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a b s t r a c t 

In this paper, we consider a linear supervised dimension reduction method for classification settings: 

stochastic discriminant analysis (SDA). This method matches similarities between points in the projection 

space with those in a response space. The similarities are represented by transforming distances between 

points to joint probabilities using a transformation which resembles Student’s t-distribution. The match- 

ing is done by minimizing the Kullback–Leibler divergence between the two probability distributions. 

We compare the performance of our SDA method against several state-of-the-art methods for supervised 

linear dimension reduction. In our experiments, we found that the performance of the SDA method is 

often better and typically at least equal to the compared methods. We have made experiments with var- 

ious types of data sets having low, medium, or high dimensions and quite different numbers of samples, 

and with both sparse and dense data sets. If there are several classes in the studied data set, the low- 

dimensional projections computed using our SDA method provide often higher classification accuracies 

than the compared methods. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Dimension reduction is an old research topic but in the cur- 

rent era of big data it is at least as relevant as earlier. There are 

several reasons for studying and using it. First, the data vectors 

may have quite high dimensions, which prevents applying poorly 

scalable and computationally demanding methods to them even 

with the current high computer processing power. The computa- 

tional load of such methods can be proportional for example to 

the third power of the dimension, and grows rapidly intolerably 

high with increasing dimensionality. Second, dimension reduction 

reduces the amount of storage needed. Third, it can remove irrele- 

vant information and noise from the data, and may lead for these 

reasons in practice to improved results. Fourth, the data is often 

projected to two-dimensional or sometimes to three-dimensional 

images for understanding its properties better. This information vi- 

sualization aspect is important, because it is very difficult for hu- 

mans to imagine what the data looks like in high dimensions. 

We call the components x i of the data vectors x = [ x 1 , 

x 2 , . . . , x N ] 
T as variables in this paper. Thus the data vectors are 

∗ Corresponding author. 

E-mail addresses: mika.juuti@aalto.fi (M. Juuti), francesco.corona@ufc.br (F. 

Corona), juha.karhunen@aalto.fi (J. Karhunen). 

N -dimensional column vectors. We do not consider variable selec- 

tion methods in which the dimensionality is reduced by trying to 

select the most relevant components of the data vectors for further 

processing. Instead, we consider feature extraction where the data 

vectors x are transformed to feature vectors z = [ z 1 , z 2 , . . . , z M 

] T 

whose components are some mixtures of the components of the 

original data vectors. Thus the feature vectors are M -dimensional 

column vectors, and their dimension M is generally clearly or 

much smaller than the dimension N of the original data vectors 

x . We call the components of these feature vectors features. It is 

at least preferable that when applying feature extraction, the vari- 

ables should be similar type quantities such as pixel intensities 

in digital images. If the variables are different quantities, for ex- 

ample the age, sex, yearly income etc. of a person, the scaling of 

these quantities affects greatly the results, and one can question 

the meaningfulness of computing a mixture of completely differ- 

ent types of variables. 

The goal of dimension reduction can be simply information vi- 

sualization, or achieving good results after dimension reduction 

in clustering, regression, or classification tasks. The dimension re- 

duction methods can be divided into unsupervised and supervised 

ones. In unsupervised methods such as principal component analy- 

sis (PCA) [1–3] , the only available information are the data vectors 

themselves. On the other hand, dimension reduction for classifi- 
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cation is a supervised task in which one has always some train- 

ing data set at disposal. For each data vector belonging to the 

training set its correct class label is known. An example of su- 

pervised dimension reduction is linear discriminant analysis (LDA) 

[2,4] . Another important grouping of feature extraction and dimen- 

sion reduction methods is that they can be either linear or nonlin- 

ear, depending on whether the vector-valued mapping f ( · ) 

z = f (x ) (1) 

from the data vectors x to the compressed feature vectors z is lin- 

ear or nonlinear. 

The stochastic discriminant analysis (SDA) method which we in- 

troduce and discuss in this paper is a linear supervised feature ex- 

traction method. It is intended for classification after a mapping 

into a relatively small-dimensional feature space, and for visual- 

ization of the data containing several classes in two dimensions. 

The remainder of this paper is organized as follows. In the 

next section we review many related dimension reduction meth- 

ods. Section 3 deals with the SDA method and minimization of its 

cost function. Section 4 presents experimental results of the pro- 

posed SDA method compared with traditional and state-of-the-art 

approaches for dimension reduction with several data sets having 

quite different properties. The last section contains conclusions and 

remarks of this study. 

2. Related work 

Because our stochastic discriminant analysis method is a lin- 

ear supervised method for dimension reduction, we discuss here 

mainly such methods. The most widely used dimension reduction 

method is still principal component analysis (PCA) [1–3] . It is an 

old linear unsupervised feature extraction and dimension reduc- 

tion method which maps the N -dimensional original data vectors 

x into feature vectors z which have a lower dimension M : 

z = W 

T x (2) 

The row vectors of the M × N mapping matrix W 

T consist of the 

eigenvectors of the data covariance matrix C xx = E[ xx T ] corre- 

sponding to the largest eigenvalues, assuming that the data vec- 

tors have zero mean. If this is not the case, the K data vectors x j , 

j = 1 , 2 , . . . , K can always be preprocessed to have zero mean by 

first estimating their mean vector m = 

1 
K 

∑ K 
j=1 x j , and then sub- 

tracting m from the data vectors x j . Thus PCA is easy to com- 

pute, and it is computationally not too demanding provided that 

the data vectors x are not truly high-dimensional. PCA minimizes 

the mean-square representation error for all linear M × N mappings 

W 

T , and the components of the feature vector z have maximal vari- 

ances and are uncorrelated in directions that are mutually orthog- 

onal [1–3] . We use PCA as a preprocessing step in our SDA method, 

and as a reference method in our comparison experiments. How- 

ever, PCA does not often perform well in dimension reduction in 

classification problems, because it does not utilize the class infor- 

mation available in the training set in any way. 

The oldest supervised linear dimension reduction method is lin- 

ear discriminant analysis (LDA) [2,4] developed already in 1930’s. 

The criterion function in LDA for the case of two classes is 

J(w ) = 

w 

T S B w 

w 

T S W 

w 

(3) 

where w is the N -dimensional projection vector for mapping the 

data into one dimension by computing the inner product w 

T x. S B 
is the N × N between-class covariance matrix and S W 

is the N × N 

within-class covariance matrix. The criterion (3) is maximized in 

order to maximize the distance between the two classes and min- 

imize the distance within the same class at the same time. The 

solution can be computed from a linear equation (see [2,4] for de- 

tails), but it requires the inversion of the matrix S W 

. This can be- 

come computationally prohibitive for very high-dimensional data, 

such as digital images. LDA can have also problems with singu- 

lar within-class covariance matrices S W 

, and therefore it is often 

coupled with dimension reduction using PCA in image recognition 

tasks [5] . 

LDA has two basic limitations (in addition to the linearity of 

the mapping): the probability distributions of the two classes are 

assumed to be Gaussian, and these Gaussian distributions are as- 

sumed to have the same covariance matrix S W 

[4] . LDA can be ex- 

tended to several classes as follows. It is assumed that each of the 

C classes has its own mean vector m i and the same covariance ma- 

trix S W 

. Define the sample covariance matrix of the class means as 

S C = 

1 

C 

C ∑ 

i =1 

(m i − m )(m i − m ) T (4) 

where m is the mean of the class means m i . Then the class sepa- 

ration in the direction w is given by [4] 

J(w ) = 

w 

T S C w 

w 

T S W 

w 

(5) 

The optimal direction w which maximizes the separation (5) is 

given by the eigenvector corresponding to the largest eigenvalue 

of the matrix S −1 
W 

S C . 

