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This is a post-print of a paper published in 21th International Conference on Information Fusion
(FUSION). When citing this work, you must always cite the original article:
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Abstract—This paper is concerned with tracking of refer-
ence vectors in the continuous-discrete-time setting. For this
end, an Itô stochastic differential equation, using the gyro-
scope as input, is formulated that explicitly accounts for the
geometry of the problem. The filtering problem is solved by
restricting the prediction and filtering distributions to the
von Mises–Fisher class, resulting in ordinary differential
equations for the parameters. A strategy for approximating
Bayesian updates and marginal likelihoods is developed for
the class of conditionally spherical measurement distribu-
tions, which is realistic for sensors such as accelerometers
and magnetometers, and includes robust likelihoods. Fur-
thermore, computationally efficient and numerically robust
implementations are presented. The method is compared
to other state-of-the-art filters in simulation experiments
involving tracking of the local gravity vector. Additionally,
the methodology is demonstrated in the calibration of a
smartphone’s accelerometer and magnetometer. Lastly, the
method is compared to state-of-the-art in gravity vector
tracking for smartphones in two use cases, where it is shown
to be more robust to unmodeled accelerations.

Index Terms—Directional statistics, von Mises–Fisher
distribution, robust filtering, sensor calibration.

I. INTRODUCTION

Tracking of directional quantities, such as reference
vectors, is an important problem in signal processing. It
is, for example, used for tracking of the local gravity
vector in pedestrian dead reckoning systems [1], magnetic
field based positioning [2], screen orientation tracking for
smartphones [3], target tracking using omnidirectional
cameras [4], and speaker tracking using a microphone
array [5]. An important application is orientation tracking,
which has previously been tackled by a variety of
approaches, such as quaternion methods [6]–[10], where
either a non-linear Kalman filter [7]–[10] or gradient
descent [6] is used. These approaches have the drawback
of not accounting for the geometry of the problem or are
doing so in an ad-hoc manner.

On the other hand, reference vectors can be explicitly
modeled on the unit sphere, S2, using directional stat-
istics [11], [12]. Approaches to the Bayesian tracking

of reference vectors have recently been developed on
this principle. Discrete-time filters have been developed
by using the von Mises–Fisher distribution, based on
moment-matching [4], [5], [13], [14]. While another
approach, based on score-matching [15], [16], was
proposed in [17].

In this paper, a continuous-discrete von Mises–Fisher
filter for reference vector tracking is developed. In
contrast to previous reference vector tracking methods
such as [3], the model is specified as a stochastic differ-
ential equation that obeys the geometrical restrictions
of the problem. Based on this, ordinary differential
equations (ODEs) for the von Mises–Fisher parameters
are derived and strategies for incorporating data from
sensors such as accelerometers and magnetometers are
developed using spherical likelihoods, which includes
robust likelihoods. Furthermore, methods are provided
for computing approximate marginal likelihoods that can
be used for parameter estimation [7], [18], [19]. The
methods are compared against the state-of-the-art both
in simulated and real data scenarios. The experiments
include local gravity tracking using simulated and real
data, as well as sensor calibration using real data.

The rest of the paper is organised as follows, notation,
problem formulation, and contributions are presented in
Section II, the basics of the von Mises–Fisher distribu-
tion are outlined in Section III, the dynamic model is
developed in Section IV, the filter is derived in Section V,
experimental results are presented in Section VI, and
lastly, the conclusions are given in Section VII.

II. PROBLEM FORMULATION AND NOTATION

A. Notation

Here some notation is established, R+ is the positive
real half-line, S2 ⊂ Rp is the unit sphere, and SO(3) is
the special orthogonal group acting on R3. For vectors
u, v ∈ R3 the matrix [u]× corresponds to the linear
transform defined by cross-product from the left, u×v =



[u]×v, for a set A, χA is its indicator function, for a
function of a scalar variable, V : R → Rp, V ′ is its
derivative, and ∂t is used for time derivative. Furthermore,
let {tk}Kk=1, tk < tk+1 be a subset of R+ and define
the following sets for a stochastic process, {Y (tk)}Kk=1,

Y (t) = {y(tk) | tk ≤ t}, (1a)
Y (t−) = {y(tk) | tk < t}. (1b)

For random variables R and Y , E[R] is the expectation
of R and E[R | Y ] is the expectation of R conditioned
on Y .

