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Using Stacking to Average Bayesian Predictive
Distributions (with Discussion)

Yuling Yao∗, Aki Vehtari†, Daniel Simpson‡, and Andrew Gelman§

Abstract. Bayesian model averaging is flawed in theM-open setting in which the
true data-generating process is not one of the candidate models being fit. We take
the idea of stacking from the point estimation literature and generalize to the com-
bination of predictive distributions. We extend the utility function to any proper
scoring rule and use Pareto smoothed importance sampling to efficiently compute
the required leave-one-out posterior distributions. We compare stacking of pre-
dictive distributions to several alternatives: stacking of means, Bayesian model
averaging (BMA), Pseudo-BMA, and a variant of Pseudo-BMA that is stabilized
using the Bayesian bootstrap. Based on simulations and real-data applications, we
recommend stacking of predictive distributions, with bootstrapped-Pseudo-BMA
as an approximate alternative when computation cost is an issue.

Keywords: Bayesian model averaging, model combination, proper scoring rule,
predictive distribution, stacking, Stan.

1 Introduction

A general challenge in statistics is prediction in the presence of multiple candidate mod-
els or learning algorithms M = (M1, . . . ,MK). Choosing one model that can give opti-
mal performance for future data can be unstable and wasteful of information (see, e.g.,
Piironen and Vehtari, 2017). An alternative is model averaging, which tries to find an
optimal model combination in the space spanned by all individual models. In Bayesian
context, the natural target for prediction is to find a predictive distribution that is
close to the true data generating distribution (Gneiting and Raftery, 2007; Vehtari and
Ojanen, 2012).

Ideally, we would avoid the Bayesian model combination problem by extending the
model to include the separate models Mk as special cases (Gelman, 2004). In practice,
constructing such an expansion requires a lot of conceptual and computational effort.
Hence, in this paper we focus on simpler tools that work with existing inferences from
models that have been fitted separately.

This paper is organized as follows. In Section 2, we give a brief review of some
existing model averaging methods. Then we propose our stacking method in Section 3. In
Section 4, we compare stacking, Bayesian model averaging, and several other alternatives
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918 Using Stacking to Average Bayesian Predictive Distributions

through a Gaussian mixture model, a series of linear regression simulations, two real data
examples, and an application in variational inference. We conclude with Section 5 where
we give general recommendations. We provide the R and Stan code in the Suplement
material (Yao et al., 2018).

2 Existing approaches

In Bayesian model comparison, the relationship between the true data generator and
the model list M = (M1, . . . ,MK) can be classified into three categories: M-closed,
M-complete and M-open. We adopt the following definition from Bernardo and Smith
(1994) (see also Key et al. (1999), and Clyde and Iversen (2013)):

• M-closed means the true data generating model is one of Mk ∈ M, although it
is unknown to researchers.

• M-complete refers to the situation where the true model exists and is out of
model list M. But we still wish to use the models in M because of tractability
of computations or communication of results, compared with the actual belief
model. Thus, one simply finds the member in M that maximizes the expected
utility (with respect to the true model).

• M-open refers to the situation in which we know the true model Mt is not in M,
but we cannot specify the explicit form p(ỹ|y) because it is too difficult concep-
tually or computationally, we lack time to do so, or do not have the expertise,
etc.

Bayesian model averaging If all candidate models are generative, the Bayesian solu-
tion is to simply average the separate models, weighing each by its marginal posterior
probability. This is called Bayesian model averaging (BMA) and is optimal if the method
is evaluated based on its frequency properties evaluated over the joint prior distribution
of the models and their internal parameters (Madigan et al., 1996; Hoeting et al., 1999).
If y = (y1, . . . , yn) represents the observed data, then the posterior distribution for any

quantity of interest Δ is p(Δ|y) =
∑K

k=1 p(Δ|Mk, y)p(Mk|y). In this expression, each
model is weighted by its posterior probability,

p(Mk|y) =
p(y|Mk)p(Mk)∑K
k=1 p(y|Mk)p(Mk)

,

and this expression depends crucially on the marginal likelihood under each model,
p(y|Mk) =

∫
p(y|θk,Mk)p(θk|Mk)dθk .

BMA is appropriate for the M-closed case. In M-open and M-complete cases, BMA
will asymptotically select the one single model on the list that is closest in Kullback–
Leibler (KL) divergence.

A further problem with BMA is that the marginal likelihood is sensitive to the spe-
cific prior p(θk|Mk) in each model. For example, consider a problem where a parameter
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has been assigned a normal prior distribution with center 0 and scale 10, and where its
estimate is likely to be in the range (−1, 1). The chosen prior is then essentially flat,
as would also be the case if the scale were increased to 100 or 1000. But such a change
would divide the posterior probability of the model by roughly a factor of 10 or 100.

Stacking Stacking (Wolpert, 1992; Breiman, 1996; LeBlanc and Tibshirani, 1996) is a
direct approach for averaging point estimates from multiple models. In supervised learn-
ing, where the data are ((xi, yi), i = 1, . . . , n ) and each model Mk has a parametric form
ŷk = fk(x|θk), stacking is done in two steps (Ting and Witten, 1999). First, each model

is fitted separately and the leave-one-out (LOO) predictor f̂
(−i)
k (xi) = E[yi|θ̂k,y−i ,Mk]

is obtained for each model k and each data point i. In the second step, a weight for each
model is obtained by minimizing the LOO mean squared error

ŵ = argmin
w

n∑
i=1

(
yi −

∑
k

wkf̂
(−i)
k (xi)

)2

. (1)

Breiman (1996) claims that either a positive constraint wk ≥ 0, k = 1, . . .K, or a

simplex constraint: wk ≥ 0,
∑K

k=1 wk = 1 guarantees a solution. Better predictions may
be attainable using regularization (Merz and Pazzani, 1999; Yang and Dunson, 2014).
Finally, the point prediction for a new data point with feature vector x̃ is

ˆ̃y =

K∑
k=1

ŵkfk(x̃|θ̂k,y1:n).

It is not surprising that stacking typically outperforms BMA when the criterion is
mean squared predictive error (Clarke, 2003), because BMA is not optimized to this
task. Wong and Clarke (2004) emphasize that the BMA weights reflect the fit to the
data rather than evaluating the prediction accuracy. On the other hand, stacking is not
widely used in Bayesian model combination because the classical stacking only works
with point estimates, not the entire posterior distribution (Hoeting et al., 1999).

Clyde and Iversen (2013) give a Bayesian interpretation for stacking by considering
model combination as a decision problem when the true model Mt is not in the model
list. If the decision is of the form a(y, w) =

∑K
k=1 wkŷk, then the expected utility under

quadratic loss is,

Eỹ

[
u (ỹ, a(y, w)) |y

]
= −

∫
||ỹ −

K∑
k=1

wk
ˆ̃yk||2p(ỹ|y,Mt)dỹ,

where ˆ̃yk is the predictor of new data ỹ in model k. Hence, the stacking weights are the
solution to the LOO estimator

ŵ = argmaxw
1

n

n∑
i=1

u(yi, a(y−i, w)),

where a(y−i, w) =
∑K

k=1 wkE[yi|y−i,Mk].
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Le and Clarke (2017) prove the stacking solution is asymptotically the Bayes so-
lution. With some mild conditions on distributions, the following asymptotic relation
holds: ∫

l(ỹ, a(y, w))p(ỹ|y)dỹ − 1

n

n∑
i=1

l(yi, a(y−i, w))
L2−−→ 0,

where l is the squared loss, l(ỹ, a) = (ỹ− a)2. They also prove that when the action is a

predictive distribution a(y−i, w) =
∑K

k=1 wkp(yi|y−i,Mk), the asymptotic relation still
holds for negative logarithm scoring rules.

However, most early literature limited stacking to averaging point predictions, rather
than predictive distributions. In this paper, we extend stacking from minimizing the
squared error to maximizing scoring rules, hence make stacking applicable to combining
a set of Bayesian posterior predictive distributions. We argue this is the appropriate
version of Bayesian model averaging in the M-open situation.

Akaike weights and pseudo Bayesian model averaging Leave-one-out cross-validation
is related to various information criteria (see, e.g. Vehtari and Ojanen, 2012). In case of
maximum likelihood estimates, leave-one-out cross-validation is asymptotically equal to
Akaike’s information criterion (AIC, Stone, 1977). In a statistical model with the num-
ber of parameters to be k and the maximized likelihood to be L̂, AIC = −2 log L̂+ 2k.
Akaike (1978) proposed to use exp(−1

2AIC) for model weighting (see also Burnham
and Anderson, 2002; Wagenmakers and Farrell, 2004). More recently we have seen also
Watanabe–Akaike information criterion (WAIC, Watanabe, 2010) and leave-one-out
cross-validation estimates used to compute model weights following the idea of AIC
weights.