Linear discriminant analysis (LDA) has inspired many re- 

searchers and there exist several modifications on it. We mention 

here the following linear supervised dimension reduction methods 

based on LDA. In the paper [6] , the problem appearing in face 

recognition that the within-class covariance matrix S W 

becomes 

always singular is solved by first mapping the face images to a 

lower dimensional space. In marginal Fisher analysis [7] , new 

criteria that characterize intra-class compactness and inter-class 

separability are developed for handling cases in which the prob- 

ability distributions of the classes are not Gaussian. A direction w 

which minimizes the ratio of these criteria is then sought. Essen- 

tially the same idea has been introduced in the paper [8] . Local 

Fisher discriminant analysis (LFDA) [9] introduces locality into 

the LDA method, and is particularly useful for samples consisting 

of intraclass separate clusters. Maxmin distance analysis (MMDA) 

[10] considers maximization of the minimum pairwise interclass 

samples. 

In fact, a linear discriminant analysis type solution can be 

found by maximizing either a trace ratio or a ratio trace criterion 

which are closely related. These two criteria are compared and 

studied both theoretically and experimentally in [11] . The ratio 

trace criterion is conventionally used because it has a closed form 

but inexact solution, while the trace ratio criterion requires an 

iterative maximization method. Both these criteria yield qualita- 

tively similar results, but the trace ratio provides somewhat better 

classification results, as shown by large number of experiments 

with various data sets in [11] . We use the closed form solution of 

the ratio trace criterion in the experiments of this paper and refer 

to it as LDA. 

Partial least squares (PLS) regression is a supervised linear di- 

mension reduction technique that tries to find from the input ma- 

trix subspaces that explain the largest amount of variance in the 

response matrix. When used in supervised manner with labeled 

data, it is referred to as PLS-DA [12] . Kernel dimension reduc- 

tion (KDR) [13] is a sufficient dimension reduction method [14] for 

classification and regression data. A sufficient dimension reduction 

contains all the regression information that the original space con- 

tained about the response variable. KDR tries to find the central 

subspace [14] for the input data, which is the intersection of all 

the dimension reduction subspaces. KDR does not impose any par- 
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ticular assumptions on the form of the covariance matrix of the 

input data. However, it has high computational load and memory 

requirements. A gradient version of the KDR method called gKDR 

has been developed in [15] for faster computation. 

Supervised PCA (SPCA) introduced by Barshan et al. in [16] is 

a regression technique that finds the principal components having 

the maximum dependence on the given response variable. SPCA 

tries to find variables that are orthogonal in a kernel space of the 

response variable. Using the Hilbert–Schmidt independence crite- 

rion, SPCA can be computed from an eigendecomposition. The au- 

thors have developed also a dual-space and kernel variant of the 

SPCA method called KSPCA in [16] , extending the usage of the 

method. 

Before proceeding, we mention briefly a few nonlinear dimen- 

sion reduction methods. They are often called manifold learning 

methods because they assume that the data lies at least roughly 

in some smaller dimensional manifold which is then estimated for 

reducing the dimensionality. See Section 5.11.3 in [17] for a more 

detailed description of this idea. Belkin and Niyogi developed a 

nonlinear manifold learning technique called Laplacian eigenmaps 

for projecting high-dimensional data into a low-dimensional space 

in such a way that local points in the high-dimensional space are 

kept close in the projection [18] . Slightly later on, they developed 

a linear variant of Laplacian eigenmaps called locality preserving 

projections that projected the data points using a linear transfor- 

mation of the data points [19] . This technique has the benefit that 

the projection is not defined only for the training data points but 

in the whole ambient space. 

Other well-known manifold learning methods are kernel PCA 

[2,20] in which PCA is applied after a nonlinear mapping into a 

higher-dimensional kernel space, and local linear embedding (LLE) 

[21] . For more references and information on manifold learning 

methods, see [17,22] . 

All the linear dimension reduction methods discussed thus far 

except for PCA are supervised techniques. The following methods 

are unsupervised, and hence they do not use any training data 

with known class labels or outputs in computing their dimen- 

sion reduction mappings. Neighborhood embedding techniques 

recreate a high-dimensional neighborhood structure in a low- 

dimensional space. These techniques cast the problem of finding a 

low-dimensional embedding as a problem of matching two prob- 

ability distributions: one modeling a complex high-dimensional 

structure, and one modeling a low-dimensional manifold of the 

data. The methods preserve point-to-point neighborhood relations. 

The low-dimensional embedding is created by defining probabil- 

ity mass functions based on point-to-point distances in both high- 

dimensional and low-dimensional space. An information measure 

between these two joint probability distributions is then itera- 

tively decreased. The most common information measure is the 

Kullback–Leibler divergence [2,23,24] which measures the differ- 

ence between two probability distributions. We shall discuss it in 

more detail later on. 

The neighbor retrieval visualizer method (NeRV) [25] matches 

a convex combination of divergences between the probabilities 

defining the high-dimensional structure and low-dimensional re- 

construction. The proportion is hand-tuned, giving the user some 

control in penalizing precision and recall errors, see [25] for more 

details. 

The stochastic neighbor embedding (SNE) method introduced 

in [26] and its various extensions have during the last years be- 

come popular in feature extraction, inspiring several modified and 

improved methods. Essentially the same method as SNE was in- 

troduced under the name informative discriminative analysis in 

[27] . The basic principle in the SNE method is to convert pair- 

wise Euclidean distances into probabilities of selecting neighbors 

to model pairwise similarities. However, the basic SNE method 

suffers from optimization and crowding problems discussed 

below. 

In [28] , Van der Maaten and Hinton introduced the so-called 

t-SNE method where t refers to the Student’s t probability distri- 

bution. The high-dimensional structure is modeled using Gaussian 

radial basis function kernels, where the authors use a binary search 

for determining appropriate kernel widths. Low-dimensional re- 

constructions are modeled with first-order t-distributed kernels. 

Both kernel values are normalized to sum to one and are called 

probabilities by the authors. The motivation for the asymmetric 

matchup is that it solves the crowding problem: the space avail- 

able to model distant data points is too small, compared to the 

space available to model near data points. Yang et al. analyzed 

in [29] systematically the characteristics of the heavy-tailed dis- 

tribution and the solutions to the crowding problem. Wu et al. ex- 

plored in [30] how to measure similarity on a manifold more ac- 

curately, and introduced a feature extraction method based on SNE 

and t-SNE which they call manifold stochastic neighbor projection 

(MSNP). Even though the MSNP method has several advantages in 

feature extraction, it is still an unsupervised method that does not 

use the class information available in classification problems. 

For overcoming this deficiency of the MNSP method, Zheng 

et al. developed a supervised method called discriminative stochas- 

tic neighbor embedding analysis (DSNE) in [31] . It resolves the 

problems mentioned above, but it has a high computational cost 

and is therefore not applicable to large-scale classification prob- 

lems where the data vectors are high-dimensional. The same 

authors developed in [32] a faster version based on the DSNE 

method, which they call fast discriminative stochastic neighbor 

embedding analysis (FDSNE). In [32] , they also introduce a non- 

linear version of the FDSNE method by applying the kernel trick. 

