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a b s t r a c t 

In this paper, we consider a linear supervised dimension reduction method for classification settings: 
stochastic discriminant analysis (SDA). This method matches similarities between points in the projection 
space with those in a response space. The similarities are represented by transforming distances between 
points to joint probabilities using a transformation which resembles Student’s t-distribution. The match- 
ing is done by minimizing the Kullback–Leibler divergence between the two probability distributions. 
We compare the performance of our SDA method against several state-of-the-art methods for supervised 
linear dimension reduction. In our experiments, we found that the performance of the SDA method is 
often better and typically at least equal to the compared methods. We have made experiments with var- 
ious types of data sets having low, medium, or high dimensions and quite different numbers of samples, 
and with both sparse and dense data sets. If there are several classes in the studied data set, the low- 
dimensional projections computed using our SDA method provide often higher classification accuracies 
than the compared methods. 

© 2018 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Dimension reduction is an old research topic but in the cur-

rent era of big data it is at least as relevant as earlier. There are

several reasons for studying and using it. First, the data vectors

may have quite high dimensions, which prevents applying poorly

scalable and computationally demanding methods to them even

with the current high computer processing power. The computa-

tional load of such methods can be proportional for example to

the third power of the dimension, and grows rapidly intolerably

high with increasing dimensionality. Second, dimension reduction

reduces the amount of storage needed. Third, it can remove irrele-

vant information and noise from the data, and may lead for these

reasons in practice to improved results. Fourth, the data is often

projected to two-dimensional or sometimes to three-dimensional

images for understanding its properties better. This information vi-

sualization aspect is important, because it is very difficult for hu-

mans to imagine what the data looks like in high dimensions. 

We call the components x i of the data vectors x = [ x 1 ,

x 2 , . . . , x N ] 
T as variables in this paper. Thus the data vectors are
∗ Corresponding author. 
E-mail addresses: mika.juuti@aalto.fi (M. Juuti), francesco.corona@ufc.br (F. 
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 -dimensional column vectors. We do not consider variable selec-

ion methods in which the dimensionality is reduced by trying to

elect the most relevant components of the data vectors for further

rocessing. Instead, we consider feature extraction where the data

ectors x are transformed to feature vectors z = [ z 1 , z 2 , . . . , z M ] 
T 

hose components are some mixtures of the components of the

riginal data vectors. Thus the feature vectors are M -dimensional

olumn vectors, and their dimension M is generally clearly or

uch smaller than the dimension N of the original data vectors

 . We call the components of these feature vectors features. It is

t least preferable that when applying feature extraction, the vari-

bles should be similar type quantities such as pixel intensities

n digital images. If the variables are different quantities, for ex-

mple the age, sex, yearly income etc. of a person, the scaling of

hese quantities affects greatly the results, and one can question

he meaningfulness of computing a mixture of completely differ-

nt types of variables. 

The goal of dimension reduction can be simply information vi-

ualization, or achieving good results after dimension reduction

n clustering, regression, or classification tasks. The dimension re-

uction methods can be divided into unsupervised and supervised

nes. In unsupervised methods such as principal component analy-

is (PCA) [1–3] , the only available information are the data vectors

hemselves. On the other hand, dimension reduction for classifi-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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ation is a supervised task in which one has always some train-

ng data set at disposal. For each data vector belonging to the

raining set its correct class label is known. An example of su-

ervised dimension reduction is linear discriminant analysis (LDA)

2,4] . Another important grouping of feature extraction and dimen-

ion reduction methods is that they can be either linear or nonlin-

ar, depending on whether the vector-valued mapping f ( · ) 

 = f (x ) (1) 

rom the data vectors x to the compressed feature vectors z is lin-

ar or nonlinear. 

The stochastic discriminant analysis (SDA) method which we in-

roduce and discuss in this paper is a linear supervised feature ex-

raction method. It is intended for classification after a mapping

nto a relatively small-dimensional feature space, and for visual-

zation of the data containing several classes in two dimensions. 

The remainder of this paper is organized as follows. In the

ext section we review many related dimension reduction meth-

ds. Section 3 deals with the SDA method and minimization of its

ost function. Section 4 presents experimental results of the pro-

osed SDA method compared with traditional and state-of-the-art

pproaches for dimension reduction with several data sets having

uite different properties. The last section contains conclusions and

emarks of this study. 

. Related work 

Because our stochastic discriminant analysis method is a lin-

ar supervised method for dimension reduction, we discuss here

ainly such methods. The most widely used dimension reduction

ethod is still principal component analysis (PCA) [1–3] . It is an

ld linear unsupervised feature extraction and dimension reduc-

ion method which maps the N -dimensional original data vectors

 into feature vectors z which have a lower dimension M : 

 = W T x (2) 

he row vectors of the M × N mapping matrix W T consist of the

igenvectors of the data covariance matrix C xx = E[ xx T ] corre-

ponding to the largest eigenvalues, assuming that the data vec-

ors have zero mean. If this is not the case, the K data vectors x j ,

j = 1 , 2 , . . . , K can always be preprocessed to have zero mean by

rst estimating their mean vector m = 1 
K 

�  K 
j=1 x j , and then sub-

racting m from the data vectors x j . Thus PCA is easy to com-

ute, and it is computationally not too demanding provided that

he data vectors x are not truly high-dimensional. PCA minimizes

he mean-square representation error for all linear M × N mappings

 T , and the components of the feature vector z have maximal vari-

nces and are uncorrelated in directions that are mutually orthog-

nal [1–3] . We use PCA as a preprocessing step in our SDA method,

nd as a reference method in our comparison experiments. How-

ver, PCA does not often perform well in dimension reduction in

lassification problems, because it does not utilize the class infor-

ation available in the training set in any way. 

