. The linear
dependence of the peaks position as a function of the bias
voltage V is shown in Fig. 4(c). Four lines in the E-V plane
correspond to peaks of the NDOS at ±(� ± V ), while weaker
lines correspond to the higher order MAR at ±(� − 3V ) and
±(� − 5V ).

For strong decoherence, Fig. 5 shows a different structure
of the NDOS. The peaks due to MAR processes are washed
away and minigaps appear around energy ±V , similar to the
equilibrium minigap in Fig. 3(d). A similar minigap appears
in diffusive SN junctions, with size given by the Thouless
energy, where it is attributed to reflectionless tunneling [22,29].
The inset of Fig. 5(a) shows the NDOS of an SNN interface,
calculated using circuit theory, with voltage V = 0.45 applied
to the S electrode. The result shows the proximity minigap
developing at the chemical potential of the S electrode, E = V .
Due to strong decoherence, the NDOS of the SNS junction
exhibits the separate signature of each NS interface.

Two qualitatively different regimes are observed in Fig. 5(c)
for V < �/2 and V > �/2. At the threshold, the lower edge
of the bulk gap of the terminal biased at +V = �/2 coincides
with the chemical potential of the terminal biased at −V =

FIG. 6. Schematic diagrams showing the dominant MAR pro-
cesses at lowest order in the number of Andreev reflections. (a) No
dephasing case (n = 3), dominated by the gap edges (eV = 0.4�).
(b) With dephasing (n = 4), the (brown online) shaded areas denote
the pseudogaps at ±eV (eV = 0.4�).

−�/2. The same condition marks the threshold of the n = 2
MAR process, as seen in Fig. 6(b). The regimes differ in the
coupling strength to the continuum of quasiparticle states, the
regime V > 0.5� marking the stronger coupling giving rise
to rounded features of the NDOS.

In Fig. 7(a), we observe small corrections to the structure
of the NDOS, visible at large transparency, T = 0.6. The
feature can be ascribed to the n = 4 MAR process and
corresponds to energy E = ±3V . In contrast, the transparency
does not significantly modify the NDOS in the case of small
decoherence (for this reason we only show the results for

FIG. 7. Same as (a) and (b) of Fig. 5 but with transparency
T = 0.6.
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FIG. 8. Normal density of states (NDOS) as a function of energy E in a biased TTJ with three electrodes at voltages −V,0,V , at transparency
T = 0.1, for small decoherence (τd = 0.05). (a) and (b) show the NDOS for V = 0.42 and 0.52, (c) shows the density plot of the NDOS as
a function of the energy E and the voltage V . In (a) and (b), the vertical dotted lines show the positions of the expected peaks at voltages
±(� ± (2p + 1)V ) or ±(� ± (2p)V ) due to MAR processes. (� = h̄ = e = 1.)

T = 0.1). Indeed, for a symmetric two-terminal junction and
for vanishing τd , the small transparency limit of the circuit
theory equations has been previously shown to be identical to
the exact result [31].

V. THE THREE-TERMINAL JUNCTION

We now consider a metallic TTJ with superconducting
terminals Si, i = {1,2,3}, biased at voltages V1 = −V3 = V

and V2 = 0. Below, we set all superconducting phases to zero
and discuss the effect of bias, transparency and bulk gap
asymmetry on the structure of the NDOS. In the following
section, we discuss the dependence of the NDOS on the
phase ϕQ.

A. NDOS at ϕQ = 0

For a symmetric junction, �i = � and Ti = T , we find that
the junction transparency does not significantly modify the
spectral structure of the NDOS, with few exceptions that we
will point out. For this reason, we choose T = 0.1 to produce
the plots. The NDOS of the TTJ in the limits of small and
large decoherence, Figs. 8 and 9, respectively, are similar to
those for the conventional, two-terminal junction, presented
in Figs. 4 and 5, with additional structures emerging from the
presence of a third terminal, biased at V2 = 0.

For small decoherence, Fig. 8, the NDOS presents an
additional structure originating from the gap edges of the

superconducting electrode at voltage V2 = 0 at ±(� + V2).
New MAR channels develop: quasiparticles with energy near
the gap edges in S1,3 scatter at energies ±(� ± (2p + 1)V ),
while those with energy near the gap edge in S2 scatter at
energies ±(� ± 2pV ). Corresponding structures of the NDOS
can be seen in Fig. 8 for all MAR processes of order n

smaller than n < (V/�). The NDOS presents six large peaks,
at energies ±(� ± V ) and ±� that correspond to the gap
edges, and smaller structures corresponding to higher-order
MAR processes. The position of these peaks depends linearly
on the voltage as seen in Fig. 8(c), in agreement with the
interpretation in terms of MAR diagrams.