One of the authors of this paper participated in developing a 

method called supervised distance preserving projections (SDPP) in 

[33] . The SDPP method minimizes the difference between pairwise 

distances among projected input covariates and distances among 

responses locally. The SDPP method is mainly useful in regression 

problems. It did not work well in all the classification problems 

discussed in the experimental part of this paper, and therefore it is 

not included in our comparison experiments. In SDPP certain dis- 

tances in the cost function can change the visualization to a great 

extent. Our new SDA method in the next section tries to avoid 

these problems encountered when applying the SDPP method to 

multiclass data in high-dimensional settings by matching probabil- 

ities instead of distances. 

With point-to-point mappings it is often not easy to place out- 

of-sample data points. Parametric methods provide a mapping of 

the data points. Amongst others, parametric t-SNE method learns a 

mapping by using a deep neural network [34] . Out-of-sample data 

points can then be embedded by running them through the net- 

work. However, this is a nonlinear dimension reduction method 

that is pretty complicated and difficult to train even though it 

yields excellent results for the well-known MNIST data set [35] of 

handwritten digits. 

3. Stochastic discriminant analysis (SDA) 

3.1. The SDA method 

We first define the data matrix X = [ x 1 , x 2 , . . . , x K ] 
T ∈ R 

K×N as 

a K × N matrix which has the K N -dimensional column data vectors 

x j as its row vectors. Formally, we are reducing the number N of 

variables in the data matrix X by finding a linear subspace of it: 

Z = [ z 1 , z 2 , . . . , z K ] 
T = XW (6) 

where Z is a R 

K×M matrix, W ∈ R 

N×M , and M ≤ C � N where C is 

the number of classes. From Eq. (6) , we get for its i :th row z T 
i 

= 



M. Juuti et al. / Neurocomputing 291 (2018) 136–150 139 

x T 
i 

W , or z i = W 

T x i which is equivalent to the PCA mapping (2) . 

However, in the SDA method and other mapping methods than 

PCA the mapping matrix W is defined in a different way. 

We are using class information from the response matrix 

Y = [ y 1 , y 2 , . . . , y K ] 
T ∈ I 

K×C (7) 

to find this projection. For each data vector x i , the corresponding 

response vector y i specifies its class label. More specifically, if the 

data vector x i belongs to the class c j , the j :th element of its re- 

sponse vector y i is equal to one, while the other elements of y i are 

zero. The matrix I on the right hand side of Eq. (7) resembles unit 

matrix in that on each of its rows one element equals to one while 

the other elements are zero. 

In the SDA method, we search for a linear subspace of the 

data matrix where the elements belonging to the same class are 

mapped close to each other, and those belonging to different 

classes further away. Following van der Maaten and Hinton [28] , 

we cast the problem of finding low-dimensional embeddings as a 

problem of matching two probability distributions: one modeling 

a complex high-dimensional point-to-point structure, and another 

modeling a low-dimensional manifold of the data. We denote these 

distributions by P and Q , respectively, and their elements by p ij and 

q ij . We call the values p ij target probabilities, and values q ij model 

probabilities. Only the values q ij are optimized in the algorithm 

presented in Section 3.2 , while the values p ij remain constant. 

We search for a linear subspace of the data matrix by matching 

model probabilities q ij with target probabilities p ij . Denote by 

d i j = ‖ z i − z j ‖ 2 (8) 

the Euclidean distance between two points i and j in the trans- 

formed Z -space, where z i = W 

T x i is the low-dimensional embed- 

ding coordinate. The model probabilities characterizing the dis- 

tances d ij are defined by 

q i j (W ) = 

π−1 · (1 + d 2 
i j 
) −1 ∑ K 

k =1 

∑ K 
l=1 π

−1 · (1 + d 2 
i j 
) −1 

(9) 

The numerator π−1 · (1 + d 2 
i j 
) −1 comes from the probability den- 

sity function of Student’s t-distribution [36] having one degree of 

freedom. The common factor π−1 can be left out of the expression: 

q i j (W ) = 

(1 + d 2 
i j 
) −1 ∑ K 

k =1 

∑ K 
l=1 ( 1 + d 2 

i j 
) −1 

. (10) 

The numbers q ij are called probabilities, because they are non- 

negative and their sum equals one: 

K ∑ 

i =1 

K ∑ 

j=1 

q i j (W ) = 1 (11) 

The probabilities q ij ( W ) are inspired by the Student’s t-distribution 

and have longer tails than the standard Gaussian distribution, but 

they are exactly not t-distributed, despite being called so in litera- 

ture [28] . 

Denoting the unnormalized probability in the numerator of 

(10) by 

q̄ i j = (1 + d 2 i j ) 
−1 (12) 

we can write the Eq. (10) simply 

q i j = q̄ i j /σq , σq = 

K ∑ 

i =1 

K ∑ 

j=1 

q̄ i j (13) 

Fig. 1 shows the profile of the unnormalized probabilities q̄ i j . The 

maximum value is one when the distance d ij between the two 

points z i and z j is zero, and approaches zero when the distance 

d ij → ∞ . 

Fig. 1. Unnormalized model probabilities q̄ i j as a function of the distance d ij be- 

tween two points. Their distribution has longer tail than the respective Gaussian 

distribution. 

Fig. 2. From left: target manifolds of two, three, and four classes. 

Unlike [28] , we do not use in the SDA method high-dimensional 

distances in defining target probabilities p ij . We want to enforce 

the condition that the data points belonging to the same class are 

projected close to each other in the Z -space, and that the points 

belonging to different classes are mapped further away. In an ideal 

embedding, the unnormalized probability q̄ i j = 1 when the points 

i and j belong to the same class, corresponding to zero distance 

between them. Similarly, ideally q̄ i j = 0 when the points i and j 

belong to different classes, corresponding to an infinite distance 

between them. These conditions hold also for the normalized 

probabilities σ q in Eq. (13) . 

In our SDA method, we rely only on the class information in 

determining the ideal embeddings. The normalized target proba- 

bilities are defined similarly as in Eq. (13) 

p i j = p̄ i j /σp , σp = 

K ∑ 

i =1 

K ∑ 

j=1 

p̄ i j (14) 

where σ p is the normalization term, and 

p̄ i j = 

{
1 , if y i = y j 

ε, otherwise 
, (15) 

where ε > 0 is any small number close to zero. The target probabil- 

ities in Eq. (14) define the ideal distances. Optimally both p̄ i j = q̄ i j 

and p i j = q i j for all i, j ∈ [1 , . . . , K] . In such a situation, all the 

points belonging to the same class are mapped to one dot (point), 

and all points belonging to different classes are at an equal dis- 

tance from each other. 

With a given ε, we can calculate the ideal point-to-point dis- 

tances in Z -space to be 

d ∗i j = 

{
0 , if y i = y j √ 

ε−1 − 1 , otherwise. 
, (16) 

We can see that ε scales how close the superimposed points are to 

each other. Eq. (16) defines a geometric structure that has C nodes, 

where each node is separated by an equal distance of 
√ 

ε−1 − 1 . 

This geometric structure is called a regular simplex. Fig. 2 shows 

target structures for two class, three class, and four class problems. 

Note that the structure of the simplex is independent of the input 

data X , depending only on the number classes in Y . 
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Fig. 3. Two ideal embeddings of 5 classes into two dimensions, using SDA (low ε, 

left) and HSE (high ε, right). With low ε, too small between-class distances incur 

a large penalty and the embedding results in the utilization of the whole volume 

of the hypersphere. With high ε, too large between-class distances incur a large 

penalty and the ideal embedding results in utilization of the surface of the target 

hypersphere. 