The oldest supervised linear dimension reduction method is lin-

ar discriminant analysis (LDA) [2,4] developed already in 1930’s.

he criterion function in LDA for the case of two classes is 

(w ) = 
w T S B w 

w T S W w 
(3) 

here w is the N -dimensional projection vector for mapping the

ata into one dimension by computing the inner product w T x. S B 
s the N × N between-class covariance matrix and S W is the N × N

ithin-class covariance matrix. The criterion (3) is maximized in

rder to maximize the distance between the two classes and min-

mize the distance within the same class at the same time. The
olution can be computed from a linear equation (see [2,4] for de-

ails), but it requires the inversion of the matrix S W . This can be-

ome computationally prohibitive for very high-dimensional data,

uch as digital images. LDA can have also problems with singu-

ar within-class covariance matrices S W , and therefore it is often

oupled with dimension reduction using PCA in image recognition

asks [5] . 

LDA has two basic limitations (in addition to the linearity of

he mapping): the probability distributions of the two classes are

ssumed to be Gaussian, and these Gaussian distributions are as-

umed to have the same covariance matrix S W [4] . LDA can be ex-

ended to several classes as follows. It is assumed that each of the

 classes has its own mean vector m i and the same covariance ma-

rix S W . Define the sample covariance matrix of the class means as

 C = 
1 

C 

C �  

i =1 

(m i − m )(m i − m ) T (4)

here m is the mean of the class means m i . Then the class sepa-

ation in the direction w is given by [4] 

(w ) = 
w T S C w 

w T S W w 
(5) 

he optimal direction w which maximizes the separation (5) is

iven by the eigenvector corresponding to the largest eigenvalue

f the matrix S −1 
W S C . 

Linear discriminant analysis (LDA) has inspired many re-

earchers and there exist several modifications on it. We mention

ere the following linear supervised dimension reduction methods

ased on LDA. In the paper [6] , the problem appearing in face

ecognition that the within-class covariance matrix S W becomes

lways singular is solved by first mapping the face images to a

ower dimensional space. In marginal Fisher analysis [7] , new

riteria that characterize intra-class compactness and inter-class

eparability are developed for handling cases in which the prob-

bility distributions of the classes are not Gaussian. A direction w

hich minimizes the ratio of these criteria is then sought. Essen-

ially the same idea has been introduced in the paper [8] . Local

isher discriminant analysis (LFDA) [9] introduces locality into

he LDA method, and is particularly useful for samples consisting

f intraclass separate clusters. Maxmin distance analysis (MMDA)

10] considers maximization of the minimum pairwise interclass

amples. 

In fact, a linear discriminant analysis type solution can be

ound by maximizing either a trace ratio or a ratio trace criterion

hich are closely related. These two criteria are compared and

tudied both theoretically and experimentally in [11] . The ratio

race criterion is conventionally used because it has a closed form

ut inexact solution, while the trace ratio criterion requires an

terative maximization method. Both these criteria yield qualita-

ively similar results, but the trace ratio provides somewhat better

lassification results, as shown by large number of experiments

ith various data sets in [11] . We use the closed form solution of

he ratio trace criterion in the experiments of this paper and refer

o it as LDA. 

Partial least squares (PLS) regression is a supervised linear di-

ension reduction technique that tries to find from the input ma-

rix subspaces that explain the largest amount of variance in the

esponse matrix. When used in supervised manner with labeled

ata, it is referred to as PLS-DA [12] . Kernel dimension reduc-

ion (KDR) [13] is a sufficient dimension reduction method [14] for

lassification and regression data. A sufficient dimension reduction

ontains all the regression information that the original space con-

ained about the response variable. KDR tries to find the central

ubspace [14] for the input data, which is the intersection of all

he dimension reduction subspaces. KDR does not impose any par-
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ticular assumptions on the form of the covariance matrix of the

input data. However, it has high computational load and memory

requirements. A gradient version of the KDR method called gKDR

has been developed in [15] for faster computation. 

Supervised PCA (SPCA) introduced by Barshan et al. in [16] is

a regression technique that finds the principal components having

the maximum dependence on the given response variable. SPCA

tries to find variables that are orthogonal in a kernel space of the

response variable. Using the Hilbert–Schmidt independence crite-

rion, SPCA can be computed from an eigendecomposition. The au-

thors have developed also a dual-space and kernel variant of the

SPCA method called KSPCA in [16] , extending the usage of the

method. 

Before proceeding, we mention briefly a few nonlinear dimen-

sion reduction methods. They are often called manifold learning

methods because they assume that the data lies at least roughly

in some smaller dimensional manifold which is then estimated for

reducing the dimensionality. See Section 5.11.3 in [17] for a more

detailed description of this idea. Belkin and Niyogi developed a

nonlinear manifold learning technique called Laplacian eigenmaps

for projecting high-dimensional data into a low-dimensional space

in such a way that local points in the high-dimensional space are

kept close in the projection [18] . Slightly later on, they developed

a linear variant of Laplacian eigenmaps called locality preserving

projections that projected the data points using a linear transfor-

mation of the data points [19] . This technique has the benefit that

the projection is not defined only for the training data points but

in the whole ambient space. 

Other well-known manifold learning methods are kernel PCA

[2,20] in which PCA is applied after a nonlinear mapping into a

higher-dimensional kernel space, and local linear embedding (LLE)

[21] . For more references and information on manifold learning

methods, see [17,22] . 

All the linear dimension reduction methods discussed thus far

except for PCA are supervised techniques. The following methods

are unsupervised, and hence they do not use any training data

with known class labels or outputs in computing their dimen-

sion reduction mappings. Neighborhood embedding techniques

recreate a high-dimensional neighborhood structure in a low-

dimensional space. These techniques cast the problem of finding a

low-dimensional embedding as a problem of matching two prob-

ability distributions: one modeling a complex high-dimensional

structure, and one modeling a low-dimensional manifold of the

data. The methods preserve point-to-point neighborhood relations.

The low-dimensional embedding is created by defining probabil-

ity mass functions based on point-to-point distances in both high-

dimensional and low-dimensional space. An information measure

between these two joint probability distributions is then itera-

tively decreased. The most common information measure is the

Kullback–Leibler divergence [2,23,24] which measures the differ-

ence between two probability distributions. We shall discuss it in

more detail later on. 