B. Problem formulation

In this paper, the problem of tracking a reference vector,
r, using a three-axis rate gyro is considered. Without loss
of generality let r ∈ S2, then the deterministic kinematics
for r are given by [20]

∂tr(t) = −[Ω(t)]×r(t) (2)

where Ω(t) and r(t) are the angular rate and the reference
vector in the local frame, respectively. Furthermore, it is
assumed that noisy measurements, Ω̆, of Ω are taken at
a relatively high frequency to warrant the interpretation
of Ω̆ as a continuous-time signal. The direction r is
assumed to be measured at a set of discrete time instants,
{tk}Kk=1, tk < tk+1,

f(y(tk) | r(tk)) = exp
(
− V (ρ2k)/2

)
(3)

where

ρ2k = ||y(tk)− gQr(tk)− b||2/σ2
Y , (4)

g ∈ R+ is a gain (e.g., magnitude of the gravity vector),
Q ∈ SO(3), and V : R+ → R+ is a differentiable
potential function, with derivative V ′. Note that Eq. (3)
belongs to the class of spherical densities [21], in
particular normal scale mixture densities (e.g Student’s
t distributions) are of this class [22], hence robust
likelihoods are considered.

C. Contribution

The contributions of this paper are as follows:
• Using a gyroscope in dynamic replacement

mode [20], a continuous-time model for the ref-
erence direction is developed, guaranteeing that the
reference vector stays on S2 with probability 1.

• The geometry of the problem is explicitly accounted
for by using the von Mises–Fisher distribution, in
contrast to Kalman based solutions [3].

• The kinematics are accounted for by formulating a
continuous-time model, in difference to other von
Mises–Fisher approaches [4], [13], [17].

• Approximate and exact updates and marginal like-
lihoods for spherical measurement densities are
developed (including robust likelihoods), hence
sensor calibration is possible.

III. THE VON MISES–FISHER DISTRIBUTION

A random variable R ∈ S2 is said to be von Mises–
Fisher (VMF) distributed, R ∼ VMF(µ, η), if its
probability density function is given by [12]

f(r) = C−13 (η) exp
(
ηµTr

)
χS2(r), (5)

where η > 0 a concentration parameter, µ ∈ S2

determines the mode of the distribution, and C3(η) is
the normalization constant, given by

C−13 (η) =
η

(4π sinh η)
, (6)

Furthermore, the derivative of log C3(η) is

A3(η) := ∂η log Cp(η) = coth η − 1/η. (7)

The expected value of a von Mises–Fisher distributed
variable is given by [12], [23]

E[R] = Ap(η)µ. (8)

IV. A DYNAMIC MODEL FOR REFERENCE VECTORS

In this section, a dynamic model suitable for tracking
a reference vector is developed, in essence it is a
modification of the model used in [3], with the added
feature that the stochastic differential equation is norm
preserving in Itô sense. While the kinematics for a local
reference vector, r(t), are given by Eq. (2), the angular
rate, Ω(t), is rarely available, but rather a noisy version
Ω̆(t). This problem has previously been solved by adding
a Wiener differential to the dynamics according to [3]

dR(t) = −[Ω̆(t)]×R(t) dt+ γ dW (t), (9)

where Ω̆(t) is the measured angular rate, γ ∈ R+,
and W (t) is a vector of independent standard Wiener
processes. While Eq. (9) is a pragmatic model that allows
for tracking using a Kalman filter [3], it does not properly
account for the geometry, that is to say the Itô differential,
d||R(t)||2/2, does not vanish. With this in mind, the
following model for the reference direction is proposed:

dR(t) = −
(

[Ω̆(t)]× + γ2I
)
R(t) dt+ γ[R(t)]× dW (t).

(10)
This model does indeed preserve the norm of R(t), as
asserted by Lemma 1 below.

Lemma 1. Assume R(t) is governed by

dR(t) = −
(

[Ω̆(t)]× + γ2I
)
R(t) dt+ γ[R(t)]× dW (t),
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with initial condition, R(0), such that R(0) ∈ S2 with
probability 1, then R(t) ∈ S2, t ≥ 0 with probability 1.

