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A B S T R A C T

The growth of computing and Internet use have attracted the attention of the general public concerning the
carbon footprint of data centers (DCs). Previous research has focused on the implementations of energy effi-
ciency activities. However, little research has been published on the economic evaluation of waste heat utili-
zation in the DC industry. This paper aims to provide an economic investment assessment of DC waste heat
utilization. The contribution of this paper is the assessment of three different sized cases with realistic input
factors affecting the net present value (NPV) model. We contribute to the ongoing discussion on the energy
efficiency of DCs and provide a transparent assessment model for DC and district heating operators. We iden-
tified the positive NPV cases with high probability. The medium case has an NPV of 1.04 M€ (with uncertainty,
the results range from −0.332 M€ to 2.57 M€). The large case has an NPV of 16.3 M€ (with uncertainty, the
results range from 4.1 M€ to 30.2 M€). Both of these are clear-cut waste heat utilization investment proposals.
The small case NPV is −48.5 k€ (with uncertainty, the results range from −264 k€ to 143 k€). The small case is
sensitive to input factor values.

1. Introduction

The world requires energy and heat and is dependent on data cen-
ters (DCs). The majority of the global population lives in urban areas
and is responsible for approximately 70% of the total primary energy
usage. This share is expected to increase to 75% by 2030. In 2012, the
heating and cooling of buildings consumed 50% of the total energy
(European Commission, 2016). Nearly all this energy is from non-re-
newable sources (Zachary Woodruff, Brenner, Buccellato, & Go, 2014).
The Paris (COP21) agreement is expected to increase the use of re-
newable energy sources and energy efficiency activities. In addition, the
EU Energy Efficiency Directive aims to reduce energy consumption.

Global warming and the cost of energy have become a burden for e-
businesses and created public interest towards DCs energy consump-
tion. Currently, DCs consume about 1.1–1.5% of the world's total en-
ergy use (Ebrahimi, Jones, & Fleischer, 2014; Song, Zhang, & Eriksson,
2015). A 2017 study estimated the total amount of EU waste heat to be
3140 TWh (Stratego Project, 2016) (56 TW h is DC related (Ascierto,
Lawrence, Donoghue, & Bizo, 2015)). Waste heat recovery reduces CO2

emissions and other harmful gases (Ebrahimi, Jones, & Fleischer, 2015).
However, supporting policies are needed to accelerate the waste heat
utilization.

DCs are the main components of digitalization and cloud computing
(Nada & Elgelany, 2014). The number of DCs has grown due to the
increasing demand for data processing. Furthermore, the size of DCs has
increased, and there is an ongoing trend in the consolidation of DCs into
larger entities (Bardsiri & Hashemi, 2014; Song et al., 2015). The an-
nual increase in DC energy consumption is estimated to reach 15–20%
(Oró, Depoorter, Pflugradt, & Salom, 2015; Ebrahimi et al., 2014; Oró,
Depoorter, Garcia, & Salom, 2015). This change in the DC industry
favors the utilization of waste heat, as the heat sources are more sig-
nificant and can offer a secured supply of heat. Climate change can also
be considered a business opportunity for waste heat utilization equip-
ment manufacturers (Gaudard, 2015).

More transparency and open communication to attain sustainable
global business models and requirements are needed (Uddin, Alsaqour,
Shah, & Saba, 2014). There are two strategies to improve DC sustain-
ability: improving energy efficiency and increasing the use of renew-
able energy (N. Nada & Elgelany, 2014). Current energy efficiency ac-
tivities in DCs include increasing power-feeding technology efficiency,
aisle capping, reusing waste heat and fuel cell technology utilization (H.
Endo et al., 2013).

Energy efficiency is not currently a dominant design criterion for
DCs (Beloglazov & Buyya, 2010). Nevertheless, energy has become a
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critical factor in DC profitability and competitiveness (Afonso &
Moreira, 2017; Zachary Woodruff et al., 2014). In addition, the increase
in energy consumption will become a critical concern also to DC cus-
tomers (S. A. Nada, Said, & Rady, 2016). Energy consumption in DCs is
very high due to the increase in server density, 24/7/365 service hours
(Afonso & Moreira, 2017; H. Endo et al., 2013; S. A. Nada et al., 2016),
and because IT equipment manufacturers are integrating processors and
computing power at an accelerated pace. It is estimated that server
power consumption will double in the next three to four years following
the current trend (Afonso & Moreira, 2017).

In urban areas, DCs profile as a waste heat source of reliable, low
temperature, high capacity heat (Oró, Allepuz, Martorell, & Salom,
2018). Almost all of the information and communications technology
(ICT) electricity consumption can be converted into heat (Ebrahimi
et al., 2015; Zachary Woodruff et al., 2014). New DCs can be designed
with an ability to capture waste heat and distribute it to nearby cus-
tomers, such as homes, offices, swimming pools or greenhouses. A heat
reuse solution allows DCs to sell the waste heat to a third party, such as
a district heating (DH) operator. Solutions for waste heat utilization in
DH have been studied for example in (Davies, Maidment, & Tozer,
2016; Wahlroos, Pärssinen, Rinne, Syri, & Manner, 2018; Wahlroos
et al., 2018). The temperature of captured waste heat is limited by the
electronics, which must remain below 85 °C most of the time. The
quality and quantity of captured waste heat depend on the thermal
management system being used. Captured heat from air-cooled servers
is typically 35–40 °C, and thus it is sufficient for space heating as such.
DH is more suitable for higher waste heat temperatures. Liquid cooling
techniques provide waste heat temperatures of 50–60 °C.

DH is popular in the Nordic and Baltic countries, as well as in Russia
and China, which have high heat demands and cold winters. In contrast
to (Ebrahimi et al., 2014) where DC waste heat utilization in DH, in a
retrofit case, was defined as a questionable solution, we argue, it is a
very viable solution economically and ecologically. Utilizing DC waste
heat in DH has been studied to have a positive impact on DH production
in economic terms, as well as on the DC operator (Wahlroos et al.,
2018). One of the most important benefits of a DH network is that it can
adopt large amounts of heat, which make DC waste heat utilization
possible for larger DCs. Two alternative business models have emerged:
1) DC operator invests and operates waste heat equipment, and 2) DH
operator operates the equipment. The choice of a business model also
affects the pricing of waste heat energy. In this study, we investigate the
first alternative.

Little research has been published on the economic evaluation of
waste heat utilization in the DC industry. It is unclear if DC waste heat
recovery can be an economically solid investment and is it profitable to
all DCs with varying size? This paper aims to provide an economic
investment assessment of DC waste heat utilization using the net pre-
sent value (NPV) model for three different sized DCs. The data in this
model is based on empirical measurements of equivalent rack power
consumption, investment prices of equipment and simulated heat
market dynamics on a system level. The results together with the
marginal-price demand side simulation, investment prices from already
conducted projects and a transparent open source Monte Carlo simu-
lation tool (GitHub, 2018) on input factor sensitivity are novel con-
tributions to the researchers and industry stakeholders. In addition to
the purely economic NPV analysis, we have calculated specific energy
efficiency related metrics in our simulations. Calculated metrics are
energy reuse effectiveness (ERE) and energy reuse factor (ERF), which
are based on assumed PUE values for our case DCs.

The remainder of this paper is organized as follows. Section 2 de-
scribes the methods used in this study, Section 3 presents the results,
and in Section 4 we discuss the results followed by the conclusions in
Section 5.

2. Materials and methods

The capital expenditure (CAPEX) assessment decision criteria de-
pend on the objective of the opportunity. Some CAPEX opportunities
are accepted without quantitative criteria, such as investments in
maintenance, pollution reduction, safety improvements, or complying
with the legislation. Generally, CAPEX is subject to quantitative as-
sessment, with the level of detail depending on the size and risk of the
project and the managers' appetite for risk (Lane & Rosewall, 2015).

Financial analysis can be performed utilizing many models and
tools. Researchers have categorized the investment assessment methods
into five types; NPV methods, rate of return methods, ratio methods,
payback methods, and accounting methods (Kumar, Sharma, & Tewari,
2015). The best practices for investment efficiency evaluation include
net present value (NPV), internal rate of return (IRR), discounted
payback period (PB) (Kvon, Khamidullin, Samysheva, Vaks, & Mararov,
2016; Lane & Rosewall, 2015), return on investment (ROI) (Afonso &
Moreira, 2017; InvestingAnswers, 2018), total cost of ownership (TCO),
and real option analysis (ROA) (Gaudard, 2015). In this study, we will
use the NPV, IRR, discounted payback period and ROI. ROA is not
considered, as it is not suitable for our purposes in the case of waste
heat utilization.