For large decoherence, Fig. 9, the NDOS presents an
additional (third) minigap at E = V2 = 0, compared to
the two-terminal junction. The third minigap is unaffected
by the two voltage regimes V ≶ �/2 that determine the shape
of the minigap edges at E = ±V . The edges of the minigap
at E = 0 remain sharp irrespective of V , since the chemical
potential of the corresponding superconductor, S2, does not
change with V .

It is interesting to track the position of the resonant
structures of the NDOS by introducing an asymmetry in the
bulk superconducting gaps. If S1 is a weaker superconductor
with �1 < �, Fig. 10(b) shows the linear dependence of
the corresponding MAR resonance on �1, confirming its
relation to the gap edge of S1, according to the expression
±(�1 ± 2pV ). In the large decoherence regime, the position
of minigaps does not change with �1. However, the shape of

FIG. 9. Same as Fig. 8, but for large decoherence (τd = 5.0). In (a) and (b), the vertical dotted lines show the positions of the expected
minigaps peaks at voltages ±V and 0 corresponding to the chemical potentials of the two electrodes.
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FIG. 10. NDOS as a function of energy E/� for asymmetric bulk superconducting gaps, at transparency T = 0.1 and voltage V = 0.42,
(a) schematic illustration of asymmetric gap �1, with �2 = �3 = �, (b) at τd = 0.05 as a function of �1, (c) at τd = 5 as a function of �1.
(� = h̄ = e = 1.)

the minigap corresponding to the NS1 interface is strongly
affected by �1, showing the transition between sharp and
smoothed out features at the threshold V = �1/2. The gap
�1 has an effect on the shape of the other two minigaps as
well, signaling the persistence of weak nonlocal transport in
the large decoherence regime.

Similarly, if both biased superconductors, S1 and S3, have a
smaller bulk gap, �1 = �3 ≡ �13, with �13 < �2 = �, the
corresponding resonances shift linearly with �13, as seen in
Fig. 11. For low decoherence, the asymmetric setup shares
similarities with the well-known Cooper pair splitter (CPS)
setup [32,33], where a junction between a superconductor and
two normal metals is formed, the metals acting as collectors for
electrons resulting from splitting Cooper pairs. In our setup, the
collectors are the weaker superconductors S1 and S3, and the
CPS device is recovered in the limit �13 → 0. From Fig. 11,
we observe that in the regime where �13 < V , the modification
to the CPS NDOS mainly consists of small pseudogaps located
at ±V , of width 2�13. These are similar to the proximity-
induced minigap at a biased SN interface, see the inset of
Fig. 5(a), and their positions match the chemical potential of
superconductors S1 and S3.

A qualitatively different regime is obtained in the opposite
limit � > �13 > V , where a pronounced pseudogap in the
NDOS opens at zero energy, with width 2(�13 − V ). The gap
corresponds to the energy window where coherent transport
processes of the quartet type participate in the transport. In

this regime, nonlocal processes of the quartet type coexist with
Cooper pair splitting processes, both mechanisms contributing
to nonlocal correlations in the currents I1 and I3. The
comparison is shown in Fig. 12 where panel (a) shows a line
cut at small �13, while panel (b) shows the gap around E = 0
that develops for large �13. The complex statistical properties
of transport in this regime will be discussed elsewhere.

B. NDOS: phase dependence

Unique to multiterminal junctions is the strong dependence
of the NDOS on the stationary phases of the superconductors.
In particular, for the TTJ under the commensurate bias chosen,
the NDOS depends on the quartet phase, ϕQ, introduced in
Sec. II. Here we discuss at length the effect of ϕQ, that we
consider the central finding of this study.

As predicted in Sec. II, the NDOS is a periodic function of
ϕQ, with period 2π , as can be seen in Figs. 13(a) and 13(b).
Pronounced differences between the NDOS at ϕQ = 0 and
ϕQ = π can be seen in Fig. 14. The height of the large peaks
at E = ±�, ± (� + V ), ± (� − V ) depends on ϕQ. While
the position of these MAR resonances remains unchanged, the
structure of the NDOS in-between the peaks is dramatically
affected. In particular, we focus on two dips in the NDOS,
centered at E = ±V , shown in Figs. 14(b) and 14(c). As a
function of the quartet phase, the dips are shown in Fig. 13(a)
to be fully formed at ϕQ = π , while disappearing at ϕQ = 0.