Proof. As R ∈ S2 if and only if ||R(t)||2 = 1 it is
sufficient to show that the Itô differential of ||R(t)||2/2
vanishes. From Itô’s lemma it follows that

d
||R(t)||2

2
= −RT(t)

(
[Ω̆(t)]× + γ2I

)
R(t) dt

+
γ2

2
tr{[R(t)]T×[R(t)]×} dt

+RT(t)γ[R(t)]× dW (t)

= 0,

where it was used that [Ω̆(t)]× is skew symmetric, R(t)×
R(t) = 0, and

tr{[R(t)]T×[R(t)]×} = 2||R(t)||2.

V. CONTINUOUS-DISCRETE VON MISES–FISHER
FILTERING

The purpose of this section is to develop a von Mises–
Fisher based assumed density filter, hence dynamics
for the parameters need to be derived, as well as
strategies for approximating Bayesian updates [24]. That
is, approximations to the family of filtering densities

f(r, t | Y (t)), t ∈ [t1, tK ],

are sought, such that the approximation remains in
the von Mises–Fisher class at all times. The resulting
algorithm, using an explicit ODE solver together with
the assumption that Ω̆(t) and Y (t) are synchronously
sampled, is given in Alg. 11. The remainder of this
section is dedicated to the derivations and strategies for
implementation.

A. Prediction

In order to derive a predictive distribution based on
the von Mises–Fisher distribution an ODE for E[R |
Y (t)] can be derived that is valid in between adjacent
measurement instants, [tk, tk+1). Taking the expectation
of Eq. (10) and exploiting the martingale property of the
Itô integral (see [25]) gives

∂tE[R | Y (t)] = −
(

[Ω̆)]× + γ2I
)
E[R | Y (t)]. (13)

Assume the filtering density is von Mises–Fisher,

f(r, t | Y (t)) ∼ VMF(r; µ̄(t), η̄(t)),

1This assumption is not necessary but makes for clearer presentation.

Algorithm 1 Continuous-Discrete von Mises–Fisher
Filter (Explicit)

Input: Initial parameters µ̄(t−0 ), η̄(t−0 ), and sampling
intervals {δtk}K−1k=0

Output: Filtering parameters {µ̄(tk)}Kk=0 and
{η̄(tk)}Kk=0

for k = 0 to K − 1
{Predict}

η̄(t−k+1)← exp

(
− γ2A3(η̄(tk))δtk
A′3(η̄(tk))η̄(tk)

)
η̄(tk)

θ̆(tk)← ||Ω̆(tk)||δtk

µ̄(t−k+1)← µ̄(tk)− sin θ̆(tk)δtk

θ̆(tk)
Ω̆(tk)× µ̄(tk)

+
(1− cos θ̆(tk))(δtk)2

θ̆(tk)2
Ω̆(tk)× Ω̆(tk)× µ̄(tk)

{Update}

ρ̂2 ← ||y(tk+1)− gQµ(t−k+1)− b||2/σ2
Y

ξ(tk+1)← g/σ2
Y V ′(ρ̂2)QT(y(tk+1)− b)

η̄(tk+1)← ||η̄(t−k+1)µ̄(t−k+1) + ξ(tk+1)||
µ̄(tk+1)← (η̄(t−k+1)µ̄(t−k+1) + ξ(tk+1))/η̄(tk+1)

end

then it follows from Eq. (8) that

E[R | Y (t)] = A3(η̄(t))µ̄(t) (14a)
||E[R | Y (t)]|| = A3(η̄(t)). (14b)

Taking the time derivative of A3(η̄(t)) and using the
norm identity in Eq. (14) gives

A′3(η̄(t))∂tη̄(t) =
〈∂tE[R | Y (t)],E[R | Y (t)]〉

||E[R | Y (t)]||
= −γ2A3(η̄(t)),

where it was used that 〈u, [v]×u〉 = 0 for all vectors u
and v, hence the predictive ODE for η̄ is given by

∂tη̄(t) = −γ2A3(η̄(t))/A′3(η̄(t)). (15)

The ODE for µ̄(t) is obtained by taking the time
derivative of both sides of the mean identity in Eq. (14)

∂tE[R | Y (t)] = A′3(η̄(t))∂tη̄(t)µ̄(t) +A3(η̄(t))∂tµ̄(t)

= −γ2A3(η̄(t))µ̄(t) +A3(η̄(t))∂tµ̄(t).