The neighbor retrieval visualizer method (NeRV) [25] matches

a convex combination of divergences between the probabilities

defining the high-dimensional structure and low-dimensional re-

construction. The proportion is hand-tuned, giving the user some

control in penalizing precision and recall errors, see [25] for more

details. 

The stochastic neighbor embedding (SNE) method introduced

in [26] and its various extensions have during the last years be-

come popular in feature extraction, inspiring several modified and

improved methods. Essentially the same method as SNE was in-

troduced under the name informative discriminative analysis in

[27] . The basic principle in the SNE method is to convert pair-

wise Euclidean distances into probabilities of selecting neighbors

to model pairwise similarities. However, the basic SNE method
uffers from optimization and crowding problems discussed

elow. 

In [28] , Van der Maaten and Hinton introduced the so-called

-SNE method where t refers to the Student’s t probability distri-

ution. The high-dimensional structure is modeled using Gaussian

adial basis function kernels, where the authors use a binary search

or determining appropriate kernel widths. Low-dimensional re-

onstructions are modeled with first-order t-distributed kernels.

oth kernel values are normalized to sum to one and are called

robabilities by the authors. The motivation for the asymmetric

atchup is that it solves the crowding problem: the space avail-

ble to model distant data points is too small, compared to the

pace available to model near data points. Yang et al. analyzed

n [29] systematically the characteristics of the heavy-tailed dis-

ribution and the solutions to the crowding problem. Wu et al. ex-

lored in [30] how to measure similarity on a manifold more ac-

urately, and introduced a feature extraction method based on SNE

nd t-SNE which they call manifold stochastic neighbor projection

MSNP). Even though the MSNP method has several advantages in

eature extraction, it is still an unsupervised method that does not

se the class information available in classification problems. 

For overcoming this deficiency of the MNSP method, Zheng

t al. developed a supervised method called discriminative stochas-

ic neighbor embedding analysis (DSNE) in [31] . It resolves the

roblems mentioned above, but it has a high computational cost

nd is therefore not applicable to large-scale classification prob-

ems where the data vectors are high-dimensional. The same

uthors developed in [32] a faster version based on the DSNE

ethod, which they call fast discriminative stochastic neighbor

mbedding analysis (FDSNE). In [32] , they also introduce a non-

inear version of the FDSNE method by applying the kernel trick. 

One of the authors of this paper participated in developing a

ethod called supervised distance preserving projections (SDPP) in

33] . The SDPP method minimizes the difference between pairwise

istances among projected input covariates and distances among

esponses locally. The SDPP method is mainly useful in regression

roblems. It did not work well in all the classification problems

iscussed in the experimental part of this paper, and therefore it is

ot included in our comparison experiments. In SDPP certain dis-

ances in the cost function can change the visualization to a great

xtent. Our new SDA method in the next section tries to avoid

hese problems encountered when applying the SDPP method to

ulticlass data in high-dimensional settings by matching probabil-

ties instead of distances. 

With point-to-point mappings it is often not easy to place out-

f-sample data points. Parametric methods provide a mapping of

he data points. Amongst others, parametric t-SNE method learns a

apping by using a deep neural network [34] . Out-of-sample data

oints can then be embedded by running them through the net-

ork. However, this is a nonlinear dimension reduction method

hat is pretty complicated and difficult to train even though it

ields excellent results for the well-known MNIST data set [35] of

andwritten digits. 

. Stochastic discriminant analysis (SDA) 

.1. The SDA method 

We first define the data matrix X = [ x 1 , x 2 , . . . , x K ] 
T ∈ R K×N as

 K × N matrix which has the K N -dimensional column data vectors

 j as its row vectors. Formally, we are reducing the number N of

ariables in the data matrix X by finding a linear subspace of it: 

 = [ z 1 , z 2 , . . . , z K ] 
T = XW (6)

here Z is a R K×M matrix, W ∈ R N×M , and M ≤ C � N where C is

he number of classes. From Eq. (6) , we get for its i :th row z T 
i =
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Fig. 1. Unnormalized model probabilities q̄ i j as a function of the distance d ij be- 
tween two points. Their distribution has longer tail than the respective Gaussian 
distribution. 

Fig. 2. From left: target manifolds of two, three, and four classes. 
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i W , or z i = W T x i which is equivalent to the PCA mapping (2) .

owever, in the SDA method and other mapping methods than

CA the mapping matrix W is defined in a different way. 

We are using class information from the response matrix 

 = [ y 1 , y 2 , . . . , y K ] 
T ∈ I K×C (7)

o find this projection. For each data vector x i , the corresponding

esponse vector y i specifies its class label. More specifically, if the

ata vector x i belongs to the class c j , the j :th element of its re-

ponse vector y i is equal to one, while the other elements of y i are

ero. The matrix I on the right hand side of Eq. (7) resembles unit

atrix in that on each of its rows one element equals to one while

he other elements are zero. 

In the SDA method, we search for a linear subspace of the

ata matrix where the elements belonging to the same class are

apped close to each other, and those belonging to different

lasses further away. Following van der Maaten and Hinton [28] ,

e cast the problem of finding low-dimensional embeddings as a

roblem of matching two probability distributions: one modeling

 complex high-dimensional point-to-point structure, and another

odeling a low-dimensional manifold of the data. We denote these

istributions by P and Q , respectively, and their elements by p ij and

 ij . We call the values p ij target probabilities, and values q ij model

robabilities. Only the values q ij are optimized in the algorithm

resented in Section 3.2 , while the values p ij remain constant. 

