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ABSTRACT10

The ability to detect spatially-distributed defects and material changes over time is a central11

theme in structural health monitoring. In recent years, numerous computational approaches using12

electrical, electromagnetic, thermal, acoustic, optical, displacement, and other non-destructive13

measurements as input data for inverse imaging regimes have aimed to localize damage as a14

function of space and time. Often, these regimes aim to reconstruct images based off one set of15

data disregarding prior information from previous structural states. Here, we propose a stacked16

approach for one increasingly popular modality in structural health monitoring: Quasi-Static17

Elasticity Imaging. The proposed approach aims to simultaneously reconstruct spatial changes in18

elastic properties based on data from before and after the occurrence of damage in the presence19

of an inhomogeneous background. We conduct numerical studies, investigating in-plane plate20

stretching and bending, considering geometries with various damage levels. Results demonstrate21

the feasibility of the proposed imaging approach, indicating that the inclusion of prior information22

from multiple states visually improves reconstruction quality and decreases RMSE with respect to23

true images.24
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INTRODUCTION25

The ability to visualize spatially-distributed defects, damage, and material changes in struc-26

tures over time is critical in the assessment of structural health Balageas et al. (2010). Various27

computational approaches, such as Electrical Resistance Tomography (ERT) Tallman et al. (2017,28

2015a,b); Hallaji et al. (2014); Yao and Soleimani (2012), Lamb/Guided-Wave methods Rodriguez29

et al. (2014); Hall and Michaels (2011); Gibson and Popovics (2005); Kessler et al. (2002), Digital30

Image Correlation Forsström et al. (2017); Lava et al. (2010); Pan et al. (2009), Thermal Imaging31

Ciang et al. (2008); Haj-Ali et al. (2008), X-ray Computed Tomography Buffiere et al. (2010);32

Ferrié et al. (2006); Schilling et al. (2005), Quasi-Static Elasticity Imaging (QSEI) Hoerig et al.33

(2017); Bonnet and Constantinescu (2005) and others have been successfully applied in imaging34

such processes. Often, computational approaches using any of the mentioned modalities aim to35

reconstruct images of structures based off one set of data corresponding to a single structural state.36

Such an approach does not directly utilize prior information from previous states, which is useful37

in reconstructing cases with complicated spatial distributions of damage Seppänen et al. (2017).38

To take advantage of information contained in multiple data sets, researchers have developed39

schemes for reconstructing images on the basis of difference data, e.g. ERT with difference40

imaging Dai et al. (2016); Hallaji and Pour-Ghaz (2014). Difference imaging is a powerful tool for41

rapidly localizing damage since the reconstructions are commonly obtained using only one iteration42

Frerichs (2000). However, the results are often (i) qualitative due to linearization Smyl et al. (2016)43

and (ii) offer little information information on background inhomogeneity, since reconstructions44

are computed from differences in measured data sets Vauhkonen (1997). For quantitative imaging45

of multiple structural states, a non-linear approach should be taken.46

By re-parameterizing (stacking) the ERT inverse problem, it was shown in Liu et al. (2016);47

Mozumder et al. (2015); Liu et al. (2015) that multiple states may be simultaneously reconstructed48

via the inclusion of prior information in regularization terms for each state (compound regular-49

ization). Specifically, smoothness-promoting regularization was utilized for the initial state and50

Total Variation (TV) regularization was used for reconstructing sharp changes in the second state.51
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The use of TV in applications detecting sharp features is well-established, as demonstrated in, e.g.,52

structural crack detection Seppänen et al. (2017); Hallaji et al. (2014), organ boundary identification53

Borsic et al. (2010), and geophysical applications Alrajawi et al. (2017). Using realizations related54

to the problem physics, the authors of Liu et al. (2016, 2015) employed multiple constraints on each55

state which improved reconstruction quality and convergence behavior during the minimization56

scheme.57

In this work, we are motivated by these recent developments in inverse-problems and we58

aim to apply stacking techniques to QSEI. The modality considered herein, QSEI, is an inverse59

method that numerically reconstructs the distribution of elastic modulus based off displacement60

field data. While QSEI is most commonly used for medical imaging of tissue abnormalities61