In a Bayesian setting Geisser and Eddy (1979; see also, Gelfand 1996) proposed
pseudo Bayes factors where marginal likelihoods p(y|Mk) are replaced with a product
of Bayesian leave-one-out cross-validation predictive densities

∏n
i=1 p(yi|y−i,Mk). Fol-

lowing the naming by Geisser and Eddy, we call AIC-type weighting which uses Bayesian
cross-validation predictive densities as pseudo Bayesian model averaging (Pseudo-BMA).

Exact leave-one-out cross-validation can be computationally costly. For example,
in the econometric literature, Geweke and Amisano (2011, 2012) suggest averaging
prediction models by maximizing predictive log score, while they only consider time
series due to the computational challenges of exact LOO for general data structures.
In the present paper we demonstrate that Pareto smoothed importance sampling leave-
one-out cross-validation (PSIS-LOO) (Vehtari et al., 2017a,b) is a practically efficient
way to calculate the needed leave-one-out predictive densities p(yi|y−i,Mk).

In this paper we show that the uncertainty in the future data distribution should
be taken into account when computing Pseudo-BMA weights. We will propose an AIC-
type weighting using the Bayesian bootstrap and the expected log predictive density
(elpd), which we call Pseudo-BMA+ weighting. We show that although Pseudo-BMA+
weighting gives better results than regular BMA or Pseudo-BMA weighting (in M-
open settings), it is still inferior to the log score stacking. Due to its simplicity we use
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Pseudo-BMA+ weighting as an initial guess for optimization procedure in the log score
stacking.

Other model weighting approaches Besides BMA, stacking, and AIC-type weighting,
some other methods have been introduced to combine Bayesian models. Gutiérrez-Peña
and Walker (2005) consider using a nonparametric prior in the decision problem stated
above. Essentially they are fitting a mixture model with a Dirichlet process, yielding a
posterior expected utility of

Un(wk, θk) =

n∑
i=1

K∑
k=1

wkfk(yi|θk).

They then solve for the optimal weights ŵk = argmaxwk,θk Un(wk, θk).

Li and Dunson (2016) propose model averaging using weights based on divergences
from a reference model in M-complete settings. If the true data generating density
function is known to be f∗, then an AIC-type weight can be defined as

wk =
exp

(
−nKL(f∗, fk)

)∑K
k=1 exp

(
−nKL(f∗, fk)

) . (2)

The true model can be approximated with a reference model M0 with density f0(·|θ0)
using nonparametric methods like Gaussian process or Dirichlet process, and KL(f∗, fk)
can be estimated by its posterior mean,

K̃L1(f0, fk) =

∫ ∫
KL

(
f0(·|θ0), fk(·|θk)

)
p(θk|y,Mk)p(θ0|y,M0)dθkdθ0,

or by the Kullback–Leibler divergence for posterior predictive distributions,

K̃L2(f0, fk) = KL
(∫

f0(·|θ0)p(θ0|y,M0)dθ0,

∫
fk(·|θk))p(θk|y,Mk)dθk

)
.

Here, K̃L1 corresponds to Gibbs utility, which can be criticized for not using the poste-
rior predictive distributions (Vehtari and Ojanen, 2012). Although asymptotically the

two utilities are identical, and K̃L1 is often computationally simpler than K̃L2.

Let p(ỹ|y,Mk) =
∫
fk(ỹ|θk)p(θk|y,Mk)dθk, k = 0, . . . ,K, then

K̃L2(f0, fk) = −
∫

log p(ỹ|y,Mk)p(ỹ|y,M0)dỹ +

∫
log p(ỹ|y,M0)p(ỹ|y,M0)dỹ.

As the entropy of the reference model
∫
log p(ỹ|y,M0)p(ỹ|y,M0)dỹ is constant, the cor-

responding terms cancel out in the weight (2), leaving

wk =
exp

(
n
∫
log p(ỹ|y,Mk)p(ỹ|y,M0)dỹ

)∑K
k=1 exp

(
n
∫
log p(ỹ|y,Mk)p(ỹ|y,M0)dỹ

) .
It is proportional to the exponential expected log predictive density, where the expec-
tation is taken with respect to the reference model M0. Comparing with definition 8 in
Section 3.4, this method could be called Reference-Pseudo-BMA.
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3 Theory and methods

We label the classical stacking procedure (1) as stacking of means because it combines
models by minimizing the mean squared error of the point estimate. In general, we
can use a proper scoring rule (or equivalently the underlying divergence) to compare
distributions. After choosing that, stacking can be extended to combining the whole
distributions.

3.1 Stacking using proper scoring rules

Adapting the notation of Gneiting and Raftery (2007), we label Y as the random variable
on the sample space (Ω,A) that can take values on (−∞,∞). P is a convex class of
probability measure on Ω. Any member of P is called a probabilistic forecast. A scoring
rule is a function S : P × Ω → ĪR = [∞,∞] such that S(P, ·) is P-quasi-integrable for
all P ∈ P . In the continuous case, every distribution P ∈ P is identified with its density
function p.

For two probabilistic forecasts P and Q, we write S(P,Q) =
∫
S(P, ω)dQ(ω). A

scoring rule S is called proper if S(Q,Q) ≥ S(P,Q) and strictly proper if equality
holds only when P = Q almost surely. A proper scoring rule defines the divergence
d : P × P → (0,∞) as d(P,Q) = S(Q,Q) − S(P,Q). For continuous variables, some
popularly used scoring rules include:

1. Quadratic score: QS(p, y) = 2p(y)− ||p||22 with the divergence d(p, q) = ||p− q||22.
2. Logarithmic score: LogS(p, y) = log(p(y)) with d(p, q) = KL(q, p). The logarithmic

score is the only proper local score assuming regularity conditions.

3. Continuous-ranked probability score: CRPS(F, y) = −
∫
IR
(F (y′) − 1(y′ ≥ y))2dy′

with d(F,G) =
∫
IR
(F (y) − G(y))2dy, where F and G are the corresponding dis-

tribution functions.

4. Energy score: ES(P, y) = 1
2EP ||Y −Y ′||β2 −EP ||Y − y||β2 , where Y and Y ′ are two

independent random variables from distribution P . When β = 2, this becomes
ES(P, y) = −||EP (Y ) − y||2. The energy score is strictly proper when β ∈ (0, 2)
but not when β = 2.

5. Scoring rules depending on first and second moments: Examples include S(P, y) =
− log det(ΣP ) − (y − μP )

TΣ−1
p (y − μP ), where μP and ΣP are the mean vector

and covariance matrix of distribution P .

The ultimate goal of stacking a set of K predictive distributions built from the
models M=(M1, . . . ,MK) is to find the distribution in the convex hull C= {

∑K
k=1 wk×

p(·|Mk) :
∑

k wk = 1, wk ≥ 0} that is optimal according to some given criterion. In this
paper, we propose the use of proper scoring functions to define the optimality criterion.

If we define SK
1 = {w ∈ [0, 1]K :

∑K
k=1 wk = 1}, then we can write the stacking

problem as

min
w∈SK

1

d
( K∑
k=1

wkp(·|y,Mk), pt(·|y)
)
or max

w∈SK
1

S
( K∑
k=1

wkp(·|y,Mk), pt(·|y)
)
, (3)
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where p(ỹ|y,Mk) is the predictive density of new data ỹ in model Mk that has been
trained on observed data y and pt(ỹ|y) refers to the true distribution.

An empirical approximation to (3) can be constructed by replacing the full predictive
distribution p(ỹ|y,Mk) evaluated at a new datapoint ỹ with the corresponding LOO
predictive distribution p̂k,−i(yi) =

∫
p(yi|θk,Mk)p(θk|y−i,Mk)dθk. The corresponding

stacking weights are the solution to the optimization problem

max
w∈SK

1

1

n

n∑
i=1

S
( K∑
k=1

wkp̂k,−i, yi

)
. (4)

The stacked estimate of the predictive density is

p̂(ỹ|y) =
K∑

k=1

ŵkp(ỹ|y,Mk). (5)

When using logarithmic score (corresponding to Kullback–Leibler divergence), we call
this stacking of predictive distributions :

max
w∈SK

1

1

n

n∑
i=1

log

K∑
k=1

wkp(yi|y−i,Mk).