Given sufficiently many target dimensions, and by setting ε → 0, 

the optimality criterions of SDA and LDA could yield similar em- 

beddings, because both methods try to construct linear projections 

whose within-class variances are zero and between-class variances 

are infinite. Both methods define an embedding structure that has 

an intrinsic dimensionality of C − 1 dimensions. However, the SDA 

and LDA methods deal with the shortcomings in the target di- 

mensionality differently, as is explained later on in Fig. 3 and 

Section 3.3 . 

The Kullback–Leibler (KL) divergence [2,24] measures the differ- 

ence between two probability distributions. Here we consider for 

clarity first two discrete probability densities A and B which both 

have J possible discrete values a 1 , a 2 , . . . , a J and b 1 , b 2 , . . . , b J , re- 

spectively. Their KL divergence is 

D KL (A || B ) = 

J ∑ 

j=1 

a j log (a j /b j ) (17) 

The KL divergence is zero only when the two probability distri- 

butions are the same, that is A = B . However, it is theoretically 

not a true distance because the KL divergence does not fulfill the 

triangle inequality, and it is not symmetric: D KL ( A || B ) 
 = D KL ( B || A ). 

For the two probability densities A and B , one can define two 

Kullback–Leibler divergences D KL ( A || B ) and D KL ( B || A ), which have 

different properties as discussed in Section 21.2.2 in [24] . The 

version (17) which we are using is called M-projection and zero- 

avoiding, because it becomes infinite if one of the probabilities b j is 

zero. 

Using the KL divergence (17) for the probabilities p ij and q ij 
defined, respectively, in Eqs. (14) and (10) , we can write the cost 

function of our SDA method which is minimized: 

J(W ) = 

K ∑ 

i =1 

K ∑ 

j=1 

p i j log 
p i j 

q i j (W ) 
+ λ

N ∑ 

i =1 

M ∑ 

j=1 

w 

2 
i j (18) 

The second term is the usual weight decay (Tikhonov) type reg- 

ularizer [2,24] which penalizes for large values of the elements 

w ij of the N × M weight matrix W . The parameter λ determines 

how much one takes into account regularization compared with 

the first part of the cost function, the Kullback–Leibler divergence, 

which is the actual cost. 

We are searching for the thin linear projection matrix W that 

minimizes the Kullback–Leibler divergence in which the target 

probability distribution P is approximated with the model proba- 

bility distribution Q . The inefficiency of encoding ideal distances 

in the response space using realized distances in the embedding 

space is measured. The probability distribution (10) causes asym- 

metric distance penalties: the cost function is more sensitive to 

deviations in within-class distances than to deviations in between- 

class distances. Deviations from the ideal within-class distances in- 

cur a relatively large cost, but deviations from ideal between-class 

distances incur a much smaller cost. 

If we use regularization and the value of the regularization pa- 

rameter λ in (18) is searched by cross-validation, we refer to our 

method as Regularized SDA, abbreviated as RSDA. Normally λ is 

set to zero. Weight decay (Tikhonov) regularization is often ap- 

plied to ill-posed problems. In SDA, we have local solutions that 

depend on the initialization. The initial solution in SDA is ob- 

tained with PCA, giving orthogonal vectors with maximum vari- 

ance. High-dimensional problems with many non-singular dimen- 

sions have a high degree of freedom, and they can in principle 

have infinite parameters choices (by convex combinations) that 

produce the optimal solution. The KL criterion is insensitive to the 

weights used to find the projection. Applying Tikhonov regulariza- 

tion changes the optimization criteria so that optimal solutions are 

ranked in order of the least Frobenius norm. Additionally, the op- 

timization process can also be made smoother by constraining the 

size of the elements of weight matrix W . 

3.2. Minimization of the cost function 

We consider now the minimization of the cost function (18) . 

First, we compute its gradient with respect to the weight matrix 

W . Then we use this gradient in various gradient type minimiza- 

tion methods which are discussed later on in this subsection. 

The essential steps in obtaining the gradient are as follows. We 

use the shorthand notation q i j = q i j (W ) . We also write the squared 

distance in the embedding space as 

D i j = D i j (W ) = d 2 
i j 

= ‖ z i − z j ‖ 

2 

= τT 
i j 

WW 

T τ i j = (x i − x j ) 
T WW 

T (x i − x j ) 
(19) 

where τ ij = x i − x j is the difference between the i :th and j :th orig- 

inal data vectors x i and x j , respectively.The matrices P, Q , Q̄ and D 

are K × K real-valued matrices, whose elements are respectively p ij , 

q ij , q̄ i j , and D ij . 

The gradient of the first part of the cost function (18) which is 

the Kullback–Leibler divergence KL ( P || Q ( W )), is 

dKL (P || Q(W )) 

dW 

= 

K ∑ 

i =1 

K ∑ 

j=1 

p i j 

1 

q i j 

(−1) 
dq i j 

dW 

= 

K ∑ 

i =1 

K ∑ 

j=1 

p i j (−1) 

[ 

K ∑ 

k =1 

K ∑ 

l=1 

q kl ̄q kl 

dD kl 

dW 

− q̄ i j 

dD i j 

dW 

] 

= 

K ∑ 

i =1 

K ∑ 

j=1 

p i j ̄q i j 

dD i j 

dW 

−
K ∑ 

k =1 

K ∑ 

l=1 

q kl ̄q kl 

dD kl 

dW 

= 

K ∑ 

i =1 

K ∑ 

j=1 

(p i j − q i j ) ̄q i j 

dD i j 

dW 

= 

K ∑ 

i =1 

K ∑ 

j=1 

(p i j − q i j ) ̄q i j τ
T 
i j τ i j W , (20) 

since 

K ∑ 

i =1 

K ∑ 

j=1 

p i j k = 

( 

K ∑ 

i =1 

K ∑ 

j=1 

p i j 

) 

k = k (21) 

where k is an arbitrary constant. Here (1 + D i j ) 
−1 = q̄ i j denotes the 

unnormalized probability in (12) . 
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Adding the gradient 2 λW of the second regularization term to 

the cost function (18) , we get for its total gradient 

∇ W 

J = 

dJ 

dW 

= 

K ∑ 

i =1 

K ∑ 

j=1 

(p i j − q i j ) ̄q i j τ
T 
i j τ i j W + 2 λW (22) 

This expression can be written in matrix form: 

∇ W 

J = 2 X 

T LXW + 2 λW , (23) 

where the matrix 

L = G 

+ − � ∈ R 

K×K (24) 

is calculated as 

G = (P − Q ) � Q̄ 

G 

+ = G + G 

T 

� = 

∑ 

j G 

+ 
i j 

(25) 

Here � denotes the Hadamard product, and G 

+ is a sym- 

metrized version of the matrix of G ∈ R 

K×K . The matrix � ∈ R 

K×K 

is a diagonal matrix containing the row sum of G 

+ . The matrix L is 

the difference between two Laplacian matrices: 

L = L P − L Q , (26) 

where L P and L Q are calculated from the adjacency matrices G P = 

P � Q̄ and G Q = Q � Q̄ . A Laplacian matrix is a symmetric diago- 

nally dominant matrix and therefore positive semi-definite, but the 

matrix L need not be positive semi-definite. 