Papadacci et al. (2017), some works have applied QSEI to structural health monitoring, e.g. Hoerig62

et al. (2017); Bonnet and Constantinescu (2005). Recent algorithmic advances for medical QSEI63

using adjoint and non-linear methods Goenezen et al. (2011); Gokhale et al. (2008); Oberai et al.64

(2003, 2004) further encourage the use of QSEI in structural health monitoring. In this article,65

we begin by presenting classical and stacked QSEI reconstruction approaches. Following, we66

conduct a numerical investigation, comparing reconstructions using both approaches for in-plane67

plate bending and stretching. Lastly, discussion and conclusions are presented.68

CLASSICAL AND STACKED QSEI69

Classical approach70

The classical aim of QSEI is to determine the distribution of the inhomogeneous elastic modulus71

E using displacement field data um, knowledge of the structural geometry, and loading. In practice,72

um may be obtained experimentally using optical methods, such as Digital Image Correlation (DIC).73

Formally, the classical QSEI Least-Squares (LS) inverse problem is stated in the following: Given74

distributed displacement data um, structural geometry Ω, boundary information ∂Ω, and external75

forces f , determine E . The observation model for the classical QSEI description is then:76

um = U(E) + e (1)77
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where U(E) are the simulated displacements and e is Gaussian-distributed noise. The LS solution78

based on this observation model is written as:79

`c = argmin
E>0
| |Le(um −U(E))| |2 + pE (E) (2)80

where pE (E) is the regularization functional, LT
e Le = C−1

e where Ce is the observation noise81

covariance matrix, | | · | | denotes the Euclidean norm, and the subscript “c” denotes “classical.”82

The regularization term is included due to the ill-posed nature of the inverse problem, meaning83

that standard LS approaches may yield non-unique solutions. Commonly, U(E) is solved using the84

Finite ElementMethod (FEM)Goenezen et al. (2011). In this work, the FEM is also employed using85

piece-wise linear triangular elements assuming incompressible isotropic plane-stress conditions.86

Symbolically, the forward model is written as87

U j =

Nn∑
i=1

K−1
ji fi (3)88

where Nn is the total number of unknown displacements and K−1
ji and fi are often referred to and89

the compliance matrix and force vector, respectively Surana and Reddy (2016).90

Because we are interested in reconstructing structural configurations with smoothly-correlated91

background inhomogeneity (i.e., the distribution of E in an undamaged state), edge-preserving92

regularization, such as TV, is not used here in the classical approach. Therefore, we select93

smoothness-promoting regularization for pE (E), which is given by94

pE (E) = | |LE (E − Eexp)| |
2 (4)95

where LE is a spatially-weighted matrix and Eexp is the expected value of E computed by solving96

the best homogeneous estimate Eexp = argmin| |um −U(E)| |2.97

The optimization problem is solved iteratively using a Gauss-Newton (GN) scheme equipped98

with a line-search algorithm to determine the step size ∆k in the parameterized solution θk =99

θk−1 + ∆k θ̄ where θk is the current estimate and θ̄ is the LS update. Such an approach requires the100
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Jacobian J = ∂U
∂E at each iteration k, which is computed using the perturbation method with central101

differencing, where each entry is computed using102

Ji j =
U(Ek−1 + ∆

J) −U(Ek−1 − ∆
J)

2∆J (5)103

where the perturbation ∆J is computed as a function of the double-precision of the machine ε104

using ∆J = 3
√
ε
2 following An et al. (2011). We note that the majority of the computing time is105

spent calculating J; other gradient-based algorithms may be more efficient Oberai et al. (2003).106

However, the GN scheme was selected due to its fast convergence behavior. The stopping criteria107

used in all estimates was ϕ = (`k − `k−5)/`k−5 ≤ 10−3, where ` denotes the cost function for108

a given reconstruction approach. The selection of ϕ = ϕ(`k, `k−5) was made to ensure that the109

optimization was stopped at a stable minimum, especially in cases where the objective function110

may have small fluctuations. This criteria was originally used in Oberai et al. (2004) and was found111

to be satisfactory herein.112

Stacked approach113

In the stacked approach, we have the following model considering both the initial E1 and final114

state E: E1 + δE = E , where δE is the change between states. Here, we make the simplifying115

assumption that damage decreases E (i.e. δE ≤ 0), which is realistic in the case of, for example,116

localized cracking or corrosion Seppänen et al. (2017). In the case of a through-crack, E = 0 can117

reasonably be assumed within the crack. We also remark that for such a model to be physically118

realistic, neither E nor E1 can be negative. Based on this observation model, we may concatenate119

measurements from two states (undamaged (u1) and damaged (u2)) in the following120


u1

u2

︸︷︷︸
um

=


U(E1)