We search for a linear subspace of the data matrix by matching

odel probabilities q ij with target probabilities p ij . Denote by 

 i j = ‖ z i − z j ‖ 2 (8)

he Euclidean distance between two points i and j in the trans-

ormed Z -space, where z i = W T x i is the low-dimensional embed-

ing coordinate. The model probabilities characterizing the dis-

ances d ij are defined by 

 i j (W ) = 
π−1 · (1 + d 2 

i j ) 
−1 

�  K 
k =1 

�  K 
l=1 π

−1 · (1 + d 2 
i j ) 

−1 
(9) 

he numerator π−1 · (1 + d 2 
i j ) 

−1 comes from the probability den-

ity function of Student’s t-distribution [36] having one degree of

reedom. The common factor π−1 can be left out of the expression:

 i j (W ) = 
(1 + d 2 

i j ) 
−1 

�  K 
k =1 

�  K 
l=1 ( 1 + d 2 

i j ) 
−1 

. (10)

he numbers q ij are called probabilities, because they are non-

egative and their sum equals one: 

K  

i =1 

K �  

j=1 

q i j (W ) = 1 (11)

he probabilities q ij ( W ) are inspired by the Student’s t-distribution

nd have longer tails than the standard Gaussian distribution, but

hey are exactly not t-distributed, despite being called so in litera-

ure [28] . 

Denoting the unnormalized probability in the numerator of

10) by 

¯ i j = (1 + d 2 i j ) 
−1 (12)

e can write the Eq. (10) simply 

 i j = q̄ i j /σq , σq = 

K �  

i =1 

K �  

j=1 

q̄ i j (13) 

ig. 1 shows the profile of the unnormalized probabilities q̄ i j . The

aximum value is one when the distance d ij between the two

oints z i and z j is zero, and approaches zero when the distance

 ij → ∞ . 
Unlike [28] , we do not use in the SDA method high-dimensional

istances in defining target probabilities p ij . We want to enforce

he condition that the data points belonging to the same class are

rojected close to each other in the Z -space, and that the points

elonging to different classes are mapped further away. In an ideal

mbedding, the unnormalized probability q̄ i j = 1 when the points

 and j belong to the same class, corresponding to zero distance

etween them. Similarly, ideally q̄ i j = 0 when the points i and j

elong to different classes, corresponding to an infinite distance

etween them. These conditions hold also for the normalized

robabilities σ q in Eq. (13) . 

In our SDA method, we rely only on the class information in

etermining the ideal embeddings. The normalized target proba-

ilities are defined similarly as in Eq. (13) 

p i j = p̄ i j /σp , σp = 

K �  

i =1 

K �  

j=1 

p̄ i j (14) 

here σ p is the normalization term, and 

p̄ i j = 

�
1 , if y i = y j 

ε, otherwise 
, (15) 

here ε > 0 is any small number close to zero. The target probabil-

ties in Eq. (14) define the ideal distances. Optimally both p̄ i j = q̄ i j 
nd p i j = q i j for all i, j ∈ [1 , . . . , K] . In such a situation, all the

oints belonging to the same class are mapped to one dot (point),

nd all points belonging to different classes are at an equal dis-

ance from each other. 

With a given ε, we can calculate the ideal point-to-point dis-

ances in Z -space to be 

 ∗i j = 

�
0 , if y i = y j √ 

ε−1 − 1 , otherwise. 
, (16) 

e can see that ε scales how close the superimposed points are to

ach other. Eq. (16) defines a geometric structure that has C nodes,

here each node is separated by an equal distance of 
�  

ε−1 − 1 .

his geometric structure is called a regular simplex. Fig. 2 shows

arget structures for two class, three class, and four class problems.

ote that the structure of the simplex is independent of the input

ata X , depending only on the number classes in Y . 
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Fig. 3. Two ideal embeddings of 5 classes into two dimensions, using SDA (low ε, 
left) and HSE (high ε, right). With low ε, too small between-class distances incur 
a large penalty and the embedding results in the utilization of the whole volume 
of the hypersphere. With high ε, too large between-class distances incur a large 
penalty and the ideal embedding results in utilization of the surface of the target 
hypersphere. 
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Given sufficiently many target dimensions, and by setting ε → 0,

the optimality criterions of SDA and LDA could yield similar em-

beddings, because both methods try to construct linear projections

whose within-class variances are zero and between-class variances

are infinite. Both methods define an embedding structure that has

an intrinsic dimensionality of C − 1 dimensions. However, the SDA

and LDA methods deal with the shortcomings in the target di-

mensionality differently, as is explained later on in Fig. 3 and

Section 3.3 . 

The Kullback–Leibler (KL) divergence [2,24] measures the differ-

ence between two probability distributions. Here we consider for

clarity first two discrete probability densities A and B which both

have J possible discrete values a 1 , a 2 , . . . , a J and b 1 , b 2 , . . . , b J , re-

spectively. Their KL divergence is 

D KL (A || B ) = 

J �  

j=1 

a j log (a j /b j ) (17)

The KL divergence is zero only when the two probability distri-

butions are the same, that is A = B . However, it is theoretically

not a true distance because the KL divergence does not fulfill the

triangle inequality, and it is not symmetric: D KL ( A || B ) 
 = D KL ( B || A ).

For the two probability densities A and B , one can define two

Kullback–Leibler divergences D KL ( A || B ) and D KL ( B || A ), which have

different properties as discussed in Section 21.2.2 in [24] . The

version (17) which we are using is called M-projection and zero-

avoiding, because it becomes infinite if one of the probabilities b j is

zero. 

Using the KL divergence (17) for the probabilities p ij and q ij 
defined, respectively, in Eqs. (14) and (10) , we can write the cost

function of our SDA method which is minimized: 

J(W ) = 

K �  

i =1 

K �  

j=1 

p i j log 
p i j 

q i j (W ) 
+ λ

N �  

i =1 

M �  

j=1 

w 2 i j (18)

The second term is the usual weight decay (Tikhonov) type reg-

ularizer [2,24] which penalizes for large values of the elements

w ij of the N × M weight matrix W . The parameter λ determines

how much one takes into account regularization compared with

the first part of the cost function, the Kullback–Leibler divergence,

which is the actual cost. 