The choice of scoring rules can depend on the underlying application. Stacking of
means (1) corresponds to the energy score with β = 2. The reasons why we prefer
stacking of predictive distributions (corresponding to the logarithmic score) to stacking
of means are: (i) the energy score with β = 2 is not a strictly proper scoring rule and can
give rise to identification problems, and (ii) without further smoothness assumptions,
every proper local scoring rule is equivalent to the logarithmic score (Gneiting and
Raftery, 2007).

3.2 Asymptotic behavior of stacking

The stacking estimate (3) finds the optimal predictive distribution within the convex
set C, that is the closest to the data generating process with respect to the chosen
scoring rule. This is different from Bayesian model averaging, which asymptotically
with probability 1 will select a single model: the one that is closest in KL divergence to
the true data generating process.

Solving for the stacking weights in (4) is an M-estimation problem. Under some mild
conditions (Le and Clarke, 2017; Clyde and Iversen, 2013; Key et al., 1999), for either
the logarithmic scoring rule or the energy score (negative squared error) and a given set
of weights w1 . . . wK , as sample size n → ∞, the following asymptotic limit holds:

1

n

n∑
i=1

S
( K∑
k=1

wkp̂k,−i, yi

)
− Eỹ|yS

( K∑
k=1

wkp(ỹ|y,Mk), ỹ
)

L2−−→ 0.

Thus the leave-one-out-score is a consistent estimator of the posterior score. In this
sense, stacking gives optimal combination weights asymptotically.
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In terms of Vehtari and Ojanen (2012, Section 3.3), the proposed stacking of predic-
tive distributions is the M∗-optimal projection of the information in the actual belief
model M∗ to ŵ, where explicit specification of M∗ is avoided by re-using data as a proxy
for the predictive distribution of the actual belief model and the weights wk are the free
parameters.

3.3 Pareto smoothed importance sampling

One challenge in calculating the stacking weights proposed in (4) is that we need the
leave-one-out (LOO) predictive density,

p(yi|y−i,Mk) =

∫
p(yi|θk,Mk)p(θk|y−i,Mk)dθk.

Exact LOO requires refitting each model n times. To avoid this onerous computation,
we use the following approximate method. For the k-th model, we fit to all the data,
obtaining S simulation draws θsk(s = 1, . . . S) from the full posterior p(θk|y,Mk) and
calculate

rsi,k =
1

p(yi|θsk,Mk)
∝ p(θsk|y−i,Mk)

p(θsk|y,Mk)
. (6)

The ratio rsi,k has a density function and can be unstable, due to a potentially long
right tail. This problem can be resolved using Pareto smoothed importance sampling
(PSIS, Vehtari et al., 2017a). For each fixed model k and data yi, we fit the generalized
Pareto distribution to a set of largest importance ratios rsi,k, and calculate the expected
values of the order statistics of the fitted generalized Pareto distribution. These value
are used to obtain the smoothed importance weight ws

i,k, which is used to replace rsi,k.
For details of PSIS, see Vehtari et al. (2017a). PSIS-LOO importance sampling (Vehtari
et al., 2017b) computes the LOO predictive density as

p(yi|y−i,Mk) =

∫
p(yi|θk,Mk)

p(θk|y−i,Mk)

p(θk|y,Mk)
p(θk|y,Mk)dθk

≈
∑S

s=1 w
s
i,kp(yi|θsk,Mk)∑S
s=1 w

s
i,k

.

(7)

The reliability of the PSIS approximation can be determined by the estimated shape
parameter k̂ in the generalized Pareto distribution. For the left-out data points where
k̂ > 0.7, Vehtari et al. (2017b) suggest replacing the PSIS approximation of those
problematic cases by the exact LOO or k-fold cross-validation.

One potential drawback of LOO is the large variance when the sample size is small.
We see in simulations that when the ratio of relative sample size to the effective number
of parameters is small, the weighting can be unstable. How to adjust this small sample
behavior is left for the future research.
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3.4 Pseudo-BMA

In this paper, we also consider an AIC-type weighting using leave-one-out cross-valida-
tion. As mentioned in Section 2, these weights estimate the same quantities as Li and
Dunson (2016) that use the divergence from the reference model based inference.

To maintain comparability with the given dataset and to get easier interpretation
of the differences in scale of effective number of parameters, we define the expected
log pointwise predictive density(elpd) for a new dataset ỹ as a measure of predictive
accuracy of a given model for the n data points taken one at a time (Gelman et al.,
2014; Vehtari et al., 2017b). In model Mk, elpdk =

∑n
i=1

∫
pt(ỹi) log p(ỹi|y,Mk)dỹi,

where pt(ỹi) denotes the true distribution of future data ỹi.

Given observed data y and model k, we use LOO to estimate the elpd as

êlpd
k

loo =

n∑
i=1

log p̂(yi|y−i,Mk) =

n∑
i=1

log

(∑S
s=1 w

s
i,kp(yi|θsk,Mk)∑S
s=1 w

s
i,k

)
.

The Pseudo-BMA weighting for model k is defined as

wk =
exp(êlpd

k

loo)∑K
k=1 exp(êlpd

k

loo)
. (8)

However, this estimation doesn’t take into account the uncertainty resulting from having
a finite number of proxy samples from the future data distribution. Taking into account
the uncertainty would regularize the weights making them go further away from 0 and
1.

The computed estimate êlpd
k

loo is defined as the sum of n independent components
so it is trivial to compute their standard errors by computing the standard deviation of
the n pointwise values (Vehtari and Lampinen, 2002). As in (7), define

êlpd
k

loo,i = log p̂(yi|y−i,Mk),

and then we can calculate

se(êlpd
k

loo,i) =

√√√√ n∑
i=1

(êlpd
k

loo,i − êlpd
k

loo/n)
2.

A simple modification of weights is to use the log-normal approximation:

wk =

exp

(
êlpd

k

loo − 1
2 se(êlpd

k

loo)

)
∑K

k=1 exp

(
êlpd

k

loo − 1
2 se(êlpd

k

loo)

) .

Finally, the Bayesian bootstrap (BB) can be used to compute uncertainties related
to LOO estimation (Vehtari and Lampinen, 2002). The Bayesian bootstrap (Rubin,
1981) gives simple non-parametric approximation to the distribution. Having samples
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of z1, . . . , zn from a random variable Z, it is assumed that posterior probabilities for
all observed zi have the distribution Dirichlet(1, . . . , 1) and values of Z that are not
observed have zero posterior probabilities. Thus, each BB replication generates a set of
posterior probabilities α1:n for all observed z1:n,

α1:n ∼ Dirichlet(

n︷ ︸︸ ︷
1, . . . , 1), P (Z = zi|α) = αi.

This leads to one BB replication of any statistic φ(Z) that is of interest:

φ̂(Z|α) =
n∑

i=1

αiφ(zi).

The distribution over all replicated φ̂(Z|α) (i.e., generated by repeated sampling of α)
produces an estimation for φ(Z).

As the distribution of êlpd
k

loo,i is often highly skewed, BB is likely to work better
than the Gaussian approximation. In our model weighting, we can define

zki = êlpd
k

loo,i, i = 1, . . . n.

We sample vectors (α1,b, . . . , αn,b)b=1,...,B from the Dirichlet (

n︷ ︸︸ ︷
1, . . . , 1) distribution, and

compute the weighted means,

z̄kb =

n∑
i=1

αi,bz
k
i .

Then a Bayesian bootstrap sample of wk with size B is,

wk,b =
exp(nz̄kb )∑K
k=1 exp(nz̄

k
b )

, b = 1, . . . , B,

and the final adjusted weight of model k is,

wk =
1

B

B∑
b=1

wk,b, (9)

which we call Pseudo-BMA+ weight.

4 Simulation examples

4.1 Gaussian mixture model

This simple example helps us understand how BMA and stacking behave differently.
It also illustrates the importance of the choice of scoring rules when combining distri-
butions. Suppose the observed data y = (yi, i = 1, . . . , n) come independently from a
normal distribution N(3.4, 1), not known to the data analyst, and there are 8 candidate



Y. Yao, A. Vehtari, D. Simpson, and A. Gelman 927

models, N(μk, 1) with μk = k for 1 ≤ k ≤ 8. This is an M-open problem in that none
of the candidates is the true model, and we have set the parameters so that the models
are somewhat separate but not completely distinct in their predictive distributions.