FIG. 11. Same as Fig. 10, (a) schematic illustration of asymmetric gaps �1 = �3 = �13, with �2 = �, (b) at τd = 0.05 as a function of
�13, and (c) at τd = 5 as a function of �13.
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FIG. 12. Line cut of Fig. 11(b) at fixed �13 for (a) �13 = 0.2� and (b) �13 = 0.7�.

Fixing the quartet phase at ϕQ = π , we show the dependence
of the NDOS on voltage in Fig. 13(c). Upon lowering the
voltage below the threshold V = �/2, the dips emerge at
E = ±V . Upon further lowering the voltage, the dips merge
into a large, well defined pseudogap with sharp edges, seen
in Fig. 14(d). Within the pseudogap the NDOS is not flat. An
interference pattern develops characterized by small, isolated
peaks in the NDOS that depend strongly on the voltage. These
small structures are diminished by decoherence and may be
ascribed to local as well as nonlocal MAR processes.

The shape of the structures at E = ±V for V � �/2 is
similar to that of other dips of the NDOS and does not remind
of the sharp-edged shape of the bulk gap. However, they are
unique in that they emerge upon the sharp threshold V � �/2.
The same threshold marks the limit where the quartet process
can give rise to bound states in the junction, that do not couple
to the continuum. Such bound states support a nondissipative
transport of quasiparticle quartets. The structures at E = ±V

are absent for V = 0.7, see Fig. 13(b). Despite their shape,
we consider it justified to refer to these dips at E = ±V

as pseudogaps as they signal the presence of nondissipative
coherent processes.

The variation with the phase ϕQ of the amplitude and
widths of the peaks in the NDOS can be attributed to phase-
dependent MAR processes and to the quartet process. The
phase-dependent MAR processes [8] can be understood by
an interference between two distinct paths that transport a
quasiparticle across the energy gap. An example is given in
Fig. 15, where the third-order MAR process between S1 and

S2 interferes with the process involving an Andreev reflection
at the S2 − S3 interface and a cross-Andreev reflection in S2.
The interference gives rise to the phase factor ei(ϕ1+ϕ3). The
phase-MAR processes can be interpreted as binding, not only
Cooper pairs to quasiparticles (as in usual MAR), but also
quartets to quasiparticles.

The NDOS for ϕQ = π at low voltage can be fitted by
the NDOS of a single superconducting electrode with a gap
δ, taken as the fitting parameter: N (E) = |x|/√x2 − δ2 for
|x| > δ. The fit for δ = 0.5 is shown as a thin black dotted
line in Fig. 14(d). The fit reproduces the shape of the NDOS,
except at the peaks, E = ±�, ± (� + V ), ± (� − V ), that
are due to MAR processes. The curves for V = 0.1 show that
the NDOS resembles the NDOS of a junction at equilibrium
when ϕQ = π .

A qualitative understanding can be obtained by appealing
to the equilibrium NDOS, as calculated by the same model in
Ref. [13] as a function of the two phases ϕ1,ϕ3, and measured in
Ref. [12]. It is found that at low transparency, for a symmetric
TTJ, the Andreev spectrum crosses zero energy in two points
situated on the line ϕQ = 0. Those regions extend in the phase
plane for finite transparency, and the feature is robust against
weak asymmetry. The proximity-induced minigap closes in
some regions of the phase plane, particularly along the curve
ϕQ = 0, but remains open for ϕQ = π . At small voltage, in
the adiabatic regime, we expect a minigap at ϕQ = π and
not at ϕQ = 0. Qualitatively, the equilibrium Green’s function
of the node is given by Ǧc(ϕ1,ϕ3) = (ω − �̌(ω))−1. The
self-energy can then be averaged to account for the rotation

FIG. 13. NDOS as a function of energy E/� in a biased TTJ with three electrodes at voltages −V,0,V , for small decoherence τd = 0.05
and transparency T = 0.1, (a) at V = 0.3 as a function of ϕQ, (b) at V = 0.7 as a function of ϕQ, and (c) at ϕQ = π as a function of V .
(� = h̄ = e = 1.)
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FIG. 14. NDOS as a function of energy E in a biased TTJ with three electrodes at voltages −V,0,V , for small decoherence τd = 0.05 and
transparency T = 0.1, for (a) V = 0.58, (b) 0.42, (c) 0.31, and (d) 0.1. The red (dashed) curves correspond to ϕQ = 0, while the blue (full)
curves correspond to ϕQ = π . (� = h̄ = e = 1.)