We are searching for the thin linear projection matrix W that

minimizes the Kullback–Leibler divergence in which the target

probability distribution P is approximated with the model proba-

bility distribution Q . The inefficiency of encoding ideal distances

in the response space using realized distances in the embedding

space is measured. The probability distribution (10) causes asym-

metric distance penalties: the cost function is more sensitive to

deviations in within-class distances than to deviations in between-
lass distances. Deviations from the ideal within-class distances in-

ur a relatively large cost, but deviations from ideal between-class

istances incur a much smaller cost. 

If we use regularization and the value of the regularization pa-

ameter λ in (18) is searched by cross-validation, we refer to our

ethod as Regularized SDA, abbreviated as RSDA. Normally λ is

et to zero. Weight decay (Tikhonov) regularization is often ap-

lied to ill-posed problems. In SDA, we have local solutions that

epend on the initialization. The initial solution in SDA is ob-

ained with PCA, giving orthogonal vectors with maximum vari-

nce. High-dimensional problems with many non-singular dimen-

ions have a high degree of freedom, and they can in principle

ave infinite parameters choices (by convex combinations) that

roduce the optimal solution. The KL criterion is insensitive to the

eights used to find the projection. Applying Tikhonov regulariza-

ion changes the optimization criteria so that optimal solutions are

anked in order of the least Frobenius norm. Additionally, the op-

imization process can also be made smoother by constraining the

ize of the elements of weight matrix W . 

.2. Minimization of the cost function 

We consider now the minimization of the cost function (18) .

irst, we compute its gradient with respect to the weight matrix

 . Then we use this gradient in various gradient type minimiza-

ion methods which are discussed later on in this subsection. 

The essential steps in obtaining the gradient are as follows. We

se the shorthand notation q i j = q i j (W ) . We also write the squared

istance in the embedding space as 

D i j = D i j (W ) = d 2 
i j = ‖ z i − z j ‖ 2 

= � T 
i j WW T � i j = (x i − x j ) 

T WW T (x i − x j ) 
(19)

here � ij = x i − x j is the difference between the i :th and j :th orig-

nal data vectors x i and x j , respectively.The matrices P, Q , Q̄ and D

re K × K real-valued matrices, whose elements are respectively p ij ,

 ij , q̄ i j , and D ij . 

The gradient of the first part of the cost function (18) which is

he Kullback–Leibler divergence KL ( P || Q ( W )), is 

dKL (P || Q(W )) 

dW 
= 

K �  

i =1 

K �  

j=1 

p i j 
1 

q i j 
(−1) 

dq i j 

dW 

= 

K �  

i =1 

K �  

j=1 

p i j (−1) 

�  
K �  

k =1 

K �  

l=1 

q kl ̄q kl 
dD kl 
dW 

− q̄ i j 
dD i j 

dW 

�  

= 

K �  

i =1 

K �  

j=1 

p i j ̄q i j 
dD i j 

dW 
−

K �  

k =1 

K �  

l=1 

q kl ̄q kl 
dD kl 
dW 

= 

K �  

i =1 

K �  

j=1 

(p i j − q i j ) ̄q i j 
dD i j 

dW 

= 

K �  

i =1 

K �  

j=1 

(p i j − q i j ) ̄q i j � T 
i j � i j W , (20)

ince 

K  

i =1 

K �  

j=1 

p i j k = 

�  
K �  

i =1 

K �  

j=1 

p i j 

	  

k = k (21)

here k is an arbitrary constant. Here (1 + D i j ) 
−1 = q̄ i j denotes the

nnormalized probability in (12) . 
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Adding the gradient 2 λW of the second regularization term to

he cost function (18) , we get for its total gradient 

 W J = 
dJ 

dW 
= 

K �  

i =1 

K �  

j=1 

(p i j − q i j ) ̄q i j � T 
i j � i j W + 2 λW (22)

This expression can be written in matrix form: 

 W J = 2 X T LXW + 2 λW , (23)

here the matrix 

 = G + − � ∈ R K×K (24)

s calculated as 

G = (P − Q ) � Q̄ 

G + = G + G T 

� = 
�  

j G + 
i j 

(25) 

Here � denotes the Hadamard product, and G + is a sym-

etrized version of the matrix of G ∈ R K×K . The matrix � ∈ R K×K 

s a diagonal matrix containing the row sum of G + . The matrix L is

he difference between two Laplacian matrices: 

 = L P − L Q , (26)

here L P and L Q are calculated from the adjacency matrices G P =
 � Q̄ and G Q = Q � Q̄ . A Laplacian matrix is a symmetric diago-

ally dominant matrix and therefore positive semi-definite, but the

atrix L need not be positive semi-definite. 

There are many ways of optimizing the cost function (18) based

n the gradient information. Algorithm 1 presents the pseudo-code

lgorithm 1 Gradient-based minimization for stochastic discrimi-

ant analysis (SDA). 

nput: Input matrix X ∈ R K×N , responsematrix Y ∈ I K×C ,target

imensionality M, regularization term λ, and optimal tolerance δ. 

utput: Projection matrix W . 

. Calculate the target probabilities P ∈ R K×K from Eq. (15). 

. Initialize W using PCA, by putting as its rows the M principal

igenvectors of the covariance matrix of the data X . 

. Calculate the model probabilities Q from Eq. (10). 

. Evaluate the cost function J(W ) from Eq. (18). 

. Assign t = 0 , δJ = ∞ . 

hile δJ > δ do 

. Compute the gradient (23). 

. Vectorize the projection matrix: w t = vec (W ) . 

. Vectorize the gradient: g t = vec (∇ W J) . 

. Determine the descent direction d t . 
0. Determine step size ηt . 

1. Update the solution vector: w t = w t−1 + ηt d t . 

2. Convert the vector w t back into the matrix W t . 

3. New iteration t ← t + 1 . 

4. Update the model probabilities Q using Eq. (10). 

5. Calculate the new cost J(W ) from Eq. (18). 

6. Update the change δJ = J t − J t−1 of the cost function. 

nd while 

7. Orthogonalize W t using thin singular value decomposi-

ion(SVD): ˆ U ̂ S V = W t . 