U(E1 + δσ)

︸           ︷︷           ︸
U(Ē)

+


e1

e2

︸︷︷︸
e

(6)121

where e = [e1, e2]
T is the concatenated noise vector. Based on the physical realizations that (i)122
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δE ≤ 0, (ii) E1 and E are non-negative, and using Eq. 6, we may then write the regularized LS123

solution, with subscript “s” denoting “stacking,” as124

`s = arg min
E1>0
E>0
δE≤0

{| | L̄ē(um −U(Ē))| |2 + p(Ē)} (7)125

where L̄T
ē L̄ē = C̄e uses the block form of the stationary noise covariance matrix (i.eCe1 = Ce2 = Ce)126

which is written as C̄e =


Ce1 0

0 Ce2

 . Moreover, p(Ē) = p1(E1) + p2(δE) is the compound127

regularization term using Eq. 4 for the smoothly-correlated E1 and TV regularization for δE , given128

by129

p2(δE) = α
Ne∑

q=1

√
| |(∇δE)|eq | |2 + β (8)130

where α is a TVweighting parameter, ∇δE |eq is the gradient of δE at element eq, β is a stabilization131

parameter, and Ne is the number of elements in the discretization. In selecting α, α = − ln(1− pα
100 )

E1,exp/d
132

is employed, where pα is the % confidence that values of δE lie between [−E1,exp, 0] and d is the133

FEM element width. Moreover, the criteria β = ζ(E1,exp
d )

2 was used in computing the stabilization134

parameter. The selection of TVparameters were chosen followingGonzález et al. (2017); pα = 90.0135

and ζ = 10−5 were used in all reconstructions.136

The stacked approach also employed a GN-based minimization scheme, which requires the137

concatenated Jacobian written as follows138

JU(Ē) =


JU(E1) 0

JU(E1 + δE) JU(E1 + δE)

 . (9)139

We note that all constraints were handled using the interior point method.140

NUMERICAL INVESTIGATION141

We investigated two structural geometries using the classical and stacked reconstruction ap-142

proaches. Two structural cases are considered: case (a) plate stretching and case (b) in-plane plate143
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bending (herein referred to as “plate bending”). In both cases, the structures have randomized “blob-144

like” background distributions of elasticity modulus and a Poisson ratio ν = 0.35. The range of145

material properties used simulated a compliant structural material with 25.0 GPa < E < 50.0 GPa.146

The structures of interest, boundary conditions, loading conditions, and meshing are provided in147

Fig. 1. Out of plane deformations were not considered. For each geometry, two levels of struc-148

tural damage are considered with η =1.0 and 2.0% noise standard deviation added to simulated149

measurement values um and um.150

We begin by investigating case (a). Results are shown in Fig. 2, reporting all stacked estimates151

(E1+ δE = E) as well as the classical reconstruction estimate Ec. As a whole, the proposed stacked152

approach captured all estimated quantities. Visually, it is apparent that the stacked approach153

better estimated both background elastic modulus distribution and damage levels I and II than the154

classical reconstruction approach (this claim will be quantified in the following section). This is155

anticipated result, as the regularization functional used in the classical approach is not appropriate156

for simultaneous reconstruction of a smooth background and a sharp change in E . Moreover,157

as expected, images with a higher noise level, η = 2.0, were visually more blurry using both158

approaches.159

It is interesting to note that all reconstructions of E1 are over-smoothed and overestimated160

with respect to the true distributions. This is a consequence of the ill-posed nature of the inverse161

problem and the measurement sensitivity to smooth changes in E . In damage level II, however E1 is162

better estimated. This illuminates one weakness in the stacked reconstruction method: the relative163

“weighting” between E1 and δE during minimization of Eq. 7. Indeed, in damage level II, where164