of the phase, ϕ1 − ϕ3 = 4eV
h̄

t . This effective node Green’s
function 〈Ǧc〉(ϕQ) depends only on the quartet phase. The
corresponding NDOS is plotted in Fig. 16, and matches qual-

FIG. 15. Diagram of a typical phase-MAR process in the TTJ.
The thick red arrow shows a quasiparticle path for the third-order
MAR between S1 and S2. The thin green arrow shows a multiparticle
path for a multipair process that involves all superconductors by a
cross-Andreev reflection in S2. The resulting interference gives rise
to phase-dependent MAR.

itatively the exact calculation shown in Fig. 14(d). The sharp
edges of the minigap are reproduced. The approximation is
valid when the Andreev bound states change adiabatically with
the variation of the phase, while preserving their occupation.
For this reason, it cannot recover the exact peak amplitudes
and the oscillations that reflect nonadiabatic features, e.g.,
Landau-Zener transitions between Andreev bound states and
MAR processes.

FIG. 16. NDOS computed using an adiabatic approximation for
small voltage, for a quartet phase ϕQ = π (see text for detail).
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FIG. 17. Discussion of the pseudogap features of the NDOS for voltage V = 0.3 and ϕQ = π (a) for different transparencies in the
symmetric junction, from the top T = 1,0.7,0.5,0.3,0.1, (b) for different strengths of decoherence, from the top τd = 0.05,0.2,1,2,5, (c) for
different transparency symmetries: top T1 = 0.1, T2 = T3 = 1; middle T1 = T3 = 0.1, T2 = 1; and bottom T1 = T2 = T3 = 0.1. The different
curves are offset for clarity and the dotted horizontal lines indicate the offset, N (E) = 0.

The effect of transmission, decoherence, and asymmetry on
the pseudogaps is explored in Fig. 17. Figure 17(a) shows the
relative robustness of the pseudogap structures as a function
of transparency in the symmetric junction. The position of the
pseudogaps remains unchanged and only the depth reduces
slightly as the transmission increases.

The dependence of the pseudogaps on the strength of
decoherence is illuminating. Figure 17(b) shows that at large
decoherence the NDOS presents three minigaps, correspond-
ing to three decoupled NS interfaces. As the decoherence
strength decreases, the three minigaps broaden, and eventually,
at τd � 1, the three structures merge forming the two broad
pseudogaps observed for the coherent junction at V = 0.3.

The origin of the pseudogap structures in the NDOS
can be further probed by introducing an asymmetry in the
transmission of the contacts. Figure 17(c) shows the situation
when one of the contacts, or two of them, are fully transparent,
while the other contacts have low transparency T = 0.1. In
this case, the two pseudogaps at V = 0.3 are washed away.
This is an additional argument for the importance of nonlocal
coherent transport processes in determining the structure
of the NDOS. The dependence on symmetry suggests that
pseudogaps originate from transport processes that involve all
three superconductors.

VI. CONCLUSIONS

We have presented a detailed study of the NDOS in
a three-terminal Josephson junction under commensurate
bias, (V1,V2,V3) = (V,0, − V ). Using a phenomenological
argument, we have shown that in general, the transport in
this regime depends periodically on the phase combination,
ϕQ = (ϕ1 − ϕ2) + (ϕ3 − ϕ2), that is a constant of motion.
The phase governs nonlocal transport of quartets, where the
elementary transport process exchanges four quasiparticles
between all three superconductors. We argue that the quartet
phase, ϕQ, can be tuned by the current flow in S2.

Using the circuit theory formulation of nonequilibrium
equations of superconducting transport, we reveal the NDOS,
first for a conventional two-terminal junction, for comparison
and as a benchmark of the method, and subsequently for
the three-terminal junction, discussing its features for a wide
range of parameters. The complicated structure of the NDOS
is greatly affected by electron-hole decoherence. For small

decoherence, the two- and three-terminal junctions have in
common a complicated structure of peaks that we have shown
to correspond to MAR resonances. We resolve the position of
resonances in terms of bias and the order of MAR processes.
The additional terminal gives rise to additional MAR channels
in the three-terminal junction.

For large decoherence, we have shown that each NS
interface contributes a minigap structure positioned around
the chemical potential of the terminal. The interfaces appear
decoupled in first approximation, with corrections arising due
to finite decoherence. We have identified two transport regimes
separated by the bias threshold V = �/2. For low bias, the
weaker coupling to the quasiparticle continuum gives rise
to sharp features, while for high bias the coupling to the
continuum is strong and the sharp edges are rounded.