Next, we will briefly go through the most common methods used for
financial analysis of investments. In addition, we introduce the NPV
model, related assumptions, a simulation of marginal cost based heat
demand, and methods used for uncertainty analysis.

2.1. Financial investment analysis

Lucrative capital investments lead to the prosperity of an economy,
providing solid reasoning to evaluate the NPV index (Kumar et al.,
2015). NPV is the most frequently used method for assessing the eco-
nomic effectiveness of an investment. It is especially suitable when
making passive first-time investment decisions. NPV considers cash
flows over an extended period of time (Adusumilli, Davis, & Fromme,
2016; Afonso & Moreira, 2017; Gaudard, 2015; Kumar et al., 2015;
Matos, Bentes, Santos, Imteaz, & Pereira, 2015). NPV leads into better
investment decisions because it recognizes a time value of money, de-
pends solely on the forecasted cash flows, and all values can be added as
they are present values (Brealey, Myers, Allen, & Mohanty, 2012).
Decisions based on average cost can be 10% worse compared to NPV
based decisions (Kumar et al., 2015). Finance theory endorses invest-
ment if NPV is positive with the chosen rate of return. Positive NPV can
be reached when the present value of cash inflows exceeds cash out-
flows (Adusumilli et al., 2016; Brealey et al., 2012). The NPV model
requires the following variables to be forecasted: 1) investments, 2)
operating revenues, 3) operating costs, 4) economic life of the project,
5) inflation rate, and 6) interest rate (Afonso & Moreira, 2017; Brealey
et al., 2012; Kumar et al., 2015). NPV is based on proven principles but
contains many assumptions resulting in an inherent uncertainty. Ac-
tualized results may deviate from expected long-term values
(Adusumilli et al., 2016).

To be able to compare an investment made to future cash flows, the
present value (PV) of future cash flows is computed with a rate of return
r (Afonso & Moreira, 2017; Henchoz, Weber, Maréchal, & Favrat,
2015). The r is dependent on the risk and the rate of return expected by
investors from similar ventures (Kumar et al., 2015; Matos et al., 2015).
In theory, r should be set with reference to a company's weighted
average cost of capital (WACC). WACC takes into account the capital
structure, debt, and equity of the company. In practice, r can be higher
than WACC when there is a higher risk in the project compared to the
company's operational risk level. There are as many r values as there
are businesses and industries. In some related assessments r= 5%
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(Gaudard, 2015; Oró et al., 2018) was used, in the DH project r= 6%
was used (Henchoz et al., 2015), and in the water management industry
r= 5% (Adusumilli et al., 2016) was used. The Deloitte 2014 CFO
survey found 90% of companies used an r value exceeding 10%, and
half r exceeding 13%. A higher r can be used to compensate for un-
certainty from the positivity bias in future cash flow estimations (Lane
& Rosewall, 2015). NPV is a sum of these present value cash flows
(Matos et al., 2015). Three general rules must be followed; 1) only cash
flow is relevant, 2) cash flows need to be estimated on an incremental
basis, 3) treatment of inflation needs to be consistent (Brealey et al.,
2012).

Calculating NPV has four critical steps: 1) estimation of future op-
erating free cash flows (OFCF), 2) estimation of a rate of return factor r,
and discounting the future cash flows into the PV, 3) computing the
NPV value, and 4) evaluating the results (Brealey et al., 2012). The NPV
value is calculated from Eq. (1).

=
+=

NPV OFCF
r(1 )i

n i
i0 (1)

=i n years1. ..

We also calculated the internal rate of return (IRR) (Brealey et al.,
2012). It is used to estimate the profitability of investments. IRR is an r
that makes NPV of an investment opportunity equal to zero (Afonso &
Moreira, 2017; Matos et al., 2015). A project should be approved if the
IRR of the project is higher than the selected rate of return factor (Lane
& Rosewall, 2015). All investment opportunities with IRR below the
risk-free rate are unprofitable under present market conditions
(Gaudard, 2015). IRR value is calculated from Eq. (2). IRR is the r at
which the PV of future cash flows equal the investment made (Afonso &
Moreira, 2017).
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To strengthen our analysis, we calculated the ROI percentages. ROI
is an index representing the ratio between earnings and the amount
invested (Afonso & Moreira, 2017). The higher the ROI%, the better the
investment. Note that ROI does not take the time value of money into
account as NPV does. Basic ROI% is calculated (InvestingAnswers,
2018) from Eq. (3):

=ROI Net Operating Profit After Taxes
Investment

% *100 (3)

Payback period is the inverse of ROI (Afonso & Moreira, 2017). It is
time the project is expected to take to earn revenue equal to the capital
cost within the discount period. It is calculated as the ratio between
total CAPEX and the cash flow, taking into account the rate of return
factor. The payback method does not take cash flows into account after
the cutoff period (Matos et al., 2015). The payback period is often used
together with the NPV analysis. A payback period of around three years
is considered a reasonable level (Lane & Rosewall, 2015). The payback
period is calculated with Eq. (4) (Matos et al., 2015):

=
+

+
PB

p R
R R

p

p p 1 (4)

=p time in years before the accumulated

discounted cash flow becomes positive

=R discounted cash flow accumulated in period pp

= +R discounted cash flow accumulated in period p 1p 1

The total cost of ownership (TCO) evaluates the economic impact of
the use of the investment. It is used to assess the real total costs of

building, owning and operating a facility. TCO is a sum of CAPEX,
operating expenses (OPEX), replacement costs (REC) and residual value
(RV). When REC and RV are equal to the assessment period, they can be
discarded. We will not use TCO as a key performance indicator (KPI).

ROA allows longer-term considerations. It is useful in situations
with high uncertainty and flexibility of possible outcomes. In ROA, a
risk-neutral behavior is assumed. ROA provides a more optimistic
outcome than NPV (Gaudard, 2015). We will not use ROA as a KPI.

2.2. NPV model for waste heat utilization investment

For NPV modeling, we made assumptions and simplifications: 1) a
typical rate of return factor for a similar venture is 15% (Brealey et al.,
2012), 2) a 10-year depreciation plan for the waste heat capturing and
heat pump devices, 3) change in working capital is not relevant, 4)
annual growth rate of power consumption decrease per rack is con-
sidered zero, 5) ramp-up time from initial capacity to full capacity is 24
months, 6) nominal cash flows are used for estimation, 7) tax rate is The
Organisation for Economic Co-operation and Development (OECD)
average 22.34% and tax-shield is not used, 8) the measured power
consumption or 4.286 kW per rack is used for each case, 9) heat re-
covery rate is fixed at 97%, 10) employer costs, on top of monthly
salary, are OECD average 14.4% (OECD publishing, 2017), 11) coeffi-
cient of performance of 3.75 is used for priming the heat, 12) the
average salary annual base growth is 0,6% (Partington, 2017), 13) a
maintenance specialist’s monthly salary is 4000 €, and 14) a business
manager’s monthly salary is 6000 €.

In the following sections, we define the input factors and methods
used in the NPV model. The construction phases of the NPV model are
presented in Fig.1.

2.3. Phase 1: generic NPV model input factors

In the following sections, we provide reasoning for our NPV model
generic input factors. These factors remain the same for all cases. The
rate of return factor has been set to a level of 15%, which is a typical
value for a project considered as an expansion of the existing business
(Brealey et al., 2012). The investment into waste heat capturing
equipment is made on December 31st, 2015, and the depreciation plan
is set to 10 years. Due to the conservative nature of data centers on
long-term investments, we have estimated depreciation plan of ten
years for the investment based on an interview with a Finnish waste
heat recovery system provider Calefa Oy (Porkka & Niiranen, 2018).
The payback time is short in comparison to lifetime of the waste heat
recovery equipment and infrastructure, which typically ranges around
15–20 years. Shorter payback time reduces the risks for the investment.

There are no products in stock and the payment period is the same

Fig. 1. NPV model phases.
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as the invoicing period, resulting in a net effect of zero in working
capital. The annual growth rate of power consumption per rack is
considered zero in our NPV calculation, while the model allows yearly
changes to the growth rate. The reasoning behind the zero growth is
based on the simultaneous increase in the number of computations per
kWh (Koomey, 2010) and the amount of data being processed
(Mohanty & Routray, 2017). We assume a zero net effect. The flat rate is
a source of uncertainty.