δE is more spatially-distributed, the “weight” of δE is higher, leading to a better visualization of165

both E1 and E relative to Damage Level I. This may be compensated, for example by optimizing166

the value of α in Eq. 8 or improving constraints in Eq. 7 using prior information related to E1.167

We now consider case (b), reconstructions for this case are shown in Fig. 3. As a whole,168

the stacked approach well reconstructs the damage patterns, although the aforementioned issues169

with E1 in case (a) are also observed here. Visually, it is clear that classical reconstructions170
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underestimate the size of the ellipsoidal damage (damage level I), while stacking reconstructions171

overestimate the size of the ellipsoidal damage. Overall, the reconstruction quality in stacked and172

classical approaches are visually comparable for damage level I. This similarity in reconstruction173

quality results from the large size of the damage area located in a region with low gradients in the174

background elasticity distribution. This is a favorable condition for reconstruction approaches using175

smoothness-promoting regularization Kaipio and Somersalo (2007); Vauhkonen et al. (1998).176

On the other hand, in damage level II, the locations of distributed damages are in regions with177

both low and high gradients of the background elasticity distribution. While the presence of large178

background fluctuations did not affect the localization of damages, the magnitude of the distributed179

damages are poorly estimated using the classical approach. Owing to the improved robustness180

of the stacked approach, allowing for both sharp fluctuations in δE and smoothness in E1, the181

magnitude of E in the damaged regions is well estimated. In the following section, we further182

examine the visual observations of this section in a quantitative analysis of the reconstructions.183

DISCUSSION184

Reconstructions comparing E for the classical and stacked approaches were reported in the185

previous section. However, while there were notable visual improvements in reconstructions of E186

when employing the stacked approach, the degree of improvement was subtle and not immediately187

apparent. To quantify the visual observations from the last section, i.e. that the stacking approach188

better reconstructed E , we compare the root mean square error (RMSE =
√∑Ne

l=1(Etrue,l − El)
2/Ne)189

for all reconstructions. The RMSEs for all cases are presented in Fig. 4 as a function of the noise190

level η = 1.0 and 2.0%.191

Fig. 4 confirms the visual observations from the previous sections. The RMSEs for stacked192

reconstructions in both cases are lower than those of the classical reconstructions. This indicates193

that the stacked approach better reconstructed the true elasticity distributions. Interestingly, both194

reconstruction approaches followed the same trend for a given case. In plate bending, the RMSEs195

are shown to increase as the damage level increases. The contrary is observed for plate stretching.196

One possible explanation for this observation is the sensitivity of QSEI to the displacement197
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field. The location of the large ellipsoid in plate bending damage level I is towards the top of198

the beam. In this configuration, the bending stresses, and therefore displacements, are highest199

with respect to the fixed x-axis location. However, in plate bending damage level II the localized200

damages are smaller, with one localized damage in the center – where bending stresses are lowest.201

This explains the poor visibility of the central inclusion for classical reconstructions in Fig. 3202

Reconstructions of plate stretching also show sensitivity to the displacement field. Since203

damage level II is more distributed than damage level I – particularity in the vertical direction – the204

displacement field is less locally disturbed, thereby offering better global displacement information.205

This had a significant effect on RMSE in classical reconstructions of plate stretching, while only206

subtly affecting the RMSE of stacked reconstructions.207

While the stacked approach was shown to decrease the RMSE of reconstructions relative to208

the classical approach, the primary advantages of the stacked approach are primarily (i) better209

prior information incorporated through compound regularization, (ii) employment of multiple210

constraints on E1, δE , and E using physical realizations related to damage processes, and (iii) the211

use of multiple data sets in reconstructing E = E1 + δE . Additional flexibility and improvement212

on the present stacking approach may also be incorporated by including, e.g., upper constraints213

on E1 and E using prior knowledge of the material, different forms of regularization based on214

the expected distributions of δE and E , and different noise models for each state accounting for215

non-Gaussian statistics. We remark here, however, that some weaknesses in the stacking approach216

were identified. Namely, over-smoothing and overestimation of E1 which had a compound effect217

via the degradation of δE reconstructions. Improved selection of the TV parameter α and prior218