The central result of our study is the dependence of the
NDOS in the three-terminal junction on ϕQ. At ϕQ = π

and at small bias voltage, the NDOS presents a sharp-edged
pseudogap that forms around E = 0. The sharp pseudogap
bifurcates into a pair of pseudogaps for increasing bias,
before vanishing for V > �/2. Our predictions for the NDOS
can be verified experimentally by tunneling spectroscopy.
The presence of pseudogaps and the possibility to tune the
NDOS by controlling the stationary phase in the presence of
voltage bias has no equivalent in the two-terminal device, as
it originates from nonlocal transport processes involving all
three superconductors. In a subsequent contribution we will
supplement this analysis of the NDOS by a discussion of the
current flowing in the junction, focusing on the nonlocal and
nondissipative current that is discussed as a function of phase
ϕQ and voltage V . The tunable and nonlocal properties of
the coherent transport supported by the three-terminal junc-
tion recommend it as an interesting superconducting circuit
element that may inspire quantum engineering applications.

ACKNOWLEDGMENTS

We gratefully acknowledge the fruitful exchange of ideas
with our colleague Régis Mélin. We acknowledge support
from the French National Research Agency (ANR) through
the project ANR-Nano-Quartets (ANR-12-BS1000701). This
work has been carried out in the framework of the Labex
Archiméde (ANR-11-LABX-0033) and of the A*MIDEX
project (ANR-11-IDEX-0001-02), funded by the “Investisse-

205437-11



PADURARIU, JONCKHEERE, RECH, MARTIN, AND FEINBERG PHYSICAL REVIEW B 95, 205437 (2017)

ments d’Avenir” French Government program managed by
ANR. C.P. acknowledges support from the Academy of
Finland and from the Centre for Quantum Engineering at Aalto
University.

APPENDIX: FOURIER TRANSFORMS

Green’s functions generally depend on two time-space
coordinates Ǧ(x1,x2,t1,t2). In the circuit theory model the
junction is separated into regions where transport is uni-
form and can be characterized by a coordinate independent
Green’s function, Ǧ(t1,t2). These are the Green’s functions
that describe the terminals and the Green’s function of the
central node. The Green’s functions are related by equations
originating from the Usadel equation where matrix products
are defined in the Keldysh-Nambu-t1-t2 space. Since the time
indices are continuous, matrix products take the form of a
convolution in time, Ǧ = Ǧ1 ◦ Ǧ2,

Ǧ(t1,t2) =
∫

dtǦ1(t1,t)Ǧ2(t,t2). (A1)

In energy representation,

Ǧ(E1,E2) =
∫

dt1dt2e
i(E1t1−E2t2)Ǧ(t1,t2), (A2)

Ǧ(E1,E2) =
∫

dE

2π
Ǧ1(E1,E)Ǧ2(E,E2). (A3)

Under stationary transport conditions, the Green’s function
depends only on (t1 − t2), or alternatively, only on one energy
G(E1,E2) = G(E1)δ(E1 − E2). In this case, the convolution
reduces to a simple matrix product of Keldysh-Nambu Green’s
functions defined at a given energy. The equations are therefore
easily implemented numerically. Our work addresses transport
in nonstationary conditions. As discussed in Sec. III, the
transport is periodic and described by the Josephson frequency
ω0 = 2eV/h̄. We define the following double time Fourier
transform to a representation in energy and harmonics of ω0

(here we have set h̄ = 1):

Ǧ(E,n,m) = 1

T

∫ ∞

−∞
dt1

∫ T −t1

−T −t1

dt2e
i(E+nω0)t1

× e−i(E+mω0)t2Ǧ(t1,t2), T = 2π

ω0
. (A4)

The restriction in integration over t2 implements the con-
dition, −T/2 < (t1 + t2)/2 < T/2, valid due to periodic-
ity, Ǧ(t1,t2) = Ǧ(t1 + T ,t2 + T ). With the above transfor-
mation it can be shown that the convolution product be-
comes a product of matrices defined at a given energy E,
with size corresponding to the Keldysh-Nambu-n−m space,
Ǧ = Ǧ1 ◦ Ǧ2,

Ǧ(E,n,m) =
∑

p

Ǧ1(E,n,p)Ǧ2(E,p,m). (A5)

We have used this expression to find the numerical solution
of the nonstationary transport problem, further detailed in
Sec. III.
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