We use a ramp-up time of 2 years. The DC starts with initial setup,
after which there is significant pressure to increase the capacity to its
full potential, to make the DC business case positive. Running the fa-
cility under full capacity is an economic failure of the whole DC in-
vestment. We use nominal cash flows and do not consider the effect of
inflation. Nominal cash flows are typically used for estimating the fu-
ture cash flows. The tax rate of an average OECD corporation, 22.34%,
is used (OECD, 2018). The tax-shield has not been taken into account to
simplify the NPV model. All of the factors above have inherent un-
certainty.

Several studies have investigated rack power consumption. In a
2014 study, per rack power consumption in a legacy DC was reported to
be 7 kW, and in a modern DC 10–15 kW, and a rack full of blade servers
21 kW. In 2014, The American Society of Heating, Refrigerating and
Air-Conditioning Engineers (ASHRAE) estimated power consumption to
be up to 60 kW per rack with an extreme density of IT-equipment, and
35 kW for a rack with an extreme density of computer servers (Ebrahimi
et al., 2014). A 2015 study reported a traditional rack consumes
1–6 kW, and high-performance computing (HPC) racks of up to 30 kW
of power (2015b, Oró, Depoorter, Garcia et al., 2015). A 2018 study
reported power usage of 23.6 kW per rack (Oró et al., 2018). A 2016
study reported the power consumption of a typical low rack to be
3.5 kW (S. A. Nada et al., 2016). The high variance between the dif-
ferent power consumption per rack values can be the result of some
studies using theoretical maximums rather than actual operative power
consumption figures of racks in production.

When power densities of racks rise, cooling becomes a challenge.
For a rack with low power density, the air flow rate is lower and cold air
does not reach the servers in the upper cabinets of the rack, causing the
temperature rise of these servers. At a high rack power density of 7 kW
and above, the air flow rate is high. The high velocity of the air moves
the air up with high momentum, and passes the servers of the lower
cabinets, resulting in hot spots around these servers. In addition, high
momentum air produces a cold air bypass between cold aisles to the hot
aisle at the top of the rack (S. A. Nada et al., 2016), increasing the need
for liquid cooling solutions with high power density racks (2015b, Oró,
Depoorter, Garcia et al., 2015). We use the same measured power
consumption per rack value in all cases. The measurement is taken from

an actual service provider DC with multiple customers. The setup of the
measured normative rack is presented in Fig. 2.

The rack contains two FX2 Dell blade chassis, four blade servers
with two top-of-rack (TOR) switches each and nine Elastic Sky X (ESX)
hosts. We measured the power consumption of the normative rack for
one-week period. The power consumption daily average ranged from
4.217 to 4.355 kW. For the NPV model, we used the average power
consumption of 4.286 kW. It is at the lower end of the range of the
previously presented studies. Rack power consumption has a high im-
pact on the NPV model, as cooling costs are not included in our eco-
nomic assessment. Power consumption per rack is a source of un-
certainty in our model.

For heat recovery rate, we use 97% as Lu et al. suggested (Lu, Lü,
Remes, & Viljanen, 2011). The heat recovery rate contains uncertainty.
We assume the annual base growth of salaries to be OECD eurozone
2017 forecasted average 0.6% (Partington, 2017) and naturally this is a
source of uncertainty. To avoid linear growth of salaries and to simulate
the real job market conditions, we added an independent and identi-
cally distributed (IID) random variable on top of the base value with the
expected value of 1.6%. Based on an interview with Calefa Oy, a
coefficient of performance (COP) value of 3.7 was utilized for priming
the circa 35 °C waste heat to circa 80 °C (Porkka & Niiranen, 2018). This
is a fair estimation, as the literature suggests COP values between
3.0–6.0 (Davies et al., 2016) depending on the temperature differences.
However, it contains uncertainty. From the interview with the Calefa
Oy, we identified the key roles required for the waste heat utilization
operations phase. These roles include a maintenance specialist and a
business manager. In a 2015 study, the average full-time job equivalent
salary was 8719 €/month (Henchoz et al., 2015). We estimated the
average monthly salary of a maintenance specialist to be 4000 € and
6000 € for a business manager. There are uncertainties also in the
salaries. All case independent assumptions are presented in Table 1.

In the following subsection, we will first introduce the three cases
and go through the assumptions we have made for each case. Secondly,
we provide reasoning behind the key components of the NPV model:
total revenue, cost of goods sold (COGS), other costs, and investments.
Together these form the OFCFs, which are discounted to the PV. We will
also present the sources of uncertainty in our model.

2.4. Phase 2: case related input factors

We have created three cases. The first case is a small DC with a
maximum capacity of roughly 50 racks. This case represents a typical
small-scale service provider DC or a local DC of a multinational com-
pany with a variety of digital services hosted and managed. The second
case is a medium size DC with 500 racks. This case represents a typical

Fig. 2. Rack setup.
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service provider DC, serving multiple customers with infrastructure as a
service (IaaS), platform as a service (PaaS) and software as a service
(SaaS) services. The third case is a large DC with a maximum capacity
of 5000 racks. This case represents a large service provider DC offering
colocation, IaaS, PaaS, and SaaS fully managed services on an industrial
scale for multiple customers and other service providers. We have as-
sumed that all cases start with a greenfield DC with a space utilization
rate of 20%, growing to the maximum capacity within 24 months lin-
early, with a fixed monthly growth rate of 7.25%. The growth rate and
the initial utilization rate are sources of uncertainty.

The investment input in the NPV model should have realistic esti-
mates of all the required equipment and include the latest cost of these
components (Kumar et al., 2015). An investment into waste heat re-
capturing equipment includes the following components: 1) heat reuse
equipment, 2) a connection to a DH operator, 3) setup project, 4)
piping, and 5) heat pumps. In the small case, according to Calefa Oy, a
small heat reuse device is sufficient. In a 2018 study (Oró et al., 2018),
the cost of heat reuse equipment in a 118 kW DC was 55,000 €. It is
lower than the investment price of a heat reuse solution (80,000 €)
suggested by Calefa Oy (Porkka & Niiranen, 2018). The contents of
these different setups are unclear, and therefore a comparison is not
worthwhile. According to Calefa Oy, in larger cases, there is a marginal
capacity increase between each 2MW of rack power consumption
(Porkka & Niiranen, 2018). After each 2MW capacity increase in racks,
a new block needs to be added. In the medium case, the 2MW block is
invested immediately. In the large case, the investment is divided into
two years, aligned with the ramp up time.

The connection to a DH operator is a significant source of un-
certainty. We assume a close connection between a DC and a DH op-
erator. In demanding urban environments, setting up a connection can
be hundreds of thousands of euros when streets need to be opened up.
The project costs are estimations by Calefas reference projects. Projects
depend on the DC and many other variables and are a source of un-
certainty. The level of project uncertainty increases as the size of the DC
increases. Waste heat reuse requires piping for the devices; we used
prices for piping based on Calefa’s references. The prices for heat pumps
are estimated similarly to heat reuse devices; every 2MW adds a new
block. The small case can utilize smaller devices. The equipment prices
contain uncertainty. According to Calefa Oy, retrofitting an old DC with
waste heat capturing capability is typically a similar investment com-
pared to a greenfield DC.

From the interviews with a waste heat capturing equipment man-
ufacturer and distributor Calefa Oy, we estimated the required number
of employees for steady state waste heat utilization operations phase.
We claim that resourcing must be based on capacity to react to possible
outages, so we added resources on top of the estimations by Calefa Oy.

Marketing is estimated to be a percentage of sales, and it is highest
in the small case, as more marketing activities are needed to get con-
tracts. In medium and large cases the amount of heat is higher and
fewer large customers are needed. In addition, marketing activities are
focused on the first two years, during which the contracts for waste heat

utilization must be made. Marketing is a source of uncertainty.
In a 2015 study, the maintenance cost was considered to be 1–1.5%

of the investment cost for the heat pumps, chillers, and boilers (Kumar
et al., 2015). Maintenance cost is driven by labor, so it is expected to
grow 1.2% annually (Henchoz et al., 2015; Kumar et al., 2015). Calefa
Oy reported a maintenance cost of 200 €/month for the small case (3%
of the investment including heat reuse equipment, piping, and a heat
pump), 800 €/month for the medium case (1.38% of the investment),
and 8000 €/month for the large case (1.40% of the investment) (Porkka
& Niiranen, 2018). All figures are in the range of the aforementioned
study results, thus contain uncertainty. Rent, computers, accounting
services, and legal services are assumed as a fixed cost related to the
size of the case. There is uncertainty in our estimations. Table 2 pre-
sents the cases and the key characteristics of each.