knowledge of the problem’s constraints should alleviate these weaknesses.219

Concerning point (iii), we would like to mention that the classical model may also be used in a220

dual model to estimate multiple states. For example, one may reconstruct E1 and E separately and221

estimate δE = E − E1. This dual problem was examined in a preliminary study. However, results222

for δE = E − E1 were often unrealistic, taking both positive and negative values. This results from223

the fact that the dual problem is insufficiently constrained and not parameterized such that δE ≤ 0224
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and E = E1 + δE are guaranteed. In cases where the user is only interested in damage localization,225

such an approach may be suitable. For situations that require quantitative results, use of either226

classic (single state) estimation of E or the stacked model should be used.227

In summary, the results presented herein support the feasibility of the proposed stacked model,228

given the improved performancewith respect to the classical approach. Wenote that experimentally-229

obtained displacement measurements are required to validate the field performance of the stacking230

approach. In future works, we aim to (i) utilize experimental displacement fields obtained using231

Digital Image Correlation in a coupled DIC/QSEI regime targeted at characterizing orthotropic232

elastic properties and detecting damage in carbon fiber reinforced polymer (CFRP) elements and233

(ii) develop a joint DIC/QSEI reconstruction approach for characterizing micro-structural elastic234

features of metallic materials and for localizing damage in large composite structures.235

236

CONCLUSIONS237

In this work we proposed a new stacked approach for QSEI of structures in the presence of238

background inhomogeneity. The proposed stacked approach was parameterized such that two239

structural states may be imaged simultaneously. The primary advantages of this approach were240

noted: (i) incorporation of prior information related to each structural state and (ii) implementation241

of constraints based on physical realizations related to each state. To test the reconstruction242

regime, numerical studies were conducted. In-plane plate stretching and bending were investigated243

considering several localized and distributed damage configurations. The proposed approach was244

corroborated with a classical QSEI approach. Following, a discussion was provided.245

The results of the numerical study support the feasibility of the stacked reconstruction approach.246

In all cases, it was shown that the stacked approach outperforms the classical approach based off247

visual observation and analysis of reconstructions’ RMSEs. Future work using experimentally-248

obtained displacement measurements is required to validate the field performance of the stacked249

approach. Planned work in the near future will investigate the use of coupled QSEI/DIC approaches250

for characterizing orthotropic elastic properties and damage in CFRP elements. In the more distant251
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future, we aim to develop a joint QSEI/DIC framework for complimentary imaging of damage and252

characterization of materials/structures at micro and macro scales.253
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Fig. 1. Schematic illustration of structural geometries, loading conditions, boundary conditions,
and FEMmeshes. Case (a) stretched plate with fixed left end: 250,000 N/m load evenly distributed
among right side nodes and case (b) plate bending with fixed left end: 12,500 N shear load evenly
distributed among right side nodes. Each geometry has a maximum element dimension of 5.0 cm.
The thickness of the stretched plate and bent plates are 1.0 and 2.5 cm, respectively.
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Fig. 2. Stacked (E1 + δE = E) and classical (E) reconstructions of ellipsoidal (Damage Level
I) and distributed damages (Damage Level II) in a stretched plate in the presence of background
inhomogeneity. The far left column, column 1, designates the reconstruction type (`s, stacked and
`c, classical) with the data noise level, η; column 2 contains stacked reconstructions of E1; column 3
contains stacked reconstructions of δE; and column 4 contains classical and stacked reconstructions
of E .
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Fig. 3. Stacked (E1 + δE = E) and classical (E) reconstructions of ellipsoidal (Damage Level
I) and distributed damages (Damage Level II) in a bent beam in the presence of background
inhomogeneity. The far left column, column 1, designates the reconstruction type (`s, stacked and
`c, classical) with the data noise level, η; column 2 contains stacked reconstructions of E1; column 3
contains stacked reconstructions of δE; and column 4 contains classical and stacked reconstructions
of E .
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Fig. 4. RMSEs of E reconstructions for plate bending and stretching considering two damage
levels (I and II) and added noise η = 1.0 and 2.0% using classical and stacked approaches. Square
and round markers indicate plate stretching and bending, respectively. Solid markers and hollow
markers indicate stacked and classical reconstructions, respectively.
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