For BMA with a uniform prior Pr(Mk) =
1
8 , k = 1, . . . , 8, we can write the posterior

distribution explicitly:

ŵBMA
k = P (Mk|y) =

exp(−1
2

∑n
i=1(yi − μk)

2)∑
k′ exp(−1

2

∑n
i=1(yi − μk′)2)

,

from which we see that ŵBMA
3

P−−→ 1 and ŵBMA
k

P−−→ 0 for k 
= 3 as sample size n → ∞.
Furthermore, for any given n,

Ey∼N(μ,1)[ŵ
BMA
k ] ∝ Ey

(
exp(−1

2

n∑
i=1

(yi − μk)
2)

)

∝
(∫ ∞

−∞
exp

(
−1

2

(
(y − μk)

2 + (y − μ)2)
))

dy

)n

∝ exp

(
−n(μk − μ)2

4

)
.

This example is simple in that there is no parameter to estimate within each of the
models: p(ỹ|y,Mk) = p(ỹ|Mk). Hence, in this case the weights from Pseudo-BMA and
Pseudo-BMA+ are the same as the BMA weights.

For stacking of means, we need to solve

ŵ = argmin
w

n∑
i=1

(yi −
8∑

k=1

wkk)
2, s.t.

8∑
k=1

wk = 1, wk ≥ 0.

This is nonidentifiable because the solution contains any vector ŵ satisfying

8∑
k=1

ŵk = 1, ŵk ≥ 0,
8∑

k=1

ŵkk =
1

n

n∑
i=1

yi.

For point prediction, the stacked prediction is always
∑8

k=1 ŵkk = 1
n

∑n
i=1 yi, but it can

lead to different predictive distributions
∑8

k=1 ŵkN(k, 1). To get one reasonable result,
we transform the least squares optimization to the following normal model and assign
a uniform prior to w:

yi ∼ N

(
8∑

k=1

wkk, σ
2

)
, p(w1, . . . , w8, σ) = 1.

Then we could use the posterior means of w as model weights.

For stacking of predictive distributions, we need to solve

max
w

n∑
i=1

log

(
8∑

k=1

wk exp

(
− (yk − k)2

2

))
, s.t.

8∑
k=1

wk = 1, wk ≥ 0.
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Figure 1: For the Gaussian mixture example, the predictive distribution p(ỹ|y) of BMA
(green curve), stacking of means (blue) and stacking of predictive distributions (red). In
each graph, the gray distribution represents the true model N(3.4, 1). Stacking of means
matches the first moment but can ignore the distribution. For this M-open problem,
stacking of predictive distributions outperforms BMA as sample size increases.

In fact, this example is a density estimation problem. Smyth and Wolpert (1998)
first applied stacking to non-parametric density estimation, which they called stacked
density estimation. It can be viewed as a special case of our stacking method.

We compare the posterior predictive distribution p̂(ỹ|y) =
∑

k ŵkp(ỹ|y,Mk) for these
three methods of model averaging. Figure 1 shows the predictive distributions in one
simulation when the sample size n varies from 3 to 200. Stacking of means (the middle
row of graphs) gives an unappealing predictive distribution, even if its point estimate is
reasonable. The broad and oddly spaced distribution here arises from nonidentification
of w, and it demonstrates the general point that stacking of means does not even try to
match the shape of the predictive distribution. The top and bottom row of graphs show
how BMA picks up the single model that is closest in KL divergence, while stacking
picks a combination; the benefits of stacking becomes clear for large n.

In this trivial non-parametric case, stacking of predictive distributions is almost the
same as fitting a mixture model, except for the absence of the prior. The true model
N(3.4, 1) is actually a convolution of single models rather than a mixture, hence no
approach can recover the true one from the model list. From Figure 2 we can compare
the mean squared error and the mean logarithmic score of these three combination
methods. The log scores and errors are calculated through 500 repeated simulations
and 200 test data. The left panel shows the logarithmic score (or equivalent, expected
log predictive density) of the predictive distribution. Stacking of predictive distributions
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Figure 2: (a) The left panel shows the expected log predictive density of the combined
distribution under BMA, stacking of means and stacking of predictive distributions.
Stacking of predictive distributions performs best for moderate and large sample sizes.
(b) The middle panel shows the mean squared error treating the posterior mean of ŷ as
a point estimation. Stacking of predictive distributions gives almost the same optimal
mean squared error as stacking of means, both of which perform better than BMA. (c)
The right panel shows the expected log predictive density of stacking and BMA when
adding some more N(4, 1) models to the model list, where sample size is fixed to be 15.
All average log scores and errors are calculated through 500 repeated simulation and
200 test data generating from the true distribution.

always gives a larger score except for extremely small n. In the middle panel, it shows
the mean squared error by considering the posterior mean of predictive distribution to
be a point estimate, even if it is not our focus. In this case, it is not surprising to see that
stacking of predictive distributions gives almost the same optimal mean squared error
as the stacking of means, both of which are better than the BMA. Two distributions
close in KL divergence are close in each moment, while the reverse does not necessarily
hold. This illustrates the necessity of matching the distributions, rather than matching
the moments.

Stacking depends only on the space expanded by all candidate models, while BMA
or Pseudo-BMA weighting may by misled by such model expansion. If we add another
N(4, 1) as the 9th model in the model list above, stacking will not change at all in
theory, even though it becomes non-strictly-convex and has infinite same-height mode.
For BMA, it is equivalent to putting double prior mass on the original 4th model, which
doubles the final weights for it. The right panel of Figure 2 shows such phenomenon:
we fix sample size n to be 15 and add more and more N(4, 1) models. As a result, BMA
(or Pseudo-BMA weighting) puts larger weight on N(4, 1) and behaves worse, while the
stacking is essentially unchanged. It illustrates another benefit of stacking compared to
BMA or Pseudo-BMA weights. If the performance of a combination method decays as
the list of candidate models is expanded, this may indicate disastrous performance if
there are many similar weak models on the candidate list. We are not saying BMA can
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never work in this case. In fact some other methods are proposed to make BMA overcome
such drawbacks. For example, George (2010) establishes dilution priors to compensate
for model space redundancy for linear models, putting smaller weights on those models
that are close to each other. Fokoue and Clarke (2011) introduce prequential model
list selection to obtain an optimal model space. But we propose stacking as a more
straightforward solution.

4.2 Linear subset regressions

The previous section demonstrates a simple example of combining several different non-
parametric models. Now we turn to the parametric case. This example comes from
Breiman (1996) who compares stacking to model selection. Suppose the true model is

Y = β1X1 + · · ·+ βJXJ + ε,

where ε ∼ N(0, 1). All the covariates Xj are independently from N(5, 1). The number
of predictors J is 15. The coefficient β is generated by

βj = γ
(
(1|j−4|<h(h− |j − 4|)2 + (1|j−8|<h)(h− |j − 8|)2 + (1|j−12|<h)(h− |j − 12|)2

)
,

where γ is determined by fixing the signal-to-noise ratio such that

Var(
∑

j βjXj)

1 + Var(
∑

j βjXj)
=

4

5
.

The value h determines the number of nonzero coefficients in the true model. For h = 1,
there are 3 “strong” coefficients. For h = 5, there are 15 “weak” coefficients. In the
following simulation, we fix h = 5. We consider the following two cases:

1. M-open: Each subset contains only one single variable. Hence, the k-th model is
a univariate linear regression with the k-th variable Xk. We have K = J = 15
different models in total. One advantage of stacking and Pseudo-BMA weighting
is that they are not sensitive to prior, hence even a flat prior will work, while
BMA can be sensitive to the prior. For each single model Mk : Y ∼ N(βkXk, σ

2),
we set prior βk ∼ N(0, 10), σ ∼ Gamma(0.1, 0.1).

2. M-closed: Let model k be the linear regression with subset (X1, . . . , Xk). Then
there are still K = 15 different models. Similarly, in model Mk : Y ∼
N(

∑k
j=1 βjXj , σ

2), we set prior βj ∼ N(0, 10), j = 1, . . . , k, σ ∼ Gamma(0.1, 0.1).

In both cases, we have seven methods for combining predictive densities: (1) stacking
of predictive distributions, (2) stacking of means, (3) Pseudo-BMA, (4) Pseudo-BMA+,
(5) best model selection by mean LOO value, (6) best model selection by marginal
likelihood, and (7) BMA. We generate a test dataset (x̃i, ỹi), i = 1, . . . , 200 from the
underlying true distribution to calculate the out of sample logarithm scores for the com-
bined distribution under each method and repeat the simulation 100 times to compute
the expected predictive accuracy of each method.
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Figure 3: Mean log predictive densities of 7 combination methods in the linear regression
example: the k-th model is a univariate regression with the k-th variable (1≤ k≤ 15).
We evaluate the log predictive densities using 100 repeated experiments and 200 test
data.