8. Return W = ˆ U ̂ S . 

or obtaining a projection matrix W using stochastic discriminant

nalysis. First, the target probabilities P and model probabilities

 collected in these matrices are calculated. Then the cost func-

ion is evaluated, and its gradient (23) is computed. The projection

atrix W and its gradient must be vectorized in the optimiza-

ion Algorithm 1 . Note that the target probabilities p ij are deter-

ined based on the labeling of the elements in the beginnning of
he algorithm, but the model probabilities q ij depend on the low-

imensional coordinates, and they must be recalculated at each it-

ration. The initial projection matrix is obtained using PCA. 

The vectorized projection matrix w and its vectorized gradient

 can be plugged into any gradient-based optimization method.

he basic method is the usual steepest descent method, but dif-

erent versions of the conjugate gradient method [37–39] and the

imited-memory BFGS algorithm [38,40] are more efficient in solv-

ng problems with a large number of variables, and converge faster.

The evaluation of the gradient is the most time consuming part

f the optimization. The applied optimization method determines

he descent direction, and a line search method can be used for de-

ermining the optimal step size ηt which minimizes the cost func-

ion J ( W ) as much as possible in the direction of the gradient. The

ptimization and line search methods may require additional func-

ion evaluations. At the end, the search directions are orthogonal-

zed using singular value decomposition (SVD). The use of thin SVD

aves computational time. 

.3. Low-dimensional projections 

Recall that the target embedding depends on the response

pace Y only, not on the input space X . The optimal embedding for

 response space with C classes is a simplex with C nodes, with

n inherent dimensionality of C − 1 dimensions. Thus, embedding

imensionalities M larger or equal to C − 1 produce simplex man-

folds with inherent dimensionalities of C − 1 . But in case the em-

edding dimensionality M is smaller than C − 1 , the solution is not

ntuitive to imagine. In such a case the interplay between ε and

he shape of the t-distribution plays a role. We evaluate ε which is

 parameter in our system. 

The most important property to consider is whether it becomes

rohibitively expensive to embed nodes further away than the op-

imal embedding. We argue that at a certain εt it becomes too ex-

ensive to embed nodes further away, so that the nodes are em-

edded too close to each other, which may hurt subsequent clas-

ification accuracy. However, very low values of ε may be slow to

ptimize. 

Small values such as ε → 0 cause an optimal embedding similar

o the one in Fig. 3 (left). Too large values of ε cause a different

ype of compromise similar to the one in Fig. 3 (right). The differ-

nce is clear, and we call these embeddings with different names

o avoid confusion. We call the former case SDA and the latter case

ypersphere embedding (HSE). The discrepancy in the shapes of

he SDA and HSE embeddings results from how deviations from

he ideal distances are treated: in SDA, the distances d > d ideal oc-

ur at a small cost, while in HSE the distances d > d ideal occur at an

ncreasingly high cost. 

Embeddings with SDA utilize a larger volume to separate

lasses and have more freedom in separating classes given a spe-

ific target dimension. However, the superiority is not obvious

hen we notice that embeddings with HSE are ideally embedded

n a ( C − 1 )-dimensional manifold in the C -dimensional space (the

adius of the sphere is a constant). In certain cases, we notice that

n very high-dimensional cases with extremely low-dimensional

mbeddings, the reward for embedding classes at the ideal dis-

ance is so strong that separate classes might be embedded on top

f each other, for maximizing the number of fulfilled ideal class-

o-class distances. This is contrary to our goal of separating maxi-

ally different classes. By default we choose ε = 1 /C, the inverse

f the number C of classes, since the optimization criterion con-

erges slowly with small values of ε. We verify the found embed-

ings experimentally below. 

The optimization process described in Algorithm 1 decreases

he KL divergence step by step towards a minimum cost struc-

ure until no significant further process can be made, measured
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Fig. 4. Upper row: embeddings of a subset of 100 samples of the USPS dataset for the hyperparameters ε = 0.01 (left), and 0.1 (right). Lower row: the normalized KL 
divergences obtained by varying all the between-class distances and the normalized histograms of the realized within-class (blue) distances and the between-class distances 
(orange). There are ten classes in the dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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by the tolerance δ in Algorithm 1 . Recall that the optimal embed-

ding does not depend on the dataset X . For illustrative purposes

we use a smaller dataset, since the clustering behavior is clearer

in a smaller dataset. Using larger datasets exhibits similar behav-

ior, although the linearity constraint restricts the cleanness of the

class clusters. The reader is advised to compare the figures below

with large datasets in Fig. 11 . 

Fig. 4 shows the optimal two-dimensional embeddings (top

row) and corresponding costs (bottom row) of projections of a

100 sample subset of the USPS dataset for the hyperparameter val-
es ε = 0.01 and 0.1, and Fig. 5 for ε = 0.5 and 0.9. Notice that be-

ause the USPS dataset has C = 10 classes, ε = 1 /C = 0 . 1 . The black

urve shows the cost of the hypothetical KL criteria, evaluated by

eeping within-class distances zero and varying all the between-

lass distances. The vertical dashed line shows the ideal distance,

btained with the Student’s t probability distribution formula as

 ideal = 
�  

(1 − ε) /ε. The cost of the KL criteria is minimized when

he between-class distances precisely equal d ideal , but this would

equire a target dimensionality of M = C − 1 = 9 . The cost curves

re normalized in each subimage. 
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Fig. 5. Upper row: different embeddings of a subset of 100 samples of the USPS dataset for the hyperparameters ε = 0.5 (left), and 0.9 (right). Lower row: the normalized KL 
divergences obtained by varying all the between-class distances and the normalized histograms of the realized within-class (blue) distances and the between-class distances 
(orange). There are ten classes in the dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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The blue and orange histograms are the within-class and

etween-class realized distances, evaluated at the found optimal

olution in two dimensions. The histograms are normalized in

ach image. The blue histogram shows that near zero within-

lass distances are achieved in the solution, meaning the as-

umption that the within-class distances are zero is valid in

ur analysis. The realized distances vary in each embedding.

n the two subimages of Fig. 4 , the distances are scattered

round the ideal distance d ideal , while in the two subimages of

ig. 5 the realized distances all fall short of the ideal distanc

 d ideal . 
We can see that the cost function is nearly symmetric and lo-

ally convex in the region of the ideal distance when ε = 0 . 1 and

= 0 . 5 , translating into a speedy optimization. The subfigures in

ig. 4 show a lenient penalty for realized distances larger than the

deal distance. The penalty function makes it possible to embed

oints over the whole volume of a hypersphere. The two subim-

ges in Fig. 5 show a harsh threshold for embedding distances too

ar from the optimal distance, and produce embeddings where the

entral area in the hypersphere remains unused. Note that when

= 0 . 9 , the penalty for between-class distances becomes so large

hat certain classes are embedded almost on top of each other. 
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Table 1 
Data sets used in this paper. 