Re-arranging terms and using Eq. (15) gives the following
expression for ∂tµ̄(t),

∂tµ̄(t) =
(
∂tE[R | Y (t)] + γ2A3(η̄(t))µ̄(t)

)
/A3(η̄(t)).
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Continuing by inserting the expression for ∂tE[R | Y (t)]
given in Eq. (13) and using the mean identity in Eq. (14)
gives the end result as follows

∂tµ̄(t) = −[Ω̆(t)]×µ̄(t). (16)

In summary, the prediction equations for the von Mises–
Fisher parameters are given by

∂tµ̄(t) = −[Ω̆(t)]×µ̄(t) (17a)

∂tη̄(t) = −γ2A3(η̄(t))/A′3(η̄(t)). (17b)

The issue of efficiently integrating the ODEs for µ̄(t) and
η̄(t) shall be returned to in Section V-C, after examining
the problem of measurement updates in Section V-B.

B. Measurement update and marginal likelihood

Here, schemes for approximating the filtering distribu-
tion and the marginal likelihood, assuming the predictive
distribution is in the von Mises–Fisher class and the
measurement is generated by Eq. (3) are developed,
such that the filtering distribution remains in the von
Mises–Fisher class. For this end, the special case of
spherical Gaussian likelihoods is examined first, where
exact relations for the filtering distribution and marginal
likelihoods is available, this is Proposition 1 below.

Proposition 1. Let R ∼ VMF(µ, η), Y | R = r ∼
N (y; gQr + b, σ2

Y I), with g ∈ R+, b ∈ R3 and Q ∈
SO(3), then

f(r | y) = VMF(r;µR|Y , ηR|Y ), (18a)

f(y) =
exp

(
− ||y−b||

2+g2

2σ2
Y

)

(2πσ2
Y )3/2

C3(ηR|Y )

C3(η)
, (18b)

where

ηR|Y = ||g/σ2
YQ

T(y − b) + ηµ|| (19a)

µR|Y = (g/σ2
YQ

T(y − b) + ηµ)/ηR|Y . (19b)

Proof. According to Baye’s theorem, the posterior is
given by

f(r | y) ∝
exp

(
− ||y−gQr−b||

2

2σ2
Y

+ ηµTr
)

C3(η)(2πσ2
Y )3/2

χS2(r)

=
exp

(
− ||y−b||

2+g2||r||2
2σ2

Y
+ ηR|Y µT

R|Y r
)

C3(η)(2πσ2
Y )3/2

χS2(r)

However, as ||r||2 is constant on the domain of f(r | y),
due to the indicator function, it follows that

f(r | y) = VMF(r;µR|Y , ηR|Y ),

with the parameters given in Eq. (19). Furthermore,
integrating gives the results in Eq. (18).

The results of Proposition 1 can be used to produce
an approximate posterior in the von Mises–Fisher class
for the measurement model in Eq. (3). Using a similar
idea to that of [26], a Taylor series of V (ρ2) is given by

V (ρ2) ≈ V (ρ̂) + V ′(ρ̂)(ρ2 − ρ̂2) + O
(

(ρ2 − ρ̂2)2
)
.

A readily available linearisation point, ρ̂2, would be to
evaluate ρ2 at the prior mode,

ρ̂2 = ||y − gQµ− b||2/σ2
Y .

Truncating at the first order, an approximation of the
likelihood in Eq. (3) is given by

f(y | r) ≈ exp
(
−||y−gQr−b||2/(2σ2

Y /V
′(ρ̂2))+ψ̂

)
,

where ψ̂ is given by

ψ̂ = −1

2

(
V (ρ̂2)− V ′(ρ̂2)ρ̂2

)
.

Repeating the argument in Proposition 1 gives the
following approximations.

Approximation 1. Let R ∼ VMF(µ, η), f(y | r) =
exp(−V (ρ2)/2), with g ∈ R+, b ∈ R3 and Q ∈ SO(3),
then

f(r | y) ≈ VMF(r; µ̂R|Y , η̂R|Y ),

f(y) ≈
exp

(
− ||y−b||

2+g2

2σ2
Y

)

exp(−ψ̂)

C3(η̂R|Y )

C3(η)
,

where

η̂R|Y = ||g/σ2
Y V ′(ρ̂2)QT(y − b) + ηµ||

µ̂R|Y = (g/σ2
Y V ′(ρ̂2)QT(y − b) + ηµ)/η̂R|Y .