Figure 3 shows the expected out-of-sample log predictive densities for the seven
methods, for a set of experiments with sample size n ranging from 5 to 200. Stacking
outperforms all other methods even for small n. Stacking of predictive distributions is
asymptotically better than any other combination method. Pseudo-BMA+ weighting
dominates naive Pseudo-BMA weighting. Finally, BMA performs similarly to Pseudo-
BMA weighting, always better than any kind of model selection, but that advantage
vanishes in the limit since BMA picks up one model. In this M-open setting, model
selection can never be optimal.

The results change when we move to the second case, in which the k-th model con-
tains variables X1, . . . , Xk so that we are comparing models of differing dimensionality.
The problem is M-closed because the largest subset contains all the variables, and we
have simulated data from this model. Figure 4 shows the mean log predictive densities of
the seven combination methods in this case. For a large sample size n, almost all meth-
ods recover the true model (putting weight 1 on the full model), except BMA and model
selection based on marginal likelihood. The poor performance of BMA comes from the
parameter priors: recall that the optimality of BMA arises when averaging over the
priors and not necessarily conditional on any particular chosen set of parameter values.
There is no general rule to obtain a “correct” prior that accounts for the complexity for
BMA in an arbitrary model space. Model selection by LOO can recover the true model,
while selection by marginal likelihood cannot due to the same prior problems. Once
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Figure 4: Mean log predictive densities of 7 combination methods in the linear regression
example: the k-th model is the regression with the first k variables (1 ≤ k ≤ 15). We
evaluate the log predictive densities using 100 repeated experiments and 200 test data.

again, BMA eventually becomes the same as model selection by marginal likelihood,
which is much worse than any other methods asymptotically.

In this example, stacking is unstable for extremely small n. In fact, our compu-
tations for stacking of predictive distributions and Pseudo-BMA depend on the PSIS
approximation to log p(yi|y−i). If this approximation is crude, then the second step

optimization cannot be accurate. It is known that the parameter k̂ in the generalized
Pareto distribution can be used to diagnose the accuracy of PSIS approximation. When
k̂ > 0.7 for a datapoint, we cannot trust the PSIS-LOO estimate and so we re-run the
full inference scheme on the dataset with that particular point left out (see Vehtari
et al., 2017b).

Figure 5 shows the comparison of the mean elpd estimated by LOO and the mean
elpd calculated using 200 independent test data for each model and each sample size in
the simulation described above. The area of each dot in Figure 5 represents the relative
complexity of the model as measured by the effective number of parameters divided
by sample size. We evaluate the effective number of parameters using LOO (Vehtari
et al., 2017b). The sample size n varies from 30 to 200 and variable size is fixed to be
20. Clearly, the relationship is far from the line y = x for extremely small sample size,
and the relative bias ratio (elpdloo/elpdtest) depends on model complexity. Empirically,
we have found the approximation to be poor when the sample size is less than 5 times
the number of parameters. Further diagnostics for PSIS are described by Vehtari et al.
(2017a).
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Figure 5: Comparison of the mean elpd estimated by LOO and the mean elpd calculated
from test data, for each model and each sample size in the simulation described above.
The area of each dot represents the relative complexity of the model as measured by
the effective number of parameter divided by sample size.

As a result, in the small sample case, LOO can lead to relatively large variance,
which makes the stacking of predictive distributions and Pseudo-BMA/ Pseudo-BMA+
unstable, with performance improving quickly as n grows.

4.3 Comparison with mixture models

Stacking is inherently a two-step procedure. In contrast, when fitting a mixture model,
one estimates the model weights and the status within parameters in the same step. In
a mixture model, given a model list M = (M1, . . . ,Mk), each component in the mixture
occurs with probability wk. Marginalizing out the discrete assignments yields the joint
likelihood

p(y|w1:K , θ1:K) =

K∑
k=1

wkp(y|θk,Mk).

The mixture model seems to be the most straightforward continuous model ex-
pansion. Nevertheless, there are several reasons why we may prefer stacking to fitting
a mixture model. Firstly, Markov chain Monte Carlo (MCMC) methods for mixture
models are difficult to implement and generally quite expensive. Secondly, if the sample
size is small or several components in the mixture could do the same thing, the mixture
model can face non-identification or instability problem unless a strong prior is added.

Figure 6 shows a comparison of mixture models and other model averaging methods
in a numerical experiment, in which the true model is

Y ∼ N(β1X1 + β2X2 + β3X2, 1), βk is generated from N(0, 1),

and there are 3 candidate models, each containing one covariate:
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Figure 6: Log predictive densities of the combined distribution obtained by stacking
of predictive distributions, BMA, Pseudo-BMA, Pseudo-BMA+, model selection by
marginal likelihood, and mixture models. In each case, we evaluate the predictive density
by 100 testing data and 100 repeated simulations. The correlation of variables ranges
from−0.3 to 0.9, and sample size ranges from 3 to 50. Stacking of predictive distributions
and Pseudo-BMA+ outperform mixture models in all cases.

Mk : Y ∼ N(βkXk, σ
2
k),with a prior βk ∼ N(0, 1), k = 1, 2, 3.

In the simulation, we generate the design matrix by Var(Xi) = 1 and Cor(Xi, Xj) =
ρ. ρ determines how correlated these models are and it ranges from −0.3 to 0.9.

Figure 6 shows that both the performance of mixture models and single model
selection are worse than any other model averaging methods we suggest, even though
the mixture model takes much longer time to run (about 30 more times) than stacking or
Pseudo-BMA+. When the sample size is small, the mixture model is too complex to fit.
On the other hand, stacking of predictive distributions and Pseudo-BMA+ outperform
all other methods with a moderate sample size.

Clarke (2003) argues that the effect of (point estimation) stacking only depends on
the space spanned by the model list, hence he suggests putting those “independent”
models on the list. Figure 6 shows high correlations do not hurt stacking and Pseudo-
BMA+ in this example.

4.4 Variational inference with different initial values

In Bayesian inference, the posterior density of parameters θ = (θ1, . . . , θm) given ob-
served data y = (y1 . . . yn) can be difficult to compute. Variational inference can be used
to give a fast approximation for p(θ|y) (for a recent review, see Blei et al., 2017). Among
a family of distributions Q, we try to find one q ∈ Q such that the Kullback–Leibler
divergence to the true posterior distribution is minimized:

q∗ = argq∈Q minKL
(
q(θ), p(θ|y)

)
= argq∈Q min

(
Eq log q(θ)− Eq log p(θ, y)

)
. (10)

One widely used variational family is mean-field family where parameters are as-
sumed to be mutually independent Q = {q(θ) : q(θ1, . . . , θm) =

∏m
j=1 qj(θj)}. Some
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Figure 7: (1) A multi-modal posterior distribution of (μ1, μ2). (2–3) Posterior draws from
variational inference with different initial values. (4–5) Averaged posterior distribution
using stacking of predictive distributions and Pseudo-BMA+ weighting.

recent progress is made to run variational inference algorithm in a black-box way. For
example, Kucukelbir et al. (2017) implement Automatic Differentation Variational In-
ference in Stan (Stan Development Team, 2017). Assuming all parameters θ are continu-
ous and model likelihood is differentiable, it transforms θ into real coordinate space IRm

through ζ = T (θ) and uses normal approximation p(ζ|μ, σ2) =
∏m

j=1 N(ζj |μj , σ
2
j ). Plug-

ging this into (10) leads to an optimization problem over (μ, σ2), which can be solved
by stochastic gradient descent. Under some mild condition, it eventually converges to
a local optimum q∗. However, q∗ may depend on initialization since such optimization
problem is in general non-convex, particularly when the true posterior density p(θ|y) is
multi-modal.

Stacking of predictive distributions and Pseudo-BMA+ weighting can be used to
average several sets of posterior draws coming from different approximation distribu-
tions. To do this, we repeat the variational inference K times. At time k, we start
from a random initial point and use stochastic gradient descent to solve the optimiza-
tion problem (10), ending up with an approximation distribution q∗k. Then we draw S

samples (θ
(1)
k , . . . , θ

(S)
k ) from q∗k(θ) and calculate the importance ratio rsi,k defined in

(6) as rsi,k = 1/p(yi|θ(s)k ). After this, the remaining steps follow as before. We obtain
stacking or Pseudo-BMA+ weights wk and average all approximation distributions as∑K

k=1 wkq
∗
k.