2.5. Phase 3: case related simulated input factors

DH pricing is one of the critical factors in the profitability of waste
heat utilization. Due to the current DH system structure and pricing, it
is typically not transparent how much DC operators pay for external
heat (Wahlroos et al., 2018). In our simulations, we have decided to
utilize a marginal-cost based, dynamic pricing method for waste heat.

Dynamic pricing is a novel approach for DH, which is currently not
utilized in DH as it is. However, opening DH markets and introducing
marginal cost based pricing has been foreseen as one of the most ex-
citing development points in the near future. Dynamic pricing is com-
monly used for electricity trading, but dynamic pricing for DH has been
suggested for example in (Difs & Trygg, 2009; Dominković, Wahlroos,
Syri, & Pedersen, 2018; Mäkelä, 2014; Sun, Li, Wallin, & Zhang, 2016).
Heat production units are dispatched according to the costs of pro-
duction units. In dynamic hourly pricing, marginal prices reflect the
marginal cost of the marginal unit in the system (Li & Hedman, 2015),
i.e., the total hourly marginal cost is the marginal cost of the most
expensive production technology. In dynamic pricing, every producer is
paid according to the total hourly marginal cost. Typically, it is fossil-
fuel based heat only boilers, which sets the hourly total marginal prices.
With dynamic pricing, the price of heat would be higher when demand

Table 1
Case independent assumptions.

General Value Reference

Rate of return 15.0% (Brealey et al., 2012)
Depreciation plan (years) 10 (Porkka & Niiranen, 2018)
Power consumption per rack kWh increase/decrease 0% Estimated
Tax rate 22.34% (OECD, 2018)
Heat recovery rate 0.97 (Lu et al., 2011)
Salary employer costs factor 0.144 (OECD publishing, 2017)
Power consumption per rack kWh (measured) 4.286 Measured
The coefficient of performance (COP) for heat pump 3.75 (Porkka & Niiranen, 2018)
Salary annual base growth 0.6% (Partington, 2017)
Maintenance specialist salary €/month 4000 (Porkka & Niiranen, 2018)
Business manager salary €/month 6000 (Porkka & Niiranen, 2018)

Table 2
Case-specific assumptions.

Case Small Medium Large

The initial number of racks 10 100 1000
Monthly growth rate 7.25% 7.25% 7.25%
Capital investment 115000 775,000 7370000
Depreciation/Amortization 11500 77500 737000
Maintenance specialist 0.2 0.5 1
Business manager 0.2 0.5 1
Marketing costs % of sales 5% 2% 0.5%
Maintenance service €/month 200 800 8000
Marginal rent, computers, accounting fees, legal

fees per month
500 1500 15000
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is higher, i.e., in the wintertime and lower in the summertime. As dy-
namic pricing depends on heat production technologies, the marginal
prices would be different in separate DH networks.

We have used simulated hourly marginal costs in Espoo DH based
on the modeling in (Dominković et al., 2018), which are further utilized
in the NPV model. It was estimated that a DH operator would pay a DC
operator according to marginal costs, minus a five €/MWh premium,
which accounts for the network related costs of the DH network op-
erator. Fig. 3 presents the monthly marginal costs used for waste heat
pricing. Simulated hourly marginal prices vary between 14.7 and 57.8
€/MWh (see Appendix A Fig. A1 for hourly values).

Electricity price is one of the most significant factors in our NPV
model. A 2015 study reported an average electricity price of 0.08
$/kWh (Ebrahimi et al., 2015), while a 2017 study used an average cost
of electricity 0.11 €/kWh (Afonso & Moreira, 2017). A 2018 study
conducted in Spain used an electricity price of 0.099 €/kWh. Similarly,
the price for Switzerland was reported to be 0.15 €/ kWh in 2015, with
an average rise of 1.2% in the price in 1980–2010. A global electricity
price increase of 3% was estimated (Henchoz et al., 2015). The EU
energy trends for 2030 report suggest a 5% yearly average increase in
industrial electricity prices (Sevencan, Lindbergh, Lagergren, & Alvfors,
2016).

Electricity costs for priming the waste heat are calculated based on
the estimates of monthly electricity prices by Statistics Finland (in-
cluding energy fees, transmission fees, and taxes) (Statistics Finland,
2018). Larger customers typically have lower electricity prices. We
have chosen different electricity prices based on the statistics for dif-
ferent sized data centers, based on their total consumption profile.

Large electricity consumers typically secure their electricity by for-
wards or futures. Since futures may not be available upfront for ten
years, we have extrapolated electricity prices for the simulated time-
frame in the scenarios based on the development of the price of elec-
tricity between 2009 and 2017 in.(Statistics Finland, 2018). Fig. 4
presents the forecasted expected value development of electricity prices
for the different cases. Electricity prices are expected to decrease rather
than increase in our cases, and thus electricity prices contain un-
certainty.

There is an issue regarding electricity costs for DCs in Finland which
must be noted. Over 5MW DCs have a lower tax level in Finland, i.e.,
7.03 €/MWh compared to the regular 22.53 €/MWh electricity tax.
However, data centers must own the heat pump to be entitled to the
lower tax level.

The COP for heat pumps has been estimated to stay constant
throughout the year. It has been estimated based on the assumption
that waste heat would be supplied to DH at 80 °C. In reality, the COP
value shifts during the year depending on DH supply and return tem-
peratures. Also, waste heat could be supplied at a lower temperature
during the summertime, which would increase the COP of the heat
pump. However, we have estimated a constant supply temperature of
80 °C, which would be sufficient for approximately 80% of the hours or
more in Finland.

2.6. Phase 4: NPV model population

2.6.1. Total revenue
In the case of waste heat utilization, the revenue originates from

heat captured and sold to the buyer. The buyer could be a DH operator,
a greenhouse, a spa or other user of waste heat. In our NPV model, we
assume all waste heat is sold to a DH operator. Heat prices are simu-
lated with Matlab. The total revenue is dependent on the number of
racks, the power consumed per rack, the power consumed for priming,
heat recovery rate and heat price. We calculated revenues on a monthly
basis for each case separately using Eqs. 5–8, to take seasonal fluctua-
tions of heat prices into account.

Total energy consumed GWh/month=Number of racks× Power
consumed per rack kWh × (1+power consumption increase per rack)
× 720 h / 1000000 (5)

Total energy consumed for priming GWh/month=Total energy con-
sumed GWh/month × Heat recovery rate / COP (6)

Heat captured=Total energy consumed GWh/month×Total energy
consumed for priming GWh/month × Heat recovery rate (7)

Total revenue=Heat captured × Heat price (8)

The average price of heat for future years contains uncertainty. The
total revenue for 2016 is presented in Appendix B, Table B1. The values
for 2017–2025 were calculated in the same manner.

2.6.2. Cost of goods sold
The COGS should only include direct costs related to the generation

of the revenue (Kumar et al., 2015). There are several indirect and
direct costs related to any business opportunity. Therefore we want to
isolate the COGS related only to the waste heat business directly. COGS
include employees directly working with waste heat capturing business
processes, electricity costs incurred by improving the temperature from
35 °C to 80 °C, and the price of electricity. We calculated monthly COGS
for each case separately. The Eqs. (9–12) were used to calculate the
total COGS per month.

Cost of Maintenance employees=Number of maintenance specialists
× Maintenance specialists salary× Salary employer cost factor
×Annual growth of salary / 12 (9)

Cost of Business employees=Number of business managers * Business

Fig. 3. Monthly marginal costs of DH production, which were utilized for waste
heat pricing. Values have been simulated in the same method as in (Dominković
et al., 2018). The x-axis denotes the months of one year. The y-axis denotes cost
in €/MWh.

Fig. 4. Electricity price developments in different cases. The x-axis denotes
month/year. The y-axis denotes the electricity price in cent/kWh. The prices
include energy fees, transmission fees, and taxes (Statistics Finland, 2018).
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managers salary × Salary employer cost factor × Annual growth of
salary / 12 (10)

Total cost of priming=Total energy consumed for priming GWh/
month (5) × Electricity price €/GWh/month (11)

Total COGS=Cost of Maintenance employees+Cost of Business em-
ployees+ Total cost of priming (12)

The electricity used for priming is taken from a technical specifi-
cation, thus introducing uncertainty. The electricity price projection for
future years contains uncertainty. The total COGS for 2016 is presented
in Appendix B, Table B2. The values for 2017–2025 were calculated in
the same manner.

2.6.3. Other costs
In addition to the direct costs, we have to include relevant allocated

costs to create a realistic NPV model and cash flow projections. Other
costs include marketing costs, maintenance fees from equipment man-
ufacturers, rent, computers, and accounting and legal fees. Maintenance
fees are gathered from the actual maintenance service conducted by
Calefa Oy. Marketing is assumed relative to revenue. The rest is as-
sumed to be fixed marginal monthly recurring costs. The Total other
costs have been calculated using Eqs. (13,14). The Total other costs for
2016 is presented in Appendix B, Table B3. Values for 2017–2025 were
calculated in the same way.