For example, if f(y | r) is a Student’s t density with
ν degrees of freedom, then

V ′(ρ̂2) = (ν + 3)/(ν + ρ̂2),

and the posterior reverts to the prior for large ||y||.
C. Implementation considerations

In order to implement the filter, a zeroth order hold
method is recommended for the direction parameter µ̄(t),
that is assume Ω̆(t) is constant on the intervals [tk, tk+1)
and define δtk = tk+1 − tk, then

µ̄(t−k+1) = exp
(
− [Ω̆(tk)]×δtk

)
µ̄(tk).

Using Rodriguez’ formula, this simplifies to the expres-
sion given in Alg. 1 (see e.g [20]). Hence the evolution
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of µ̄(t) can be implemented with just 2 cross-products,
2 evaluations of elementary functions, and 2 vector
additions.

On the issue of numerically adequate integrators for
η̄(t), assume η̄(t) 6= 0 on the intervals [tk, tk+1). The
differential equation for η̄(t) can then be written as

∂tη̄(t) = −γ2A3(η̄(t))/[A′3(η̄(t))η̄(t)]η̄(t). (22)

The solution at tk+1 can then be written as

η̄(t−k+1) = exp

(
−
∫ tk+1

tk

γ2A3(η̄(τ))

A′3(η̄(τ))η̄(τ)
dτ

)
η̄(tk).

The integral in the exponent can be approximated by
the rectangle rule yielding the explicit scheme given in
Alg. 1. On the other hand, if the trapezoidal rule is used,
an implicit scheme is obtained, which can be solved by
fixed-point iteration.

Approximation 2. An implicit scheme, based on the
trapezoidal rule, for integrating Eq. (22) is given by

η̄(j+1)(t−k+1) ≈ exp

(
− γ2A3(η̄(j)(t−k+1))δt

2A′3(η̄(j)(t−k+1))η̄(j)(t−k+1)

)

× exp

(
− γ2A3(η̄(tk))δt

2A′3(η̄(tk))η̄(tk)

)
η̄(tk).

Note that the ratio A3(η)/A′3(η)/η can be written as

A3(η)/A′3(η)/η =
1− η coth η

η2 csch2 η − 1
,

where coth and csch are the hyperbolic cotangent and
hyperbolic cosecant functions, respectively.

VI. EXPERIMENTAL RESULTS

The proposed method shall be validated in simulation
studies as well as a real data experiment using a
smartphone, both pertaining to the estimation of the local
gravity vector. Hence, in the simulations, the performance
is assessed in terms of reconstruction accuracy of the
gravity vector as given by the norm error,

ε(tk) = ||gr(tk)− E[gR(tk) | Y (tk)]||,
where r(t) is the normalised local gravity vector and g
its magnitude (g ≈ 9.82 m/s2).

A. Simulations: gravity vector tracking

In this experiment the following system is considered

dΩ(t) = −1.5(s(t)− Ω(t)) dt+ dB(t)/100, (23a)
dR(t) = −[Ω(t)]×R(t) dt, (23b)

Ω̆(tk) = Ω(tk) + V̆ (tk), V̆ (tk) ∼ N (0, σ2
ωI), (23c)

Y (tk) | R(tk) = r ∼ exp
(
− V (ρ2k)/2

)
, (23d)

where ρ2k = ||y(tk)− gr||/σ2
a and

s(t) = −1/10e3χ[0,15](t) + 1/10e1χ(15,30](t)

+ 1/10e2χ(30,45](t) + 1/10e3χ(45,60](t).

Note that the stochastic differential equations in Eq. (23a)
are of state-independent diffusion type, hence the Stra-
tonovich and the Itô interpretations coincide. Therefore,
the system can be simulated using the fully implicit
midpoint rule [27], that preserves quadratic invariants
(i.e the norm of R). The system is simulated with a
sampling interval of δst = 2× 10−2 and the signals
are then downsampled by a factor M = 3. The system
parameters are θ = (σ2

ω, σ
2
a) and the filter will be assessed

for the parameter settings, θ1 = (1× 10−2, 1× 10−1),
θ2 = (1× 10−2, 1× 10−2), θ3 = (1× 10−4, 1× 10−1),
and θ4 = (1× 10−4, 1× 10−2). For all parameter
settings, V is set to correspond to Student’s t distribution
with ν = 3 degrees of freedom.