Data set Samples Variables Classes 

USPS 9298 256 10 
MNIST-50 0 0 50 0 0 784 10 
Phoneme 4509 256 5 
Olivetti faces 400 4096 40 
COIL-20 1440 16,384 20 
COIL-100 7200 16,384 100 
Iris 150 4 3 
Wisconsin Breast cancer 683 9 2 
Wine 178 13 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Tikhonov regularization parameter search for a two-dimensional embedding. 
Some learned point embeddings are displayed. 
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Overall, the choice of ε = 1 /C (0.1 in this experiment) pro-

duces well-separated embeddings which are nearly identical to

the case where ε → 0, while still presenting a smooth, near-

convex optimization surface with respect to the target distances

near the optimal solution. In the experiments that follow, we set

ε = 1 /C. 

3.4. Outliers 

Our paper focuses on the general principle behind SDA and its

numerical solution, assuming that the data points are correctly la-

belled. However, outliers by which we mean wrong labels in the

target space of a classification problem can be taken into account

in the SDA formulation. More explicitly, the observed class labels

are used as sure variables only in the assignment of the terms

p ij in the definition of the target probabilities. That is, whenever

two points have the same or a different label, they are assigned

some fixed distance. Since we assume no label noise, this assign-

ment is fixed and done with probability one. To take into account

label noise, this fact can be adjusted to quantify the probability of

two observations actually be of the same class, given which labels

are observed. A rather straightforward probabilistic model of four

random variables of the discrete type (two per data point, the ob-

served and the actual class labels) would allow to compute such

probabilities. Given a measure of uncertainty, the p ij could then be

assigned in such a way that the distance in modulated accordingly.

This outlier treatment can be considered in more detail mathemat-

ically, but it leads to a lengthy discussion, and would require new

experiments. We feel that this is outside the scope of our paper. 

4. Experimental results 

The experimental evaluation is divided into two parts. First, our

SDA method and comparison methods are applied to three dif-

ferent datasets in the three first subsections of the Section 4.1 .

In these case studies, the classification accuracies for a range of

target dimensionality values are calculated, and two-dimensional

projections are visualized. We also describe a regularization pa-

rameter search scheme for our SDA method in Section 4.1.1 , and

compare the runtime with different optimization algorithms in

Section 4.1.4 . In Section 4.2 , a comparison of the two-dimensional

projection qualities of state-of-the-art methods is carried out for

several datasets. The datasets used in our experiments are sum-

marized in Table 1 . 

We define the hyperparameters used in various methods here.

Our proposed method SDA is initialized using standard PCA in all

experiments. In SPCA, we chose the delta kernel [16] for the re-

sponse space. In the kernel version of SPCA, we selected the delta

kernel for response space and a Gaussian kernel for the input

space, setting the width of the Gaussian to the median value of

the squared interpoint distances. The gKDR method [15] was run

in the partitioning mode (v) to reduce its memory requirements.
he variables of each dataset were standardized by making them

o have zero mean and unit variance. 

.1. Case studies with three high-dimensional datasets 

Three image datasets were chosen and analyzed: Olivetti faces,

SPS and COIL-20. All the data sets have multiple classes. The

livetti face dataset [35] studied in Section 4.1.1 contains images of

0 persons, each photographed in ten pictures with both normal

nd unusual facial expressions. The input dimensionality is quite

igh, 4096. The USPS dataset [35] used in the Section 4.1.2 con-

ains a large number of hand-written digits of ten classes in

 smaller 256-dimensional space. The COIL-20 data set [41] in

ection 4.1.3 consists of very high-dimensional (dimension 16,384)

mages of 20 rotating objects photographed at fixed angle intervals.

.1.1. The Olivetti faces data set 

Each of the 10 sample images on 40 persons in the Olivetti

aces data set [35] is a 64-by-64 pixel image, leading to 4096 vari-

bles. In our tests, two thirds of the Olivetti face images were ran-

omly selected to the training set and the remaining one third

ormed the test set. This random selection was repeated ten times

or getting error bars. 

In the Olivetti dataset, Tikhonov regularization was applied to

uide the optimization process. The appropriate amount of reg-

larization was searched by cross-validation. A random selection

f 80% of the training data set was used for training and the re-

aining 20% were used for cross-validation. The best value was

earched by trying six logarithmically spaced values of the regular-

zation parameter λ from 10 2 to 10 −8 . This basic search was then

efined near the optimum. In total, ten regularization values were

xplored in the cross-validation search. Among these values, the

ptimal one that gives the smallest 1-NN classification error is de-

oted by λ∗. It was used in the tests that follow. 

Fig. 6 shows one regularization term search procedure. The clas-

ification error is plotted against the logarithm log 10 ( λ) of the reg-

larization parameter λ. For four values of this logarithm marked

y dots in Fig. 6 , the respective two-dimensional embeddings are

lso shown. We can observe that the search is magnified twice

n the region λ = 10 0 . Finally, the 1-NN classification error on

he cross-validation data set was found to be the smallest when
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Fig. 7. Olivetti dataset. Classification accuracies after projection with different di- 
mensionality reduction methods. The baseline is the classification accuracy in the 
original high-dimensional data set. 
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Table 2 
Different optimizers compared. 