There are many ways of optimizing the cost function (18) based 

on the gradient information. Algorithm 1 presents the pseudo-code 

Algorithm 1 Gradient-based minimization for stochastic discrimi- 

nant analysis (SDA). 

Input: Input matrix X ∈ R 

K×N , responsematrix Y ∈ I 
K×C ,target 

dimensionality M, regularization term λ, and optimal tolerance δ. 

Output: Projection matrix W . 

1. Calculate the target probabilities P ∈ R 

K×K from Eq. (15). 

2. Initialize W using PCA, by putting as its rows the M principal 

eigenvectors of the covariance matrix of the data X . 

3. Calculate the model probabilities Q from Eq. (10). 

4. Evaluate the cost function J(W ) from Eq. (18). 

5. Assign t = 0 , δJ = ∞ . 

while δJ > δ do 

6. Compute the gradient (23). 

7. Vectorize the projection matrix: w t = vec (W ) . 

8. Vectorize the gradient: g t = vec (∇ W 

J) . 

9. Determine the descent direction d t . 

10. Determine step size ηt . 

11. Update the solution vector: w t = w t−1 + ηt d t . 

12. Convert the vector w t back into the matrix W t . 

13. New iteration t ← t + 1 . 

14. Update the model probabilities Q using Eq. (10). 

15. Calculate the new cost J(W ) from Eq. (18). 

16. Update the change δJ = J t − J t−1 of the cost function. 

end while 

17. Orthogonalize W t using thin singular value decomposi- 

tion(SVD): ˆ U ̂

 S V = W t . 

18. Return W = 

ˆ U ̂

 S . 

for obtaining a projection matrix W using stochastic discriminant 

analysis. First, the target probabilities P and model probabilities 

Q collected in these matrices are calculated. Then the cost func- 

tion is evaluated, and its gradient (23) is computed. The projection 

matrix W and its gradient must be vectorized in the optimiza- 

tion Algorithm 1 . Note that the target probabilities p ij are deter- 

mined based on the labeling of the elements in the beginnning of 

the algorithm, but the model probabilities q ij depend on the low- 

dimensional coordinates, and they must be recalculated at each it- 

eration. The initial projection matrix is obtained using PCA. 

The vectorized projection matrix w and its vectorized gradient 

g can be plugged into any gradient-based optimization method. 

The basic method is the usual steepest descent method, but dif- 

ferent versions of the conjugate gradient method [37–39] and the 

limited-memory BFGS algorithm [38,40] are more efficient in solv- 

ing problems with a large number of variables, and converge faster. 

The evaluation of the gradient is the most time consuming part 

of the optimization. The applied optimization method determines 

the descent direction, and a line search method can be used for de- 

termining the optimal step size ηt which minimizes the cost func- 

tion J ( W ) as much as possible in the direction of the gradient. The 

optimization and line search methods may require additional func- 

tion evaluations. At the end, the search directions are orthogonal- 

ized using singular value decomposition (SVD). The use of thin SVD 

saves computational time. 

3.3. Low-dimensional projections 

Recall that the target embedding depends on the response 

space Y only, not on the input space X . The optimal embedding for 

a response space with C classes is a simplex with C nodes, with 

an inherent dimensionality of C − 1 dimensions. Thus, embedding 

dimensionalities M larger or equal to C − 1 produce simplex man- 

ifolds with inherent dimensionalities of C − 1 . But in case the em- 

bedding dimensionality M is smaller than C − 1 , the solution is not 

intuitive to imagine. In such a case the interplay between ε and 

the shape of the t-distribution plays a role. We evaluate ε which is 

a parameter in our system. 

The most important property to consider is whether it becomes 

prohibitively expensive to embed nodes further away than the op- 

timal embedding. We argue that at a certain εt it becomes too ex- 

pensive to embed nodes further away, so that the nodes are em- 

bedded too close to each other, which may hurt subsequent clas- 

sification accuracy. However, very low values of ε may be slow to 

optimize. 

Small values such as ε → 0 cause an optimal embedding similar 

to the one in Fig. 3 (left). Too large values of ε cause a different 

type of compromise similar to the one in Fig. 3 (right). The differ- 

ence is clear, and we call these embeddings with different names 

to avoid confusion. We call the former case SDA and the latter case 

hypersphere embedding (HSE). The discrepancy in the shapes of 

the SDA and HSE embeddings results from how deviations from 

the ideal distances are treated: in SDA, the distances d > d ideal oc- 

cur at a small cost, while in HSE the distances d > d ideal occur at an 

increasingly high cost. 

Embeddings with SDA utilize a larger volume to separate 

classes and have more freedom in separating classes given a spe- 

cific target dimension. However, the superiority is not obvious 

when we notice that embeddings with HSE are ideally embedded 

on a ( C − 1 )-dimensional manifold in the C -dimensional space (the 

radius of the sphere is a constant). In certain cases, we notice that 

in very high-dimensional cases with extremely low-dimensional 

embeddings, the reward for embedding classes at the ideal dis- 

tance is so strong that separate classes might be embedded on top 

of each other, for maximizing the number of fulfilled ideal class- 

to-class distances. This is contrary to our goal of separating maxi- 

mally different classes. By default we choose ε = 1 /C, the inverse 

of the number C of classes, since the optimization criterion con- 

verges slowly with small values of ε. We verify the found embed- 

dings experimentally below. 

The optimization process described in Algorithm 1 decreases 

the KL divergence step by step towards a minimum cost struc- 

ture until no significant further process can be made, measured 
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Fig. 4. Upper row: embeddings of a subset of 100 samples of the USPS dataset for the hyperparameters ε = 0.01 (left), and 0.1 (right). Lower row: the normalized KL 

divergences obtained by varying all the between-class distances and the normalized histograms of the realized within-class (blue) distances and the between-class distances 

(orange). There are ten classes in the dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

by the tolerance δ in Algorithm 1 . Recall that the optimal embed- 

ding does not depend on the dataset X . For illustrative purposes 

we use a smaller dataset, since the clustering behavior is clearer 

in a smaller dataset. Using larger datasets exhibits similar behav- 

ior, although the linearity constraint restricts the cleanness of the 

class clusters. The reader is advised to compare the figures below 

with large datasets in Fig. 11 . 

Fig. 4 shows the optimal two-dimensional embeddings (top 

row) and corresponding costs (bottom row) of projections of a 

100 sample subset of the USPS dataset for the hyperparameter val- 

ues ε = 0.01 and 0.1, and Fig. 5 for ε = 0.5 and 0.9. Notice that be- 

cause the USPS dataset has C = 10 classes, ε = 1 /C = 0 . 1 . The black 

curve shows the cost of the hypothetical KL criteria, evaluated by 

keeping within-class distances zero and varying all the between- 

class distances. The vertical dashed line shows the ideal distance, 

obtained with the Student’s t probability distribution formula as 

d ideal = 

√ 

(1 − ε) /ε. The cost of the KL criteria is minimized when 

the between-class distances precisely equal d ideal , but this would 

require a target dimensionality of M = C − 1 = 9 . The cost curves 

are normalized in each subimage. 
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Fig. 5. Upper row: different embeddings of a subset of 100 samples of the USPS dataset for the hyperparameters ε = 0.5 (left), and 0.9 (right). Lower row: the normalized KL 

divergences obtained by varying all the between-class distances and the normalized histograms of the realized within-class (blue) distances and the between-class distances 

(orange). There are ten classes in the dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

The blue and orange histograms are the within-class and 

between-class realized distances, evaluated at the found optimal 

solution in two dimensions. The histograms are normalized in 

each image. The blue histogram shows that near zero within- 

class distances are achieved in the solution, meaning the as- 

sumption that the within-class distances are zero is valid in 

our analysis. The realized distances vary in each embedding. 