Figure 7 gives a simple example that the averaging strategy helps adjust the opti-
mization uncertainty of initial values. Suppose the data is two-dimensional y=(y(1), y(2))
and the parameter is (μ1, μ2) ∈ IR2. The likelihood p(y|μ1, μ2) is given by
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y(1) ∼ Cauchy(μ1, 1), y(2) ∼ Cauchy(μ2, 1).

A N(0, 1) prior is assigned to μ1−μ2. We generate two observations (y
(1)
1 = 3, y

(2)
1 = 2)

and (y
(1)
2 = −2, y

(2)
2 = −2). The first panel shows the true posterior distribution of

μ = (μ1, μ2), which is bimodal. We run mean-field normal variational inference in Stan,
with two initial values to be (μ1, μ2) = (5, 5) and (−5,−5) separately. This produces
two distinct approximation distributions as shown in panel 2 and 3. We then draw
1000 samples each from these two distributions and use stacking or Pseudo-BMA+ to
combine them. The lower 2 panels show the averaged posterior distributions. Though
neither can recover the true distribution, the averaged version is closer to it.

4.5 Proximity and directional models of voting

Adams et al. (2004) use US Senate voting data from 1988 to 1992 to study voters’
preference for the candidates who propose policies that are similar to their political
beliefs. They introduce two similar variables that indicate the distance between voters
and candidates. Proximity voting comparison represents the i-th voter’s comparison
between the candidates’ ideological positions:

Ui(D)− Ui(R) = (xR − xi)
2 − (xD − xi)

2,

where xi represents the i-th voter’s preferred ideological position, and xD and xR repre-
sent the ideological positions of the Democratic and Republican candidates, respectively.
In contrast, the i-th voter’s directional comparison is defined by

Ui(D)− Ui(R) = (xD −XN )(xi −XN )− (xR −XN )(xi −XN ),

where XN is the neutral point of the ideology scale.

Finally, all these comparison is aggregated in the party level, leading to two party-
level variable Democratic proximity advantage and Democratic directional advantage.
The sample size is n = 94.

For both of these two variables, there are two ways to measure candidates’ ideolog-
ical positions xD and xR, which lead to two different datasets. In the Mean candidate
dataset, they are calculated by taking the average of all respondents’ answers in the
relevant state and year. In the Voter-specific dataset, they are calculate by using re-
spondents’ own placements of the two candidates. In both datasets, there are 4 other
party-level variables.

The two variables Democratic proximity advantage and Democratic directional ad-
vantage are highly correlated. Montgomery and Nyhan (2010) point out that Bayesian
model averaging is an approach to helping arbitrate between competing predictors in a
linear regression model. They average over all 26 linear subset models excluding those
containing both variables Democratic proximity advantage and Democratic directional
advantage, (i.e., 48 models in total). Each subset regression is with the form

Mγ : y| (X,β0, βγ) ∼ N(β0 +Xγβγ , σ
2).
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Full model BMA Stacking of Pseudo-BMA+ weighting
predictive distributions

Mean Voter- Mean Voter- Mean Voter- Mean Voter-
Candidate specific Candidate specific Candidate specific Candidate specific

prox. adv. -3.05 (1.32) -2.01 (1.06) -0.22 (0.95) 0.75 (0.68) 0.00 (0.00) 0.00 (0.00) -0.02 (0.08) 0.04 (0.24)
direct. adv. 7.95 (2.85) 4.18 (1.36) 3.58 (2.02) 2.36 (0.84) 2.56 (2.32) 1.93 (1.16) 1.60 (4.91) 1.78 (1.22)
incumb. adv. 1.06 (1.20) 1.14 (1.19) 1.61 (1.24) 1.30 (1.24) 0.48 (1.70) 0.34 (0.89) 0.66 (1.13) 0.54 (1.03)
quality adv. 3.12 (1.24) 2.38 (1.22) 2.96 (1.25) 2.74 (1.22) 2.20 (1.71) 2.30 (1.52) 2.05 (2.86) 1.89 (1.61)
spend adv. 0.27 (0.04) 0.27 (0.04) 0.32 (0.04) 0.31 (0.04) 0.31 (0.07) 0.31 (0.03) 0.31 (0.04) 0.30 (0.04)
partisan adv. 0.06 (0.05) 0.06 (0.05) 0.08 (0.06) 0.07 (0.06) 0.01 (0.04) 0.00 (0.00) 0.03 (0.05) 0.03 (0.05)
constant 53.3 (1.2) 52.0 (0.8) 51.4 (1.0) 51.6 (0.8) 51.9 (1.1) 51.6 (0.7) 51.5 (1.2) 51.4 (0.8)

Figure 8: Regression coefficients and standard errors in the voting example, from the full
model (columns 1–2), the averaged subset regression model using BMA (columns 3–4),
stacking of predictive distributions (columns 5–6) and Pseudo-BMA+ (columns 7–8).
Democratic proximity advantage and Democratic directional advantage are two highly
correlated variables. Mean candidate and Voter-specific are two datasets that provide
different measurements on candidates’ ideological placement.

Accounting for the different complexity, they used the hyper-g prior (Liang et al., 2008).
Let φ to be the inverse of the variance φ = 1

σ2 . The hyper-g prior with a hyper-parameter
α is,

p(φ) ∝ 1

φ
,

β| (g, φ,X) ∼ N
(
0,

g

φ
(XTX)−1

)
,

p(g|α) = α− 2

2
(1 + g)−α/2, g > 0.

The first two columns of Figure 8 show the linear regression coefficients as estimated
using least squares. The remaining columns show the posterior mean and standard er-
ror of the regression coefficients using BMA, stacking of predictive distributions, and
Pseudo-BMA+ respectively. Under all three averaging strategies, the coefficient of prox-
imity advantage is no longer statistically significantly negative, and the coefficient of
directional advantage is shrunk. As fit to these data, stacking puts near-zero weights
on all subset models containing proximity advantage, whereas Pseudo-BMA+ weight-
ing always gives some weight to each model. In this example, averaging subset models
by stacking or Pseudo-BMA+ weighting gives a way to deal with competing variables,
which should be more reliable than BMA according to our previous argument.

4.6 Predicting well-switching behavior in Bangladesh

Many wells in Bangladesh and other South Asian countries are contaminated with
natural arsenic. People whose wells have arsenic levels that exceed a certain threshold
are encouraged to switch to nearby safe wells (for background details, see Gelman and
Hill (2006, Chapter 5.4)). We are analyzing a dataset including 3020 respondents to
find factors predictive of the well switching. The outcome variable is
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yi =

{
1, if household i switched to a safe well.

0, if household i continued using its own well.

And we consider following input variables:

• dist: the distance (in meters) to the closest known safe well,

• arsenic: the arsenic level (in 100 micrograms per liter) of the respondent’s well,

• assoc: whether a member of the household is active in any community association,

• educ: the education level of the head of the household.

We start with what we call Model 1, a simple logistic regression with all variables
above as well as a constant term,

y ∼Bernoulli(θ),

θ =logit−1(β0 + β1dist+ β2arsenic+ β3assoc+ β4educ).

Model 2 contains the interaction between distances and arsenic levels,

θ = logit−1(β0 + β1dist+ β2arsenic+ β3assoc+ β4educ+ β5dist× arsenic).

Furthermore, we can use spline to capture the nonlinear relational between the logit
switching probability and the distance or the arsenic level. Model 3 contains the B-
splines for the distance and the arsenic level with polynomial degree 2,

θ = logit−1(β0 + β1dist+ β2arsenic+ β3assoc+ β4educ+ αdisBdis + αarsBars),

where Bdis is the B-spline basis of distance with the form (Bdis,1(dist), . . . , Bdis,q(dist))
and αdis, αars are vectors. We also fix the number of spline knots to be 10. Model 4 and
5 are the similar models with 3-degree and 5-degree B-splines, respectively.

Next, we can add a bivariate spline to capture nonlinear interactions,

θ = logit−1(β0+β1dist+β2arsenic+β3assoc+β4educ+β5dist×arsenic+αBdis,ars),

where Bdis,ars is the bivariate spline basis with the degree to be 2×2, 3×3 and 5×5 in
Model 6, 7 and 8 respectively.