The system is simulated 100 times on the inter-
val t ∈ [0, 60]s for each parameter setting and two
implementations of the present filter are considered,
one using the explicit rule for integrating η̄(t) (CT1)
and the other using the implicit rule (CT2). These
implementations are compared to two versions of the
discrete-time von Mises–Fisher filter, one using moment-
matching (DT1) (see e.g. [4]) and the other using score-
matching (DT2) [17], both these implementations use an
Euler–Maruyama discretisation of Eq. (10) to compute
the predictive moments. Five iterations are used for the
fixed-point and Newton iterations of CT2 and DT1,
respectively. All the von Mises–Fisher based filters use
the update scheme presented in Section V-B and they
are initialised with µ(t0) sampled uniformly on S2 and
η(t0) = 1× 10−3. The last competitor is a Kalman filter
(KF) using the implementation in [3], with the addition of
using 5 variational Bayesian iterations for updating using
Student’s t distributed measurements (see [28], [29]).
The Kalman filter mean was initialised as µ(t0) with an
initial covariance of 1× 103I. The parameter γ was set
to γ = 5× 10−2 for all filters and all parameter settings.

The error, ε(tk), averaged over time points and
Monte Carlo trials is shown in Table I for the different
filter candidates. As can be seen, CT2 performs the
best, followed by CT1, and then DT1. On the other
hand, sometimes DT2 outperforms KF, though it can
also perform significantly worse. This is in contrast
to findings in [17] where DT1 and DT2 performed
similarly, however the simulation setting there is also
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significantly different. Additionally, the logarithm of the
Monte Carlo averaged trajectories of ε(t) is plotted
in Fig. 1. Furthermore, to gain insight into how η̄
behaves for the different von Mises–Fisher based filters,
the logarithm of Monte Carlo averaged trajectories of
the aforementioned is shown in Fig. 2. It appears that
DT2 underestimates η̄ at the prediction step, while
DT1 overestimates. CT1 and CT2 have very similar
trajectories for η̄(t) with the latter always being slightly
larger. Note that the experiments use a fairly small interval
between measurements (δt ≈ 6× 10−3 s). It is expected
that the contrast between the continuous and discrete time
filters grows for larger intervals between measurements.

The computational speed of the filters is shown in
Table II. As can be seen, DT1 is the fastest, followed by
CT1 and CT2. DT2 is slow due to a matrix inversion
in the prediction. KF is the slowest due to matrix com-
putations in both prediction and update step, particularly
the latter due to variational Bayesian iterations.

Table I
MEAN NORM ERROR OVER MONTE-CARLO TRIALS AND TIME FOR

ALL THE COMPETING FILTERS.

θ# CT1 CT2 DT1 DT2 KF
θ1 0.1176 0.1174 0.1189 0.2381 0.1533
θ2 0.0607 0.0589 0.0610 0.0778 0.0859
θ3 0.1167 0.1164 0.1183 0.2381 0.1527
θ4 0.0600 0.0581 0.0606 0.0777 0.0855

Table II
NUMBER OF SAMPLES PROCESSED PER SECOND FOR THE FILTERS.

CT1 CT2 DT1 DT2 KF
1 × 104/s 7.6344 7.0929 9.2602 2.881 0.7305

B. Accelerometer and magnetometer calibration

In the second example, the proposed method is used
for calibrating the accelerometer and magnetometer of
a smartphone [18], [19]. In this case, the objective is to
estimate the scale factors (i.e. the magnitude of the gravity
g and magnetic field m, which may not correspond to
their nominal values due to sensor inaccuracies) as well
as the biases (ba and bm). The considered measurement
models are

Ya(tk) = gRa(tk) + ba + Va(tk),

Ym(tk) = mRm(tk) + bm + Vm(tk),

where Va(tk) and Vm(tk) are mutually uncorrelated,
Gaussian, white noise sequences with covariances Iσ2

a and
Iσ2
m, respectively. Note that possible axis misalignment

is neglected (see, e.g. [19] for details).
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Figure 1. The logarithm of the error trajectories averaged over Monte
Carlo trials for the different parameter settings. Note that CT1 is
concealed behind CT2 and DT1.
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Figure 2. The logarithm of the average concentration parameter, η̄(t),
over Monte-Carlo trials for the different parameter settings.