In the two subimages of Fig. 4 , the distances are scattered 

around the ideal distance d ideal , while in the two subimages of 

Fig. 5 the realized distances all fall short of the ideal distanc 

e d ideal . 

We can see that the cost function is nearly symmetric and lo- 

cally convex in the region of the ideal distance when ε = 0 . 1 and 

ε = 0 . 5 , translating into a speedy optimization. The subfigures in 

Fig. 4 show a lenient penalty for realized distances larger than the 

ideal distance. The penalty function makes it possible to embed 

points over the whole volume of a hypersphere. The two subim- 

ages in Fig. 5 show a harsh threshold for embedding distances too 

far from the optimal distance, and produce embeddings where the 

central area in the hypersphere remains unused. Note that when 

ε = 0 . 9 , the penalty for between-class distances becomes so large 

that certain classes are embedded almost on top of each other. 
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Table 1 

Data sets used in this paper. 

Data set Samples Variables Classes 

USPS 9298 256 10 

MNIST-50 0 0 50 0 0 784 10 

Phoneme 4509 256 5 

Olivetti faces 400 4096 40 

COIL-20 1440 16,384 20 

COIL-100 7200 16,384 100 

Iris 150 4 3 

Wisconsin Breast cancer 683 9 2 

Wine 178 13 3 

Overall, the choice of ε = 1 /C (0.1 in this experiment) pro- 

duces well-separated embeddings which are nearly identical to 

the case where ε → 0, while still presenting a smooth, near- 

convex optimization surface with respect to the target distances 

near the optimal solution. In the experiments that follow, we set 

ε = 1 /C. 

3.4. Outliers 

Our paper focuses on the general principle behind SDA and its 

numerical solution, assuming that the data points are correctly la- 

belled. However, outliers by which we mean wrong labels in the 

target space of a classification problem can be taken into account 

in the SDA formulation. More explicitly, the observed class labels 

are used as sure variables only in the assignment of the terms 

p ij in the definition of the target probabilities. That is, whenever 

two points have the same or a different label, they are assigned 

some fixed distance. Since we assume no label noise, this assign- 

ment is fixed and done with probability one. To take into account 

label noise, this fact can be adjusted to quantify the probability of 

two observations actually be of the same class, given which labels 

are observed. A rather straightforward probabilistic model of four 

random variables of the discrete type (two per data point, the ob- 

served and the actual class labels) would allow to compute such 

probabilities. Given a measure of uncertainty, the p ij could then be 

assigned in such a way that the distance in modulated accordingly. 

This outlier treatment can be considered in more detail mathemat- 

ically, but it leads to a lengthy discussion, and would require new 

experiments. We feel that this is outside the scope of our paper. 

4. Experimental results 

The experimental evaluation is divided into two parts. First, our 

SDA method and comparison methods are applied to three dif- 

ferent datasets in the three first subsections of the Section 4.1 . 

In these case studies, the classification accuracies for a range of 

target dimensionality values are calculated, and two-dimensional 

projections are visualized. We also describe a regularization pa- 

rameter search scheme for our SDA method in Section 4.1.1 , and 

compare the runtime with different optimization algorithms in 

Section 4.1.4 . In Section 4.2 , a comparison of the two-dimensional 

projection qualities of state-of-the-art methods is carried out for 

several datasets. The datasets used in our experiments are sum- 

marized in Table 1 . 

We define the hyperparameters used in various methods here. 

Our proposed method SDA is initialized using standard PCA in all 

experiments. In SPCA, we chose the delta kernel [16] for the re- 

sponse space. In the kernel version of SPCA, we selected the delta 

kernel for response space and a Gaussian kernel for the input 

space, setting the width of the Gaussian to the median value of 

the squared interpoint distances. The gKDR method [15] was run 

in the partitioning mode (v) to reduce its memory requirements. 

Fig. 6. Tikhonov regularization parameter search for a two-dimensional embedding. 

Some learned point embeddings are displayed. 

The variables of each dataset were standardized by making them 

to have zero mean and unit variance. 

4.1. Case studies with three high-dimensional datasets 

Three image datasets were chosen and analyzed: Olivetti faces, 

USPS and COIL-20. All the data sets have multiple classes. The 

Olivetti face dataset [35] studied in Section 4.1.1 contains images of 

40 persons, each photographed in ten pictures with both normal 

and unusual facial expressions. The input dimensionality is quite 

high, 4096. The USPS dataset [35] used in the Section 4.1.2 con- 

tains a large number of hand-written digits of ten classes in 

a smaller 256-dimensional space. The COIL-20 data set [41] in 

Section 4.1.3 consists of very high-dimensional (dimension 16,384) 

images of 20 rotating objects photographed at fixed angle intervals. 

4.1.1. The Olivetti faces data set 

Each of the 10 sample images on 40 persons in the Olivetti 

faces data set [35] is a 64-by-64 pixel image, leading to 4096 vari- 

ables. In our tests, two thirds of the Olivetti face images were ran- 

domly selected to the training set and the remaining one third 

formed the test set. This random selection was repeated ten times 

for getting error bars. 

In the Olivetti dataset, Tikhonov regularization was applied to 

guide the optimization process. The appropriate amount of reg- 

ularization was searched by cross-validation. A random selection 

of 80% of the training data set was used for training and the re- 

maining 20% were used for cross-validation. The best value was 

searched by trying six logarithmically spaced values of the regular- 

ization parameter λ from 10 2 to 10 −8 . This basic search was then 

refined near the optimum. In total, ten regularization values were 

explored in the cross-validation search. Among these values, the 

optimal one that gives the smallest 1-NN classification error is de- 

noted by λ∗. It was used in the tests that follow. 

Fig. 6 shows one regularization term search procedure. The clas- 

sification error is plotted against the logarithm log 10 ( λ) of the reg- 

ularization parameter λ. For four values of this logarithm marked 

by dots in Fig. 6 , the respective two-dimensional embeddings are 

also shown. We can observe that the search is magnified twice 

in the region λ = 10 0 . Finally, the 1-NN classification error on 

the cross-validation data set was found to be the smallest when 
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Fig. 7. Olivetti dataset. Classification accuracies after projection with different di- 

mensionality reduction methods. The baseline is the classification accuracy in the 

original high-dimensional data set. 

λ = 10 −0 . 5 ≈ 0 . 32 . This search was continued until no further 

progress could be made with the tolerance 10 −4 . The search proce- 

dure was fast, requiring approximately 3-4 seconds time per value 

explored. The tolerance for optimality in the main algorithm was 

set at 10 −5 . 

Fig. 7 shows the classification accuracy when learning the di- 

mension reduction, using the λ search scheme described earlier. 

The error bars show the mean and standard deviation. The regu- 

larized algorithm has the best performance. Its mean accuracy is 

the highest among the compared methods and moreover its error 

bars are among the narrowest. The method stabilizes at 98.0% 1- 

NN classification accuracy at 10 dimensions, above the 90.1% accu- 

racy obtained when using the whole input space for classification. 

A two-dimensional embedding of the Olivetti faces using our 

regularized stochastic discriminant (RDSA) method is shown Fig. 8 . 