Figure 9 shows the inference results in all 8 models, which are summarized by the
posterior mean, 50% confidence interval and 95% confidence interval of the probability
of switching from an unsafe well as a function of the distance or the arsenic level. Any
other variables assoc and educ are fixed at their means. It is not obvious from these
results which one is the best model. Spline models give a more flexible shape, but also
introduce more variance for posterior estimation.

Finally, we run stacking of predictive distributions and Pseudo-BMA+ to combine
these 8 models. The calculated model weights are printed above each panel in Figure 9.
For both combination methods, Model 5 (univariate splines with degree 5) accounts
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Figure 9: The posterior mean, 50% and 95% confidence interval of the well switching
probability in Models 1–8. For each model, the switching probability is shown as a
function of (a) the distance to the nearest safe well or (b) the arsenic level of the existing
well. In each subplot, other input variables are held constant. The model weights by
stacking of predictive distributions and Pseudo-BMA+ are printed above each panel.

Figure 10: The posterior mean, 50% and 95% confidence interval of the well switching
probability in the combined model via stacking of predictive distributions. Pseudo-
BMA+ weighting gives a similar result for the combination.

for the majority share. Model 8 is the most complicated one, but both stacking and
Pseudo-BMA+ avoid overfitting by assigning it a negligible weight.

Figure 10 shows the posterior mean, 50% confidence interval, and 95% confidence
interval of the switching probability in the stacking-combined model. Pseudo-BMA+
weighting gives a similar combination result for this example. At first glance, the com-
bination looks quite similar to Model 5, while it may not seem necessary to put an
extra 0.09 weight on Model 1 in stacking combination since Model 1 is completely con-
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tained in Model 5 if setting αdis = αars = 0. However, Model 5 is not perfect since
it predicts that the posterior mean of switching probability will decrease as a function
of the distance to the nearest safe well, for small distances. In fact, without further
control, it is not surprising to find boundary fluctuation as a main drawback for higher
order splines. This decreasing trend around the left boundary is flatter in the combined
distribution since the combination contains part of straightforward logistic regression
(in stacking weights) or lower order splines (in Pseudo-BMA+ weights). In this example
the sample size n = 3020 is large, hence we have reasons to believe stacking of predictive
distributions gives the optimal combination.

5 Discussion

5.1 Sparse structure and high dimensions

Yang and Dunson (2014) propose to combine multiple point forecasts, f =
∑K

k=1 wkfk,
through using a Dirichlet aggregation prior, w ∼ Dirichlet( α

Kγ , . . . ,
α
Kγ ), and the adap-

tive regression. Their goal is to impose the sparsity structure (certain models can receive
zero weights). They show their combination algorithm can achieve the minimax squared
risk among all convex combinations,

sup
f1,...fK∈F0

inf
f̂

sup
f∗
λ∈FΓ

E||f̂ − f∗
λ ||2,

where F0 = (f : ||f ||∞ ≤ 1).

The stacking method can also adapt to sparsity through stronger regularizations.
When the dimension of model space is high, we can use a hierarchical prior on w in
estimation (4) to pull toward sparsity if that is desired.

5.2 Constraints and regularity

In point estimation stacking, the simplex constraint is the most widely used regulariza-
tion so as to overcome potential problems with multicollinearity. Clarke (2003) suggests
relaxing the constraint to make it more flexible.

When combining distributions, there is no need to worry about multicollinearity
except in degenerate cases. But in order to guarantee a meaningful posterior predictive
density, the simplex constraint becomes natural, which is satisfied automatically in BMA
and Pseudo-BMA weighting. As mentioned in the previous section, stronger priors can
be added.

Another assumption is that the separate posterior distributions are combined lin-
early. There could be gains from going beyond convex linear combinations. For instance,
in the subset regression example when each individual model is a univariate regression,
the true model distribution is a convolution instead of a mixture of each possible mod-
els distribution. Both of them lead to the additive model in the point estimation, so
stacking of the means is always valid, while stacking of predictive distributions is not
possible to recover the true model in the convolution case.
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Our explanation is that when the model list is large, the convex span should be large
enough to approximate the true model. And this is the reason why we prefer adding
stronger priors to make the estimation of weights stable in high dimensions.

5.3 General recommendations

The methods discussed in this paper are all based on the idea of fitting models separately
and then combining the estimated predictive distributions. This approach is limited in
that it does not pool information between the different model fits: as such, it is only
ideal when the K different models being fit have nothing in common. But in that
case we would prefer to fit a larger super-model that includes the separate models
as special cases, perhaps using an informative prior distribution to ensure stability in
inferences.

That said, in practice it is common for different sorts of models to be set up without
any easy way to combine them, and in such cases it is necessary from a Bayesian per-
spective to somehow aggregate their predictive distributions. The often-recommended
approach of Bayesian model averaging can fail catastrophically in that the required
Bayes factors can depend entirely on arbitrary specifications of noninformative prior
distributions. Stacking is a more promising general method in that it is directly focused
on performance of the combined predictive distribution. Based on our theory, simula-
tions, and examples, we recommend stacking (of predictive distributions) for the task of
combining separately-fit Bayesian posterior predictive distributions. As an alternative,
Pseudo-BMA+ is computationally cheaper and can serve as an initial guess for stack-
ing. The computations can be done in R and Stan, and the optimization required to
compute the weights connects directly to the predictive task.

Supplementary Material

Supplementary Material to “Using Stacking to Average Bayesian Predictive Distribu-
tions” (DOI: 10.1214/17-BA1091SUPP; .pdf).
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Invited Discussion

Bertrand Clarke∗

1 Introduction and Summary

Yao, Vehtari, Simpson, and Gelman have proposed a useful and incisive extension to
the usual model average predictor based on stacking models. The extension uses score
functions as a way to determine weights on predictive densities, thereby giving a full
stacking-based distribution for a future outcome. The authors are to be commended for
their perceptivity and I am grateful to the Editor-in-Chief of Bayesian Analysis for the
opportunity to contribute to the discussion.

The authors develop their ideas logically: Initally, they review the concept of statis-
tical problem classes, namely M-closed, -complete, and -open. These classes are defined
by the relative position of the unknown true model (assuming it exists) to the models on
a model list that are available for use. Then, they recall the definitions of various model
averaging techniques, including the original form of stacking due to Wolpert (1992).
Typically, model averaging techniques are most useful for large M-closed problems
(where model selection may not be effective) and M-complete problems.

The authors then state the definition of a proper scoring rule and define a model
averaging procedure with respect to one. Intuitively, a scoring rule S is a real valued
function of two variables: One is a distribution (usually assumed to have a density)
and the other is an outcome of a data generator (DG). When a DG is stochastic,
i.e., its outcomes are drawn according to a probability distribution, it makes sense to
regard its outcomes as corresponding to a random variable. The scoring rule is meant
to encapsulate how far a P chosen to generate predictions is from a realized outcome y.
The idea is that our P can be (and probably is) wrong whereas by definition y is ‘right’
because it came from the DG. Hence, loosely, S(P, y) is small, possibly negative, when
P is poorly chosen and large when P is well-chosen, both relative to y.

The definition of a scoring rule can be extended to include the case that Y = y has
a distribution. This gives a real valued function that behaves somewhat like a distance
between two distributions, say P and Q, and is of the form S(P,Q) =

∫
S(P, y)dQ(y).

To state the authors’ central definition, which defines their new methodology as an
extension of Wolpert (1992), write

max
w∈SK

S

(
K∑

k=1

wkp(· | Y = y,Mk), pT (· | Y = y)

)
, (1)

where: i) SK is the simplex in K dimensions with generic element w = (w1, . . . , wK), ii)
the Mk’s are candidate models and pT denotes the density of the true model, and, iii)
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y = (y1, . . . , yn) is an outcome of Y = (Y1, . . . , Yn) ∼ pnT in which the Yi’s are IID. It is
understood that the integration in S is with respect to pT . The first and second entries
of S in (1) use the predictive densities for a new Yn+1 = yn+1, given Y = y, under the
K candidate models and pT , respectively.

Since (1) is intractable as written, the authors replace p(yn+1 | Y = y,Mk) with

p̂k,−i(yi) =

∫
p(yi | θk,Mk)p(θk | y−i,Mk)dθk (2)

in which the subscript −i indicates that the i-th data point, i = 1, . . . , n, has been left
out. It is also assumed that model Mk is defined by a conditional density for Yi and
includes a prior p(θk) where θk is the parameter for model Mk. Using (2) in (1) and
reverting to the initial definition of the score function, the stacking weights are

(ŵi, . . . , ŵK) = arg max
w∈SK

1

n

n∑
i=1

S

(
K∑

k=1

wkp̂k,−i(·), yi

)
, (3)

assuming they exist and are unique. It is important to note the interchangeability of
pT and Yi = yi which is ‘true’ in the sense that it is a valid outcome of pT . Now, the
‘stack’ of predictive densities is

p̂(yn+1 | Y = y) =

K∑
k=1

ŵkp(yn+1 | Y = y,Mk), (4)

where the coefficients come from (3). Expression (4) can be used to obtain point and
interval predictors for Yn+1.