Marketing costs= Total revenue * Marketing costs % of sales (13)

Total other costs=Marketing costs+Maintenance service fee+
Marginal rent, computers, accounting fees, legal fees per month (14)

2.6.4. Investment
The total investment is a sum of all costs incurred. We assume all

costs are activated to a balance sheet. With the small and medium cases,
all investments were made in 2015. With the large case, in 2015, the
connection to a DH operator, piping, project costs and one-third of the
heat reuse and heat pump investments actualized. The other two-thirds
actualized between 2016 and 2017. Table 3 presents the investments
required for each case.

2.7. Phase 5: waste heat utilization metrics

Objective, standardized monitoring and measurement of energy
efficiency are needed (Jeong & Kim, 2014; Lajevardi, Haapala, &
Junker, 2014). There are weak signals from DC operators using the
energy reuse efficiency (ERE) and energy reuse factor (ERF) to indicate
how much waste heat is utilized outside of the DC facility. Energy ef-
ficiency and energy consumption metrics are essential. Unfortunately,
there is a new DC phenomenon called the metrics sprawl. Power con-
sumption, overall availability, and energy efficiency have become the
targets of this sprawl (2015b, Oró, Depoorter, Garcia et al., 2015).
Transparency in metric results is essential for large-scale adaptation of
waste heat utilization.

The Green Grid and the International Organization for
Standardization (ISO) have proposed the ERF. The ERF is defined as the

outside reuse of DC waste heat. ERF is calculated as the ratio of energy
reused divided by the sum of all energy consumed in a DC. The total DC
energy consumed includes power delivery, UPS systems, switchgear,
PDUs, generators, cooling systems, lighting and other supporting sys-
tems. Transfer losses are not included. The DC industry and standar-
dization use ERF to quantify the external waste heat usage of DCs. ERF
values higher than 45% are found in a few studies conducted (Henchoz
et al., 2015). ERF is calculated with the Eqs. (15,16):

=PUE E
E

DC

IT (15)

= =ERF E
E

E
E PUE*

Reused

DC

Reused

IT (16)

ERE has been introduced to measure waste heat capturing strategies
(Uddin et al., 2014). ERE is a modification of a widespread PUE metric
(Patterson, Tschudi, VanGeet, & Azevedo, 2011). ERE is calculated with
the following Eq. (17):
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Power consumption distribution of a 200 kW DC was; IT 58.3%,
cooling 37.1%, and lighting and others 4.6% (Afonso & Moreira, 2017;
Ebrahimi et al., 2015). In 10 random DCs, the range of power con-
sumption was: IT 45%, cooling from 30% to 55%, power distribution
13% and lighting 3% (Song et al., 2015). Several recent studies suggest
that on average 40% of the power is consumed by cooling (S. A. Nada
et al., 2016; Oró, Depoorter, Garcia et al., 2015, 2015b; Zachary
Woodruff et al., 2014). Based on these results, the power usage effec-
tiveness value (PUE) is within the range from 1.72 to 2.22. We calcu-
lated ERF and ERE for each case with the assumed PUE.

2.8. Phase 6: uncertainty analysis methods

We present a comprehensive sensitivity analysis to meet the validity
objective of the results. The aim is to identify the critical parameters
influencing the decision-making process and to quantify the degree of
influence (S. F. Santos et al., 2017). As a definition, uncertainty in in-
formation means incomplete or inaccurate information. Similarly, for
an investment or a project, risk means the actualization of conditions
resulting in unwanted consequences (Kvon et al., 2016). Sensitivity
analysis is the method to increase the reliability of the NPV model re-
sults. In a sensitivity analysis, the impact of a factor change to the
outcome of the model is investigated (Kvon et al., 2016). As a rule of
thumb, The United Nations Industrial Development Organization
(UNIDO) methods suggest changing critical parameters within the
range from -20% to +20% (Kvon et al., 2016). We have used this
method whenever no better information was available on the un-
certainty.

Sensitivity analysis includes the following steps: 1) definition of the
most probable and influential input factors, 2) NPV is calculated with
the Expected scenario input parameters, 3) NPV is calculated in a se-
quence when the primary input factors change, and 4) the results are
summarized into a table and sensitivity is evaluated per each factor
(Kvon et al., 2016). Drawbacks of sensitivity analysis include: 1) it does
not include all circumstances influencing investment decision, and 2)
factors may not be discrete but instead have a correlation dependence
on each other (Kvon et al., 2016). Alternative methods include the
elasticity coefficient measurement. The elasticity coefficient measures a
change of one unit in the input factor and the corresponding impact on
the output value of the model. If the change in the output is more than
the change in the input factor, it is considered elastic. If less, it is in-
elastic (Kvon et al., 2016).

Another alternative to sensitivity analysis is the scenario analysis
method. In the scenario analysis method, alternative options with an

Table 3
Total investments for each case.

Case Small Medium Large

Heat reuse 10000 90000 990000
Connection to DH 20000 50000 400000
Project 15000 30000 150000
Piping 10000 30000 330000
Heat pump 60000 575000 5500000
Total investment 115000 775,000 7370000
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actualization probability of each option are investigated. Commonly
three different scenarios occur; optimistic, expected, and pessimistic
(Kvon et al., 2016). The scenario analysis method includes the fol-
lowing steps: 1) develop possible scenarios for the investment, 2) define
the NPV in each scenario, 3) define the probability of implementing the
scenario, and 4) calculate the expected NPV by taking probabilities into
account (Kvon et al., 2016).

We present all factors with estimated uncertainty levels influencing
the NPV model output in Appendix C, Table C1. All factors are assumed
to be discrete and do not have any correlation between the two factors.
Meaning that even though all factors are subject to uncertainty and
variability, the variation or uncertainty of one factor is entirely dif-
ferent from that of another factor (S. F. Santos et al., 2017). The un-
certainty of three factors increases as time advances. We identified the
following factors with increasing uncertainty: power consumption per
rack growth, heat price and electricity price. For these factors, we
added an annual growth to uncertainty. It is far more uncertain to
predict heat and electricity prices for 2025, compared to 2019 for ex-
ample.

We investigated the simultaneous effect of variability of the most
significant factors with a Monte Carlo simulation on the five most sig-
nificant factors affecting the NPV model outcome. The Monte Carlo
simulation generates multiple scenarios for representing possible rea-
lizations of uncertainties (Wu, Shahidehpour, Alabdulwahab, &
Abusorrah, 2015). The simulation was coded with Python. We modeled
a simplified NPV model for the simulation. The factors included in the
simulation were heat price, electricity price, COP, the rate of return and
total investment. We used the Expected scenario values as input for the
simulation. We made the following simplifications to the NPV model: 1)
tax shield is not used, 2) all values are averaged and aggregated to year
level, 3) the four separate parts of the investment project are aggregated
to one total investment, 4) ramp-up time is taken into account as an
average number of racks during a 10 year period, and 5) the medium
case was used to populate other case-specific factors with multipliers to
two remaining cases. The fixed input variables, case-specific variables,
simulated variables with ranges, and the total number of possible
combinations of factor values, are presented in Appendix C, Table C2.

We have run the simulation 3 million times. Utilizing averages
across the time frame benefits the revenue during ramp-up time, thus
gives a penalty for costs. The rate of return has a more significant effect
as time advances, thus creating small uncertainty to the distribution.
The distribution of each case is within the Min and Max of the range for
the scenario.

3. Results

The results of our NPV model Expected scenario are presented in
Appendix D, Table D1. Section 2 defines the NPV input variables that
form the Expected scenario results. Based on these results, the small
case appears to create a negative NPV, indicating an unprofitable in-
vestment with the assumptions and inputs given to the model. Both
medium and large cases give a positive NPV. Nevertheless, the small
case has a positive ROI, indicating the case being sensitive to changes in
input variables, such as the rate of return factor. The IRR of the small
case is 7.05%, which is below the expected rate of return. It should be
noted that IRR must be above the company WACC, preferably above the
rate of return.

The discounted payback period in the small case is over than ten
years, which was set as the scope of our assessment. We set all factors to
minimum and maximum to investigate the investment KPI range. The
total uncertainty in the small case [Min, Max] was [322%, -458%]. The
negative NPV in the Expected scenario provides non-intuitive results
(i.e., negative values for Max scenario). The uncertainty is considerable,
and the small case is sensitive to input factor variation. Similarly, both
the medium [-148%, 130%] and large [-87%, 75%] cases imply im-
proved sensitivity against uncertainties when the case size increases.