The correct classifications and misclassifications have been high- 

lighted in the figure. One can see for example that the face pro- 

jected at (3, 6) is projected a bit off as it should in fact have been 

projected at (0.5, 4.5). We can see an overall division to dark im- 

ages on the left hand side and light images appearing in the right 

hand side of this image. Similarly, bearded people can be found in 

the top part of Fig. 8 . The three best performing two-dimensional 

projections in the Olivetti faces dataset have been compared in 

Fig. 9 . All the figures show the 266 learning points and 134 test 

points for the same permutation. The same embedding is shown 

in both Figs. 8 and 9 . 

4.1.2. The USPS data set 

The US Postal Service data set [35] contains 9298 handwritten 

images of digits. Each handwritten digit is represented by a 16 × 16 

pixel grey-scale image, yielding 256-dimensional data vectors. In 

our tests, two thirds of the images were randomly selected to the 

training data set, and the remaining one third to the test data set. 

This random selection was repeated ten times for obtaining error 

bars. 

The 1-NN classification accuracies are shown in Fig. 10 . SDA 

provides the highest accuracies for small dimension reduction 

tasks. One can observe a saturation in the performance of the lin- 

ear discriminant analysis (LDA), supervised PCA (SPCA), and our 

SDA methods. This saturation is related to the fact that the de- 

Table 2 

Different optimizers compared. 

Acronym Method 

GD: Gradient descent [38] 

BB: GD with Barzilai and Borwein step length [38] 

CG: Conjugate gradient (Hestenes-Stiefel update) [38] 

PCG: Preconditioned CG (LBFGS preconditioning) [38] 

RCG: Conjugate gradient (Polak-Ribiere update) [39] 

LBFGS: Limited-memory BFGS [38] 

SD: Spectral direction (Modified Newton’s method) [38] 

fined optimal simplex structure of the data is reached already at 

nine dimensions. PCA, the supervised partial least-squares method 

(PLS-DA), and the gKDR-v method approach or exceed the initial 

classification accuracy 96.3% in higher target dimensions. 

The three best performing two-dimensional linear embeddings 

of the data points are compared in Fig. 11 . We can see that the 

LDA and PLS-DA methods provide embeddings that resemble mul- 

tidimensional simplexes projected onto a subspace with too many 

classes crowding near the origin and overlapping each other. Such 

projections are not ideal in the presence of multiple classes. On 

the contrary, SDA tends to fill a two-dimensional circle, leading to 

better class discrimination and higher classification accuracy. 

4.1.3. COIL-20 Object Images 

The Columbia Object Image Library contains rotated images of 

20 objects, photographed at 5 º intervals [41] . The images are 128- 

by-128 pixel grey-scale images. These images include such objects 

as rubber ducks, toy cars, and jars. In total, there are 1440 sample 

images which are 16384-dimensional when represented as vectors. 

The test set and the cross-validation set were generated dif- 

ferently for the COIL-20 images when compared with Olivetti and 

USPS images for exploiting the structure in the dataset. The test 

data set was generated with 24-fold partitioning, and the cross- 

validation data set by selecting five elements from the training set. 

This selection of test points made it easier to analyze the scatter 

plots, resulting in less clutter and more expected visual structure. 

Fig. 12 shows the classification accuracies for the previous tech- 

niques calculated for the target dimensions two, three, four, and 

five. The mean and error bars were calculated by leaving three el- 

ements out of each class at each round, and repeating the runs 

24 times, thus going through the whole data. The tolerance for 

the SDA algorithms was set to 10 −5 . SDA and RSDA can on aver- 

age identify over 90% of the classes with two target variables only. 

When the dimensionality of the mapped data is five, most algo- 

rithms perform similarly. The three best performing embeddings 

of the COIL-20 dataset are shown in Fig. 13 . 

4.1.4. Computational complexity and running time comparison 

The computational complexity of stochastic discriminant analy- 

sis (SDA) is largely determined by the number of times the gradi- 

ent in Eq. (23) must be evaluated. The matrix evaluation has the 

complexity O (LK 

2 + LNK) , where N is the dimensionality of the in- 

put space, L is dimensionality of target space, and K is the number 

of samples. As such, optimizers that require as few function evalu- 

ations as possible would be efficient choices. 

The processing times of the algorithms in Table 2 are compared 

on the three tested datasets for two-dimensional SDA embeddings. 

Figs 14–16 show the results for the USPS, Olivetti, and COIL20 data, 

respectively. The fastest algorithm differs depending on the char- 

acteristics of the dataset. The spectral direction method converges 

faster and at a lower level than the other algorithms in the USPS 

dataset. Convergence is reached in about two minutes. The num- 

ber of variables is still small enough so that the partial Hessian in- 

formation can be utilized cost efficiently. The Olivetti and COIL-20 

datasets contain a much larger number of variables. The Hessian 



146 M. Juuti et al. / Neurocomputing 291 (2018) 136–150 

Fig. 8. A representative linear embedding of the Olivetti faces dataset using regularized SDA. Colored borders denote projected test points. Red borders denote a misclassifi- 

cation, while blue borders denote a correct classification. 

Fig. 9. Three linear embeddings of the Olivetti faces dataset. Dots denote projected learning points. Stars denote projected test points. The 1-NN classification accuracy 

provided by each embedding is shown above each subfigure. Samples belonging to different classes are depicted using different colors. 
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Fig. 10. Classification accuracies for different dimension reduction methods for the 

USPS data set. The baseline is the classification accuracy for the original high- 

dimensional data set. 

is a LN -by- LN matrix, resulting in costly operations involving the 

Hessian. 

In the COIL-20 data set, the partial Hessian is re-evaluated only 

at every 20 iterations for making the computations faster. We can 

see that the LBFGS algorithm and different forms of the nonlin- 

ear conjugate gradient method are faster choices when performing 

dimensionality reduction for very high-dimensional data sets. The 

spectral gradient method works better for the USPS data set having 

a smaller input dimension but larger amount of data. 

4.2. Comparison over multiple data sets 

In this subsection we compare the proposed method with state- 

of-the-art linear embeddings especially in two-dimensional infor- 

mation visualization tasks. The algorithms were run over three 

standard UCI datasets [42] , three large datasets having more than 

40 0 0 data points, and three very high-dimensional datasets which 

were more than 40 0 0-dimensional. In general, the algorithms were 

run for different selections of training and test points 10 times to 

obtain the confidence intervals. The COIL-20 and COIL-100 datasets 

Fig. 12. COIL-20 dataset. Classification accuracies for different dimension reduction 

methods. The baseline is the classification accuracy with no dimension reduction. 

were evaluated in the principle of leave-three-out, as discussed in 

Section 4.1.3 . As a preprocessing step, the original color images in 

COIL-100 were transformed to gray-scale images and all datasets 

were normalized [41] . In the tables that follow, a distinction is 

made between different dimension reduction types: none, super- 

vised , and unsupervised . PCA is in our comparison the only unsu- 

pervised method. These different types are separated by horizontal 

lines. 

4.2.1. UCI datasets 

In the Iris dataset, three species of Iris flowers are identified 

by quantitative measurements of the flowers. In the Wine dataset, 

wine species are identified based on chemical test results. In the 

Wisconsin Breast Cancer dataset, tumors are classified as benign or 

malign ones based on physical measurements. The datasets are all 

standard small datasets with small dimensional data vectors. The 

results of low-dimensional projections are shown in Table 3 . For 

these three UCI datasets, all the compared methods perform rather 

similarly. The tests were repeated 20 times for obtaining the stan- 

dard deviations of the errors. 