For calibration, a Huawei Nexus 6P was strapped to a
cardboard box, which was gradually rotated around all
its faces, keeping it stationary for about 5 s on each face.
The initial bias and reference vector magnitudes was
then estimated using traditional sphere fitting [18], [19],
followed by maximizing the marginal log-likelihood as
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Table III
NEGATIVE MARGINAL LOG-LIKELIHOOD OF THE VALIDATION DATA

(LOWER IS BETTER).

Accelerometer Magnetometer
Uncalibrated 1.88 × 104 1.35 × 106

Sphere fit 1.87 × 104 2.97 × 104

Maximizing (18) 1.80 × 104 1.61 × 104

described in Section V. In the latter stage, the diffusion
coefficient and the measurement noise variances are also
estimated. The performance is evaluated by applying
the proposed algorithm on an independent validation
dataset and comparing the marginal log-likelihood to
the uncalibrated (i.e. zero bias and nominal values for
gravity and magnetic field strength) and calibrated using
sphere fitting cases. The validation dataset was collected
by arbitrarily rotating the phone around its own axes
without significant displacement.

Table III shows the negative marginal log-likelihood
of the validation data. As it can be seen, the proposed
algorithm performs best in both cases. For the accelero-
meter, the negative log-likelihood only decreases slightly
(roughly 4 % compared to the uncalibrated case). For
the magnetometer, however, the increase is much more
significant. The improvement from uncalibrated to the
sphere fit calibration is around 78 % and 46 % from
sphere fitting calibration to calibration using the proposed
approach. This is not a surprising result, since acceler-
ometers generally suffer from less sensor inaccuracies
compared to magnetometers.

C. Gravity tracking in smartphones

Similar to the simulation example above, tracking
the gravity vector is considered in the second real data
example. Specifically, the proposed method is evaluated
on two datsets gathered from a smartphone (Huawei
Nexus 6P). The first dataset corresponds to the typical
motion pattern when answering the phone: Picking up the
phone from a table, bringing it to the ear, and putting it
back to the table. In the second dataset, the phone is held
approximately constant in front of a person while walking.
These two mundane tasks pose challenging problems
for gravity tracking due to the significant acceleration
components superposed. The proposed method (CT2)
is compared to the Kalman filter-based gravity tracking
algorithm specifically designed for this purpose in [3].

Fig. 3 shows the measurement data for the first
experiment, together with the estimated (filtered) gravity
components. It can be seen that despite the covariance
adaptation made by the Kalman filter (see [3] for details),
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Figure 3. Accelerometer signals and the estimated gravity components
for the first data set (answering the phone).

this algorithm has the tendency to absorb the extra acceler-
ation into the gravity estimate, since it is not constrained
in magnitude (e.g. around t ≈ 3 s). Furthermore, the
covariance adaptation scheme also introduces a certain
lag in the tracking (e.g. around t ≈ 6.5 s).

Similar results are observed in the second experiment
(walking and observing the screen) as depicted in Fig. 4.
Walking causes very strong accelerations, which sig-
nificantly affect the Kalman filter and thus affect the
estimated gravity vector. This effect could be reduced
by increasing the measurement noise covariance, which,
however, would increase the lag for tracking the gravity
vector in the case when it actually changes. The proposed
method (CT2) on the other hand, is not significantly
affected by the extra acceleration present due to walking.

VII. CONCLUSION

A continuous-discrete von Mises–Fisher filter was
developed for spherical measurements distributions. The
method was validated in simulations, in sensor calibration
using data collected with a smartphone, as well as gravity
vector tracking for two smartphone use cases, showing
superior performance to state-of-the-art in all of the
experiments. It was found to be particularly robust to
unmodeled accelerations in the smartphone experiments.
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Figure 4. Accelerometer signals and the estimated gravity components
for the second data set (walking).

Future work involves online calibration as well as
handling elliptic likelihoods.
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