The medium case has a positive NPV in the Expected and Max sce-
narios. The large case is positive even in the Min scenario. The dis-
counted payback period for medium and large cases varies from 1.82 to
5.14 years depending on the scenario and case. The ranges of invest-
ment assessment KPIs are presented in Table 4.

We analyzed discounted cash flows (DCFs) and earnings before in-
terests and taxes (EBIT) for each case with Expected, Min and Max
scenarios to visualize the effect of uncertainty in results as a function of
time. Fig. 5 shows the increasing uncertainty as a function of time.

Variation between Min, Expected and Max scenarios are large. In
the large case, all KPIs are positive in all scenarios; it is not sensible to
input factor variation from the investment decision-making perspective.
Fig. 6 summarizes different KPIs between scenarios and cases.

Table 5 presents energy efficiency metrics in different cases. We
estimated initial PUE values for the DCs without waste heat utilization
based on the literature review. Small, medium and large cases were
considered to have initial PUE values of 2.2, 1.97, and 1.72, respec-
tively. Electricity consumed by a heat pump increases the total power
consumption of a DC. ERF values for DCs vary between 0.5–0.62, which
indicates that over 50% of the total energy consumption can be re-
covered via waste heat recovery from processing load.

3.1. Uncertainty analysis results

We investigated the combined impact of the most significant factors
in our NPV model. The investigation was carried out by programming a
simplified Monte Carlo simulation and randomizing the five factors
under investigation. The five identified factors with ranges [minimum,
maximum, step] were: heat price €/MWh [36.7, 55.1, 10], electricity
price €/MWh [64.5, 96.8, 10], rate of return [0.18, 0.12, 0.001], total
investment factor [0.8, 1.2, 0.01] and COP [2.813, 4.687, 0.1]. The
total number of possible permutations is approximately 255 billion. We
simulated 3 million rounds, approximately 1 million rounds for each
case. The Monte Carlo simulation NPV distributions for all cases have
been presented in Fig. 7.

The small case NPV output is negative with significant probability.
All distributions follow the normal distribution to a large extent. The
expected value of normally distributed results is the mean of the results
as n approaches infinity. The expected value of distribution in the small
case is -40.04 k€ with the standard deviation of 50.79 k€. These results
are aligned with the Min and Max scenarios for the small case. The
expected value of the simulated small case is 8445 € higher than in the
Expected scenario, which is understandable as only the five most sig-
nificant factors were simulated. In addition, the range of simulated
results is within the Min and Max scenarios. Similar results apply to all
cases. Table 6 presents the key characteristics of simulations for all
distributions.

3.2. Validity of results

The NPV model inherits uncertainty. We have defined uncertainty
levels to all factors, out of which three factors have increased un-
certainty as a function of time. The total uncertainty level is high.
Nevertheless, the high probability NPV positive cases can be identified.
The small case is NPV negative with Min and Expected scenario factor
values and positive with Max scenario factor values. Therefore, it is
sensitive to input factor values. This sensitivity is a challenge from a
decision-making perspective. The medium and large cases are clear-cut
investment proposals. The Expected scenario values from each case can
be considered valid.

4. Discussion

Investment-decisions depend on the risk of the project and esti-
mated future cash flows. We created an NPV model to provide trans-
parency into the economic aspects of waste heat utilization. The
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profitability of the waste heat recovery investment is positive inside the
full range of uncertainty in the large case. In the medium case, the
extremely pessimistic factor values result in a negative NPV.
Nevertheless, even in the pessimistic scenario, the IRR is 8.02%, which
is higher than the WACC in many companies. Therefore, the investment
can still be worthwhile from ecological sense.

The small case seems problematic. The Expected scenario NPV value
is negative; the Min scenario is hugely negative, only the extreme Max
scenario factor values result in a positive NPV. In addition, the dis-
tribution of the NPV values when changing the most significant factors
randomly within the range of uncertainty results in a negative NPV
value with high probability. The small case is susceptible to factor
variations. Therefore, it is challenging to make an investment assess-
ment on the small case. It contains risk. In our model, we assume that
all waste heat is sold to a DH operator. In the small case, alternative
customers for waste heat could be considered. Customers, which could
utilize low quality heat without priming for example. These alternative
waste heat customers could include internal office space heating,
greenhouses, spas, or industrial processes requiring only low-quality
heat. Another possibility could be clustering many small size DCs to
provide jointly more heat to DH. Whether this shows to be a technically

Table 4
KPIs for each scenario.

Scenario Min Scenario Expected Scenario Max

KPI S M L S M L S M L

NPV (thousand euros) −264.1 −332.0 4120.0 −48.5 1041.4 16329.2 143.8 2569.0 30152.6
ROI −309% 51% 419% 56% 412% 1046% 408% 885% 1892%
IRR NA 8.01% 30.29% 7.05% 38.57 58.54% 34.71% 67.12% 92.89
Payback period (years) > 10 years > 10 years 5.14 > 10 years 3.72 2.75 4.11 2.14 1.82

Fig. 5. Min, Max and Expected scenario EBIT and PV with uncertainties in different cases.

Fig. 6. Min, Max and Expected scenario ROI (left), NPV (middle) and IRR (right) with uncertainties.

Table 5
Energy efficiency metrics in the case of waste heat utilization.

Small case
PUE 2.2

Medium case
PUE 1.97

Large case
PUE 1.72

PUE with waste heat utilization 2.48 2.23 1.98
ERF 0.5 0.55 0.62
ERE 1.25 1 0.75

M. Pärssinen et al. Sustainable Cities and Society 44 (2019) 428–444

436



and economically feasible option, from the perspective of connecting to
a DH operator, should be investigated.

The relative effect of uncertainty on decision-making decreases
when the size of the case increases. Whenever a more specific estima-
tion of uncertainty was not available, we utilized the UNIDO method
[-20%, 20%] for each input factor in our NPV model. There was un-
certainty in our uncertainty estimation. To overcome infinite regres-
sion, we used annually increasing uncertainty for three factors. It
should be noted; for the sake of simplicity, we do not assume a decrease
in the number of racks during the observed period. Naturally, this is
possible in reality. Overall, although the NPV model contains un-
certainties, it seems credible to assess the small case as unprofitable and
the medium and large cases profitable with high probability.

Uncertainty for depreciation plan was not considered in our simu-
lations, but the NPV model enables extending the time frame. Due to
the fact that NPV emphasizes years closer to the investment, prolonging
payback period of the investment affects results slightly. In truth, data
centers should consider longer depreciation plans to match the lifetime
of equipment.

One important aspect is the availability of data. In our study, we
have gathered data from literature and from waste heat service pro-
vider, but actual figures are not widely available in public for every
parameter, and thus uncertainty ranges may have been overestimated.
Additional data would improve the accuracy of the model, and with
better accuracy, the profitability of investment could be analyzed more
clearly. Therefore, service providers and district heating companies
should be encouraged to publish more data openly. We have published
our simulation code to GitHub (GitHub, 2018) for further use with more
detailed and case specific data.

4.1. Heat price

As the results of the NPV model suggest, the heat price is one of the
most critical factors in the simulations. As it was estimated that heat
would be priced with marginal-cost based pricing, the results may differ
from the actual heat prices offered by the energy companies. In fact, the
actual heat prices might be far lower if the energy companies try to take
advantage of the waste heat provider. For example, a DH company in
Finland has offered heat prices of 15–28 €/kWh a few years back.
However, the heat was required to be at least 66 °C, which is not en-
ough for the supply-side of the DH network throughout the winter.
Therefore, higher prices can be assumed if heat is continuously at 80 °C
or more.

In June 2018, a large-scale energy utility Fortum started to publish
their waste heat purchase prices as a forerunner in Finland (Fortum
Ltd., 2018). They publish the prices for three different Finnish DH
networks, one of which is the Espoo DH network. In Espoo, the prices
are available for heat suppliers with a load below five MW. Heat prices
vary based on weather and outdoor temperature, and whether the heat
is sold to the supply or the return side of a DH network. For the supply
side, prices range from 50 €/MWh at outdoor temperatures below
−8 °C to 15 €/MWH at temperatures above 20 °C. To analyze the
profitability of public prices in Espoo, we ran a Monte Carlo simulation
for the medium case using the purchase prices offered for the Espoo
network. The mean NPV in the medium case was -167609 € with the
results ranging from -1299103 € to 648,820 €. The standard deviation
was 283,710 €. The results show that the medium case is likely un-
profitable with public prices. However, few issues require additional
consideration. Firstly, Fortum has not provided an actual temperature
requirement for the supply side, and thus it is likely that primed waste
heat temperature to 80 °C is higher than Fortum’s standards, and thus
the temperature of the heat could be lower meaning the heat pump COP
could increase. Secondly, in this simulation, we assumed all heat is
primed with a heat pump and sold to the network. However, with
Fortum’s prices, it would not be beneficial to sell heat when the outside
temperature is high since it is more expensive to increase the tem-
perature compared to the purchase price. Therefore, the timing of
selling heat should be analyzed more accurately, and it should be
considered whether waste heat can be sold to the return side without
priming.