Fig. 11. Three linear embeddings of the USPS dataset. Dots denote projected learning points and stars denote projected test points. The 1-NN classification accuracy resulting 

from this embedding is shown above each subfigure. Samples belonging to different classes are depicted using different colors. 
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Fig. 13. Three linear embeddings of the COIL-20 dataset. Dots denote projected learning points and stars denote projected test points. The 1-NN classification accuracy 

resulting from this embedding is added above each subimage. Colors denote different classes. 

Fig. 14. Running times of different optimization algorithms for the USPS data. 

Fig. 15. Running times of different optimization algorithms for the USPS data. 

4.2.2. Large high-dimensional datasets 

Three large datasets were compared. Two datasets were for 

handwritten digit recognition tasks (MNIST, USPS), and one was 

a dataset for phoneme recognition. The phoneme dataset contains 

three vowel pronunciations (aa, ao, iy), and two consonants (dcl, 

sh), where the vowels are difficult to separate [43,44] . In SDA, the 

optimality tolerances for the large datasets were set to 10 −5 , and 

each test was repeated ten times. The results are shown in Table 4 . 

The SDA method performs favorably in all these tests. 

Fig. 16. Running times of different optimization algorithms for the COIL-20 data. 

Table 3 

The generalization accuracy (mean ± standard deviation) of the 

nearest neighbor classification method on test set. The datasets 

were reduced to two-dimensional aside from None , in which no 

dimension reduction was done. 

Method Iris Wine W. Breast Cancer 

None 0.941 ± 0.026 0.949 ± 0.026 0.957 ± 0.014 

SDA 0.948 ± 0.030 0.983 ± 0.017 0.957 ± 0.008 

RSDA 0.957 ± 0.023 0.982 ± 0.016 0.955 ± 0.011 

LDA 0.962 ± 0.025 0.981 ± 0.016 0.961 ± 0.009 

PLS-DA 0.879 ± 0.040 0.974 ± 0.021 0.957 ± 0.008 

gKDR 0.960 ± 0.021 0.959 ± 0.030 0.956 ± 0.013 

SPCA 0.892 ± 0.026 0.974 ± 0.018 0.961 ± 0.011 

KSPCA 0.893 ± 0.047 0.971 ± 0.019 0.893 ± 0.087 

PCA 0.860 ± 0.034 0.938 ± 0.024 0.961 ± 0.011 

Table 4 

The 1-NN generalization accuracy (mean ± std) on test set 

for three large high-dimensional datasets. The datasets were re- 

duced to two-dimensional except for None . 

Method Phoneme MNIST5k USPS 

None 0.889 ± 0.010 0.936 ± 0.002 0.962 ± 0.002 

SDA 0.875 ± 0.009 0.557 ± 0.006 0.668 ± 0.009 

RSDA 0.877 ± 0.009 0.550 ± 0.005 0.669 ± 0.007 

LDA 0.664 ± 0.010 0.461 ± 0.011 3 0.554 ± 0.008 

PLS-DA 0.779 ± 0.014 0.301 ± 0.006 0.490 ± 0.008 

gKDR-v 0.809 ± 0.015 0.323 ± 0.024 0.453 ± 0.009 

SPCA 0.780 ± 0.008 0.401 ± 0.008 0.490 ± 0.008 

KSPCA 0.781 ± 0.009 0.401 ± 0.009 0.354 ± 0.010 

PCA 0.765 ± 0.007 0.383 ± 0.006 0.460 ± 0.010 
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Table 5 

The 1-NN generalization accuracy (mean ± std) on test sets 

for three very high-dimensional datasets. The datasets were re- 

duced to two-dimensional except for None . 

Method Olivetti faces COIL-20 COIL-100 

None 0.908 ± 0.023 0.999 ± 0.005 0.988 ± 0.006 

SDA 0.393 ± 0.056 0.904 ± 0.035 0.277 ± 0.024 

RSDA 0.562 ± 0.047 0.944 ± 0.026 0.605 ± 0.026 

LDA 0.446 ± 0.039 0.656 ± 0.079 0.300 ± 0.054 

PLS-DA 0.310 ± 0.042 0.573 ± 0.042 0.481 ± 0.049 

gKDR-v 0.210 ± 0.046 0.565 ± 0.057 0.142 ± 0.038 

SPCA 0.325 ± 0.033 0.623 ± 0.152 0.437 ± 0.061 

KSPCA 0.322 ± 0.037 0.567 ± 0.191 0.397 ± 0.055 

PCA 0.289 ± 0.029 0.667 ± 0.046 0 . 288 + 0 . 036 

4.2.3. Very high-dimensional datasets 

A face recognition dataset (Olivetti faces) and two object recog- 

nition datasets (COIL-20 and COIL-100) were compared. The regu- 

larized version RSDA of the SDA method was also computed. The 

1-NN out-of-sample classification accuracies are shown in Table 5 . 

Our regularized algorithm RSDA has the highest accuracy among 

the tested algorithms on all datasets. The tests were repeated 10 

times to obtain the error ranges. The tolerance for optimality was 

set at 10 −5 in Olivetti and COIL-20 and at 10 −4 in COIL-100 data 

sets. The tolerances for the regularization search were set one 

magnitude higher ( 10 −3 ) than in the final algorithm ( 10 −4 ). Op- 

timization with RSDA, including the regularization parameter λ
search procedure, was on an average faster than using no regu- 

larization ( λ = 0 ) in the COIL-100 data set, with the median time 

of 88 min versus 215 min. 

5. Conclusions 

We have introduced in this paper a linear supervised dimension 

reduction method for classification settings, which we call Stochas- 

tic Discriminant Analysis (SDA). The SDA method matches similar- 

ities between points in the projection space with those in a re- 

sponse space. The similarities are represented by transforming dis- 

tances between points to joint probabilities using a transformation 

resembling Student’s t-distribution. The matching is done by mini- 

mizing the Kullback–Leibler divergence between the two probabil- 

ity distributions. 

The proposed stochastic discriminant analysis (SDA) method 

is useful especially when two-dimensional projections of datasets 

having several or many classes are needed. In such situations, or- 

dinary discriminant analysis algorithms perform poorly. The gen- 

eralization ability of the SDA method increases until the optimal 

structure is found in C − 1 dimensions, where C is the number of 

classes. It should be noted that due to the definition of the op- 

timization criterion, neither SDA nor closed-form solutions of lin- 

ear discriminant analysis (LDA) can obtain improved results once 

the target dimensionality surpasses C − 1 dimensions, since both 

the methods try to reconstruct an intrinsically C − 1 -dimensional 

simplex. For combatting overlearning in very high-dimensional 

datasets, Tikhonov regularization was used. It improves the gen- 

eralization ability of the SDA method, and increases classification 

accuracies for very high-dimensional datasets. 

In the extensive experimental part of this paper, we compare 

the performance of our SDA method against several state-of-the- 

art methods in supervised linear dimension reduction. The SDA 

method performs in most cases better than the compared linear 

projection methods when low two or three-dimensional projec- 

tions are used. We have made experiments with various types of 

data sets having low, medium, or high dimensions and quite dif- 

ferent numbers of samples. Our experiments with both sparse and 

dense data sets confirm the good performance of the SDA method 

and its regularized version. 
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