Acronym Method 

GD: Gradient descent [38] 
BB: GD with Barzilai and Borwein step length [38] 
CG: Conjugate gradient (Hestenes-Stiefel update) [38] 
PCG: Preconditioned CG (LBFGS preconditioning) [38] 
RCG: Conjugate gradient (Polak-Ribiere update) [39] 
LBFGS: Limited-memory BFGS [38] 
SD: Spectral direction (Modified Newton’s method) [38] 
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= 10 −0 . 5 ≈ 0 . 32 . This search was continued until no further

rogress could be made with the tolerance 10 −4 . The search proce-

ure was fast, requiring approximately 3-4 seconds time per value

xplored. The tolerance for optimality in the main algorithm was

et at 10 −5 . 

Fig. 7 shows the classification accuracy when learning the di-

ension reduction, using the λ search scheme described earlier.

he error bars show the mean and standard deviation. The regu-

arized algorithm has the best performance. Its mean accuracy is

he highest among the compared methods and moreover its error

ars are among the narrowest. The method stabilizes at 98.0% 1-

N classification accuracy at 10 dimensions, above the 90.1% accu-

acy obtained when using the whole input space for classification. 

A two-dimensional embedding of the Olivetti faces using our

egularized stochastic discriminant (RDSA) method is shown Fig. 8 .

he correct classifications and misclassifications have been high-

ighted in the figure. One can see for example that the face pro-

ected at (3, 6) is projected a bit off as it should in fact have been

rojected at (0.5, 4.5). We can see an overall division to dark im-

ges on the left hand side and light images appearing in the right

and side of this image. Similarly, bearded people can be found in

he top part of Fig. 8 . The three best performing two-dimensional

rojections in the Olivetti faces dataset have been compared in

ig. 9 . All the figures show the 266 learning points and 134 test

oints for the same permutation. The same embedding is shown

n both Figs. 8 and 9 . 

.1.2. The USPS data set 

The US Postal Service data set [35] contains 9298 handwritten

mages of digits. Each handwritten digit is represented by a 16 × 16

ixel grey-scale image, yielding 256-dimensional data vectors. In

ur tests, two thirds of the images were randomly selected to the

raining data set, and the remaining one third to the test data set.

his random selection was repeated ten times for obtaining error

ars. 

The 1-NN classification accuracies are shown in Fig. 10 . SDA

rovides the highest accuracies for small dimension reduction

asks. One can observe a saturation in the performance of the lin-

ar discriminant analysis (LDA), supervised PCA (SPCA), and our

DA methods. This saturation is related to the fact that the de-
ned optimal simplex structure of the data is reached already at

ine dimensions. PCA, the supervised partial least-squares method

PLS-DA), and the gKDR-v method approach or exceed the initial

lassification accuracy 96.3% in higher target dimensions. 

The three best performing two-dimensional linear embeddings

f the data points are compared in Fig. 11 . We can see that the

DA and PLS-DA methods provide embeddings that resemble mul-

idimensional simplexes projected onto a subspace with too many

lasses crowding near the origin and overlapping each other. Such

rojections are not ideal in the presence of multiple classes. On

he contrary, SDA tends to fill a two-dimensional circle, leading to

etter class discrimination and higher classification accuracy. 

.1.3. COIL-20 Object Images 

The Columbia Object Image Library contains rotated images of

0 objects, photographed at 5 º intervals [41] . The images are 128-

y-128 pixel grey-scale images. These images include such objects

s rubber ducks, toy cars, and jars. In total, there are 1440 sample

mages which are 16384-dimensional when represented as vectors.

The test set and the cross-validation set were generated dif-

erently for the COIL-20 images when compared with Olivetti and

SPS images for exploiting the structure in the dataset. The test

ata set was generated with 24-fold partitioning, and the cross-

alidation data set by selecting five elements from the training set.

his selection of test points made it easier to analyze the scatter

lots, resulting in less clutter and more expected visual structure. 

Fig. 12 shows the classification accuracies for the previous tech-

iques calculated for the target dimensions two, three, four, and

ve. The mean and error bars were calculated by leaving three el-

ments out of each class at each round, and repeating the runs

4 times, thus going through the whole data. The tolerance for

he SDA algorithms was set to 10 −5 . SDA and RSDA can on aver-

ge identify over 90% of the classes with two target variables only.

hen the dimensionality of the mapped data is five, most algo-

ithms perform similarly. The three best performing embeddings

f the COIL-20 dataset are shown in Fig. 13 . 

.1.4. Computational complexity and running time comparison 

The computational complexity of stochastic discriminant analy-

is (SDA) is largely determined by the number of times the gradi-

nt in Eq. (23) must be evaluated. The matrix evaluation has the

omplexity O (LK 2 + LNK) , where N is the dimensionality of the in-

ut space, L is dimensionality of target space, and K is the number

f samples. As such, optimizers that require as few function evalu-

tions as possible would be efficient choices. 

The processing times of the algorithms in Table 2 are compared

n the three tested datasets for two-dimensional SDA embeddings.

igs 14–16 show the results for the USPS, Olivetti, and COIL20 data,

espectively. The fastest algorithm differs depending on the char-

cteristics of the dataset. The spectral direction method converges

aster and at a lower level than the other algorithms in the USPS

ataset. Convergence is reached in about two minutes. The num-

er of variables is still small enough so that the partial Hessian in-

ormation can be utilized cost efficiently. The Olivetti and COIL-20

atasets contain a much larger number of variables. The Hessian
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Fig. 8. A representative linear embedding of the Olivetti faces dataset using regularized SDA. Colored borders denote projected test points. Red borders denote a misclassifi- 
cation, while blue borders denote a correct classification. 

Fig. 9. Three linear embeddings of the Olivetti faces dataset. Dots denote projected learning points. Stars denote projected test points. The 1-NN classification accuracy 
provided by each embedding is shown above each subfigure. Samples belonging to different classes are depicted using different colors. 
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