It must be noted, that DH is not the only option for waste heat
utilization, especially in Central Europe, where DH networks do not
exist in such a large extent. DC waste heat could replace DH con-
sumption or own heat production, e.g., in a housing block. Waste heat
can be more profitable compared to DH when the waste heat replaces
individual natural gas boilers in homes. In Finland, a weighted-average
consumer price of DH in 2016 was 74.8 €/MWh (Finnish Energy, 2017).
Considering the small case, a DC could replace its own facility DH
consumption. Using the 74.8 €/MWh price, we ran the same Monte
Carlo simulation. The uncertainty in the consumer DH price was con-
sidered 10%, as it is less volatile compared to selling waste heat to DH.
The mean NPV in the small case increased to 189,000 € with results
ranging between 61,700 € and 329,300 €. The standard deviation was
43,000 €. It must be noted, that in reality waste heat would not be
primed to 80 °C for self-consumption, and thus heat pumps would have
better COP values, which would enhance the profitability of self-con-
sumption. Annual heating energy demand for a commercial building in
Finland is approximately 182 kW h/m2 (Statistics Finland, 2018), and
thus the small case could supply heating for a 12,500m2 of commercial
buildings. In most cases, the small case DC cannot utilize all excess heat.
Therefore, the DC should be connected to an office building to replace
individual heat production, for example. Another challenge is that with
self-consumption seasonal changes have more effect compared to the
aggregated heating demand in DH.

Fig. 7. Monte Carlo NPV distributions for cases.

Table 6
Distribution characteristics.

Distribution n Min Max Mean Standard
deviation

Small case 999672 −210649 91747 −40048 50785
Medium Case 1000382 −204031 2620834 1203092 487299
Large case 999946 5523535 32483519 18462779 4868941
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4.2. Electricity price

The electricity price is another critical factor based on the un-
certainty analysis. We have estimated decreasing electricity prices
based on the current trend, although some studies have suggested
growing electricity prices, at least on the small consumer side.
Especially, electricity transmission prices are likely to increase in the
future due to legal obligations for transmission system operators to
invest in the security of electricity transmission according to the
Electricity Market Act, which was implemented in 2013 (Ecolex, 2018;
Energy Authority, 2017). Industrial consumers compete on electricity
prices in different countries; thus, the governments may want to pro-
vide lower taxation to industrial consumers to maintain competitive-
ness. It is hard to estimate how electricity prices develop for the largest
consumers. For example, Sweden has lowered electricity taxes for data
centers to a lower level than Finland (Pöyry, 2018). Nonetheless,
Nordic countries currently have lower electricity prices than most
Central European countries, and therefore, the profitability of waste
heat utilization in other countries tends to be less.

4.3. Case Germany

To analyze the effects of heat and electricity prices, we considered
the effects of different heat and electricity prices for a small case DC in
Germany. Germany occupies many DCs and Frankfurt is the second
largest DC market in Europe, where the estimated total energy con-
sumption was up to 12 TWh in 2015 (Bertoldi, Avgerinou, &
Castellazzi, 2017). The electricity price for a DC consuming annually
8.5 GWh of electricity was estimated to be 142.4 €/MWh (Pöyry,
2018), while the DH price for the large customer was 66.38 €/MWh
(Statista, 2018). Large-scale electricity consumers may save up to 90%
of their transmission costs in Germany, if they consume over 10 GWh
and run over 8000 h annually (Pöyry, 2018). Using the 66.38 €/MWh
heat price and 142.4 €/MWh electricity price, we ran the same Monte
Carlo simulation. The uncertainty in the heat price was considered
10%. The mean NPV in the small case was 12,100 € with results ranging
from -182000 € to 161,000 €. The standard deviation was 49,800 €. If a
small case DC in Germany could consume or sell waste heat for the
consumer price of DH, waste heat could be marginally profitable, al-
though electricity prices are far higher for small-scale DCs. However,
heat demand for facilities consumption is far lower in Germany, and
during summertime heat could not be efficiently utilized even at the
amount of waste heat produced in the small case.

4.4. Metrics

Results showed that PUE is not a sufficient metric for data centers
reusing waste heat. PUE values increase due to the increased electricity
consumption of the heat pump and therefore a DC with waste heat
utilization should not use PUE. However, if ERE was used as a standard
method, the cases could be considered more efficient than data centers
which do not reuse heat. We did not take into account that heat could
be recovered from other sources than the electricity consumption of
processors. In reality, waste heat could be captured from the cooling
system, and a heat pump could be used to produce cooling energy for
the data center. This could change the efficiency metrics radically since
up to 90% of the total energy demand could be recovered. Finally, it
should be calculated what type of heat production waste heat replaces
in a district heating system, as well as the emission factor of additional
electricity consumption, to assess the total environmental effect of
waste heat utilization.

4.5. Role of employees

The small case is sensitive to input factor values. We simulated with
employees set to zero. The small case resulted in a mean NPV of 79,500

€ with results ranging from -60000 € to 222,000 €. From these results,
we conclude the small case is more dependent on fixed costs compared
to the two other cases. The number of employees needs to be evaluated
with consideration, as the impact on the distribution results is high.

4.6. The impact of cloud strategy

Any kind of contractual commitments to sell and deliver waste heat
could potentially limit strategic options for a DC operator. These
commitments could impact the DC operator’s public cloud strategy. The
decision to move workloads to public cloud reduces the need for local
computing, thus reduces the amount of produced heat and revenue
generated by selling this excess waste heat. When marginal are low, this
extra revenue could make a difference in the decision-making process.
Commitments can also be seen as a lock-in into a particular type of
business model.

In future studies, researchers could investigate how the following
aspects change the NPV model output: 1) the use of on-site renewable
energy sources for priming, 2) the effect of using uninterruptible power
supply (UPS) as a source of electricity, 3) the effect of waste heat reuse
on the cash flow of a DC operator in the business case of transforming
workloads into public cloud, and 4) the content of the bilateral com-
mercial agreements between DC and DH operators.

5. Conclusions

The IT industry consumes vast amounts of energy. One possible
strategy to promote energy efficiency involves reusing waste heat
generated by the racks full of servers and other telecommunications
equipment. We conducted an investment assessment for waste heat
utilization in three different size cases, namely small, medium and
large.

The small case NPV was -48500 € (with uncertainty, the results
range from -264000 € to 143000 €). The Monte Carlo simulations on
the most significant factors reveal the small case results in a negative
NPV with high probability. Therefore, investing in waste heat utiliza-
tion equipment has no rational economic grounds. The amount of heat
captured and sold to DH operators will not cover the costs of the waste
heat utilization equipment. To make the small case profitable, alter-
native uses for waste heat must be sought or otherwise discard the in-
vestment. Naturally, there are also other investment decision criteria
than economics. Companies can make investments even if the case is
not profitable for the company. Investments could be made for image or
ideological reasons. Nevertheless, these are not within the scope of this
paper.

The medium case has an NPV of 1.04 M€ (with uncertainty, the
results range from -0.332 M€ to 2.57 M€). The large case has an NPV of
16.33 M€ (with uncertainty, the results range from 4.12 M€ to 30.15 M
€). The medium and large cases can be considered profitable business
opportunities and should result in a decision to invest in a waste heat
reuse solution.

The NPV model contains uncertainties, and the results must be
viewed with a range of results, rather than a single result. We described
the NPV model population in detail, giving the DC or DH operator an
opportunity to change the input parameters, uncertainties, and as-
sumption to match their business case. Regarding the active discussion
on the economic viability of DC waste heat utilization, we contribute a
transparent investment assessment model for both DC and DH opera-
tors.
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Appendix B
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Table B1
Total monthly revenue for each case in 2016.

CASE SMALL

2016
1 2 3 4 5 6 7 8 9 10 11 12

Number of racks 10 11 12 12 13 14 15 16 18 19 20 22
Total power consumed (kW) 42.9 46.0 49.3 52.9 56.7 60.8 65.2 70.0 75.0 80.5 86.3 92.6
Total power consumed (GWh/month) 0.03 0.03 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.06 0.06 0.07
Total power consumed for priming (GWh/month) 0.0080 0.0086 0.0092 0.0098 0.0106 0.0113 0.0121 0.0130 0.0140 0.0150 0.0161 0.0172
Heat captured (GWh) 0.0379 0.041 0.044 0.047 0.050 0.054 0.058 0.062 0.066 0.071 0.076 0.082
Heat price €/GWh/month 50700 50200 49,800 49300 48300 41600 34500 35400 44000 47400 49600 50000
Total revenue 1922 2041 2172 2306 2423 2238 1991 2191 2920 3374 3787 4094

50700 50200 49,800 49300 48300 41600 34500 35400 44000 47400 49600 50000

CASE MEDIUM
2016
1 2 3 4 5 6 7 8 9 10 11 12

Number of racks 100 107 115 123 132 142 152 163 175 188 201 216
Total power consumed (kW) 429 460 493 529 567 608 652 700 750 805 863 926
Total power consumed (GWh/month) 0.31 0.33 0.35 0.38 0.41 0.44 0.47 0.50 0.54 0.58 0.62 0.67
Total power consumed for priming (GWh/month) 0.08 0.09 0.09 0.10 0.11 0.11 0.12 0.13 0.14 0.15 0.16 0.17
Heat captured (GWh) 0.38 0.41 0.44 0.47 0.50 0.54 0.58 0.62 0.66 0.71 0.76 0.82
Heat price €/GWh/month 50700 50200 49,800 49300 48300 41600 34500 35400 44000 47400 49600 50000
Total revenue 19223 20414 21719 23060 24230 22382 19908 21908 29205 33742 37868 40941

CASE LARGE
2016
1 2 3 4 5 6 7 8 9 10 11 12

Number of racks 1000 1073 1150 1234 1323 1419 1522 1632 1751 1877 2014 2160
Total power consumed (kW) 4286 4597 4930 5287 5671 6082 6523 6996 7503 8047 8630 9256
Total power consumed (GWh/month) 3.09 3.31 3.55 3.81 4.08 4.38 4.70 5.04 5.40 5.79 6.21 6.66
Total power consumed for priming (GWh/month) 0.80 0.86 0.92 0.98 1.06 1.13 1.21 1.30 1.40 1.50 1.61 1.72
Heat captured (GWh) 3.79 4.07 4.36 4.68 5.02 5.38 5.77 6.19 6.64 7.12 7.63 8.19
Heat price €/GWh/month 50700 50200 49,800 49300 48300 41600 34500 35400 44000 47400 49600 50000
Total revenue 192232 204136 217191 230599 242301 223820 199077 219080 292045 337422 378681 409411

Fig. A1. Annual hourly marginal costs of DH production, which were utilized for waste heat pricing. The x-axis denotes the hours of one year. The y-axis denotes cost
in €/MWh.
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Table B2
The total cost of goods sold for each case in 2016.

CASE SMALL

2016
1 2 3 4 5 6 7 8 9 10 11 12

Maintenance people 915 917 919 919 921 923 925 926 927 927 929 930
Business Manager 1373 1375 1378 1380 1381 1382 1383 1385 1386 1388 1390 1392
Electricity for priming GWh/month 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02
Electricity price €/GWh/month 84900 83900 84600 84800 84900 85900 86300 85900 85600 86300 86700 85500
Total cost of priming 678 718 777 835 897 973 1048 1119 1196 1293 1394 1474
Total COGS 2966 3010 3073 3134 3200 3278 3357 3430 3509 3608 3712 3796

84900 83900 84600 84800 84900 85900 86300 85900 85600 86300 86700 85500

CASE MEDIUM
2016
1 2 3 4 5 6 7 8 9 10 11 12

Maintenance people 2288 2292 2296 2299 2303 2304 2307 2311 2313 2316 2319 2321
Business Manager 3432 3438 3442 3448 3452 3456 3462 3468 3474 3480 3484 3489
Electricity for priming GWh/month 0.08 0.09 0.09 0.10 0.11 0.11 0.12 0.13 0.14 0.15 0.16 0.17
Electricity price €/GWh/month 81600 79300 79900 80400 80900 81800 83600 83200 82600 82200 82600 82800
Total cost of priming 6514 6789 7336 7917 8544 9265 10156 10840 11542 12319 13276 14273
Total COGS 12234 12519 13074 13664 14299 15026 15924 16619 17329 18115 19079 20083

81600 79300 79900 80400 80900 81800 83600 83200 82600 82200 82600 82800

CASE LARGE
2016
1 2 3 4 5 6 7 8 9 10 11 12

Maintenance people 4576 4585 4595 4602 4611 4614 4619 4622 4626 4631 4634 4643
Business Manager 6864 6871 6880 6891 6906 6915 6926 6934 6946 6961 6976 6990
Electricity for priming GWh/month 0.80 0.86 0.92 0.98 1.06 1.13 1.21 1.30 1.40 1.50 1.61 1.72
Electricity price €/GWh/month 64900 62500 63900 61400 61400 64800 64600 65900 66000 66200 68300 66000
Total cost of priming 51805 53506 58671 60462 64846 73398 78477 85860 92225 99211 109779 113773
Total COGS 63245 64962 70146 71956 76363 84928 90022 97416 103797 110803 121389 125405

64900 62500 63900 61400 61400 64800 64600 65900 66000 66200 68300 66000

Table B3
Total other costs for each case 2016.

CASE SMALL

2016
1 2 3 4 5 6 7 8 9 10 11 12

Marketing costs €/month 96 102 109 115 121 112 100 110 146 169 189 205
Maintenance service €/month 200 200 200 200 200 200 200 200 200 200 200 200
Rent, computers, accounting fees, legal fees €/month 500 500 500 500 500 500 500 500 500 500 500 500
Total Other Costs 796 802 809 815 821 812 800 810 846 869 889 905

CASE MEDIUM
2016
1 2 3 4 5 6 7 8 9 10 11 12

Marketing costs €/month 384 408 434 461 485 448 398 438 584 675 757 819
Maintenance service €/month 800 800 800 800 800 800 800 800 800 800 800 800
Rent, computers, accounting fees, legal fees €/month 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500
Total Other Costs 2684 2708 2734 2761 2785 2748 2698 2738 2884 2975 3057 3119

CASE LARGE
2016
1 2 3 4 5 6 7 8 9 10 11 12

Marketing costs €/month 961 1021 1086 1153 1212 1119 995 1095 1460 1687 1893 2047
Maintenance service €/month 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000
Rent, computers, accounting fees, legal fees €/month 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000
Total Other Costs 23961 24021 24086 24153 24212 24119 23995 24095 24460 24687 24893 25047
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Appendix C

.

Table C1
Uncertainties and factor impact on resulting NPV for each scenario (Min, Max, Expected).

Table C2
Monte Carlo simulation input parameters and simulated factors with ranges.

Generic Fixed Parameters Value

Number of years 10
Heat recovery rate 0.97
Power consumption per rack 0.4286
Employer cost factor 0.144
Avg. Maintenance specialist yearly salary / 2 26058
Avg. Business manager yearly salary / 2 38934
Depreciation years 10
Tax rate 0.2234
Maintenance yearly cost (base case) 9600
Rent and others (base case) 18000

Case Related Fixed Parameters Value
Staff related multiplier Small 0.4
Staff related multiplier Medium 1
Staff related multiplier Large 2
Maintenance related multiplier Small 0.25
Maintenance related multiplier Medium 1
Maintenance related multiplier Large 10
Marketing related multiplier Small 0.05
Marketing related multiplier Medium 0.02
Marketing related multiplier Large 0.005
Total investment related multiplier Small 0.148
Total investment related multiplier Medium 1
Total investment related multiplier Large 9.510
Avg. elec. price related multiplier Small 1.025
Avg. elec. price related multiplier Medium 1
Avg. elec. price related multiplier Large 0.773
Rent and others related multiplier Small 0.333
Rent and others related multiplier Medium 1
Rent and others related multiplier Large 10
Avg. number of racks Small 45
Avg. number of racks Medium 450
Avg. number of racks Large 4500

Simulated Parameters Base Min Max Step Number of values
Heat price 45 900 36 720 55 080 10 1836
Electricity price 80 638 64 510 96 766 10 3225
Total investment 1 0.8 1.2 0.01 40
COP 3.75 2.8125 4.6875 0.1 18
Rate of return 0.15 0.12 0.18 0.001 60

Total permutations 255791520000
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