2 Prequentialism, Problem Classes, and Comparisons

The central methodological contribution of the paper is a general technique, essentially
Expression (4), for using a score function to find coefficients that can be used to form
a stack of densities that happen to be the predictive densities from K models. Thus,
it is a method for producing predictors and it can be compared to other methods that
produce predictors. One natural way to do this is to invoke the Prequential Principle
as enunciated in Dawid (1984): Any criterion for assessing the agreement between the
predictor and the DG should depend only on the predictions and outcomes. There are
two key features to this: i) There should be no conflict/confluence of interest between
the assessment and the generation of the values fed into the assessment, and ii) The
values of either the DG or predictor that were not used are not relevant. At root,
Prequentiality primarily requires that the comparison of predictions with outcomes be
disjoint from how the predictions were generated.

The Prequential Principle is very general: It does not require that the outcomes of
the DG even follow a distribution. So, the Prequential Principle accommodates any sort
of streaming data or data that can be regarded as having a time-ordering – even if the
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ordering is imposed by the analysis. Parallel to this generality, and given the ubiquity
of data that is not plausibly stochastic, it makes sense to merge the definitions of M-
complete and M-open and redefine M-open as those DG’s that are not meaningfully
described by any stochastic process, i.e., no true probability model exists. Indeed, the
definition of M-complete and M-open offered originally in Bernardo and Smith (2000)
p. 384-5 allows for this but permits M-complete and M-open problems to overlap.
Redefining the M-open class of problems so it is disjoint from the M-complete (and
M-closed) classes of problems seems logical. Doing this also helps focus on model list
selection which deserves more attention; see the comparisons in Clarke et al. (2013).

In the context of the Prequential Principle, the assumption built into the paper
(and comments) is that stacking the posterior predictive densities is done using only
the first n data points and the goal is to predict the n+1. That is, n data points (xi, yi)
for i = 1, . . . , n are available to form a predictor such as p̂ and that the predictor is
evaluated at xn+1 to predict Yn+1(xn+1) and its performance assessed in some way that
does not involve S. Implicitly, it is assumed the prediction problem will be repeated
many times and we are looking only at the n-th stage so as to examine the updating of
the predictor. In this way the authors’ framework may be seen as Prequential (although
this is a point on which reasonable people might disagree). Aside from the formula
(4), updating can include changing the models, the Mk’s, or even the model averaging
technique itself. This is done chiefly by the comparing the predictions with the realized
values. Here, the xi’s are regarded as deterministic explanatory variables and the Yi’s
are random. In much of the paper, the xi’s are suppressed in the notation.

In their Gaussian mixture model example (Section 4.1), the authors treat their prob-
lem as M-open because the true model is not on the model list. While this is reasonable
for the sake of argument, it actually underscores the importance of model list selection
because choosing a better model list would make the problem M-closed. Nevertheless,
in this example, the authors make a compelling point by comparing three different pre-
dictors: Bayes model averaging (BMA), stacking of means (under squared error), and
stacking of predictive distributions by using a log score as in (4). Figure 1 shows that
BMA converges to the model on the model list closest to the true model i.e., BMA has
unavoidable (and undetectable) bias. By contrast, stacking of means and stacking of
predictive distributions both do well in terms of their means (Figure 2, middle panel)
and stacking of predictive densities outperforms both BMA and stacking of means in
other senses (Figure 2, left and right panels) because, as shown in Figure 1, it converges
to the correct predictive distribution. The distribution associated with the stacking
of means converges to a broad lump that does not seem useful. This example shows
that matching whole distributions is feasible and sensible. It also shows BMA does not
routinely perform well despite its asymptotic optimality; see Raftery and Zheng (2003).

In the example of Section 4.2, Figures 3 and 4 show that, again, stacking means
and stacking predictive densities are the best among seven model averaging methods
while BMA ties for fourth place or is in last place. Other comparisons have found BMA
to have similarly disappointing finite sample behavior. (There is good evidence that a
technique called Pseudo-BMA+ is competitive with the two versions of stacking.)

In the example of Section 4.3 where the goal is to obtain a density, the authors show
stacking predictive densities and Pseudo-BMA+ outperform four other techniques for
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obtaining a density; one is BMA. The remaining examples show further properties of
stacking predictive densities (Section 4.4) or use the method to do predictive inference
(Sections 4.5 and 4.6). The results on real data seem reasonable.

A remaining question is the relationship between using predictions from stacked
predictive distributions and the Prequential Principle. Obviously, point predictors from
stacked predictive distributions can be compared directly to outcomes and hence the
Prequential Principle is satisfied. However, one of the authors’ arguments is that ob-
taining a full distribution, as can be done by using their method, is better than simply
using point predictors; this is justified by using what appear to be non-Prequential as-
sessments such as the mean log density; see Figures, 2, 3, 4, and 6. First, the log-score
was used to form the stacks. So, is log really the right way to assess performance? Sec-
ond, all too often, taking a mean requires a distribution to exist and so the evaluation of
the predictor may therefore depend on the true distribution if only to define the mode
of convergence. It’s hard to tell if this is the case with the present predictor; these are
points on which the authors should comment. Moreover, effectively, the new method
gives a prediction distribution (4) that leaves us with two questions: i) How should
we use the distributional information, including that from the smoothing and Bayesian
bootstrap, assuming it’s valid? and ii) Is the distributional information associated with
the stacking of means or densities valid, i.e., an accurate representation of its variability?

The answer to i) might simply be the obvious: It’s a distribution and therefore any
operation we might wish to perform on it, e.g., extract interval or percentile predictors,
is feasible and it can be assessed in the score function of our choice. Of course, in
practice, we do not know the actual distribution of the future outcome; we have only an
estimate of it that we hope is good. Perhaps the consistency statement in Section 3.2
is enough. The answer to ii) seems to require more thought on what exactly the Pareto
smoothing and Bayesian bootstrap are producing. This is important because an extra
quantity, the score function, has been introduced and the solution in (4) – and hence
the distribution assigned to stacked means or predictive densities – can depend on it,
possibly delicately. The effect of the score function and the validity of the distribution
the authors have associated to stacking of means are points for which the authors might
be able to provide some insight.

3 What About Score Functions in the M-Open Case?

One can plausibly argue that the authors’ methodology really only applies to M-closed
and -complete problems. In other words, the examples they use are simulated and so
are M-closed or real data for which one might believe a stochastic model exists even
if it is tremendously complex. Of course, even if such arguments are accepted, one can
use the authors’ techniques in M-open problems – it just might not work as well as
methods that are designed for M-open problems.

One technique that was invented with M-open problems in mind is due to Shtarkov
(1987). The analogous Bayesian problem and solution was given in Le and Clarke (2016).
In both cases the log score was used; however, the authors’ work suggests that this
technique can be generalized to other score functions.
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Recall the idea behind Shtarkov’s original formulation is that prediction can be
treated as a game in which a Forecaster chooses a density q (for prediction) and Nature
chooses an outcome y not constrained by any rule. The payoff to Nature (or loss to
the Forecaster) is log q(y), i.e., log loss. Naturally, the Forecaster wants to minimize the
loss. So, assume the Forecaster has ‘Advisors’ represented by densities pθ; each Advisor
corresponds to a θ. The advisors announce their densities before Nature issues a y. If the
Forecaster has a pre-game idea about the relative abilities of the advisors to give good
advice, this may be formulated into a prior p(θ). Now it makes sense for the Forecaster
to minimize the maximum regret, i.e., to seek the smallest loss (incurred by the best
Advisor). This means finding the q that minimizes

sup
y

[
log

1

q(y)
− inf

θ
log

1

p(θ)p(y | θ)

]
. (5)

The solution exists in closed form and can be computed; see Le and Clarke (2016).
Following the authors, consider replacing the log loss in (5) by a general score function,
S. Now, the Forecaster wants the q ∈ Q, say qopt,S, that minimizes

sup
y

[
S(q(·), y)− inf

θ
S(p(θ)p(· | θ), y)

]
, (6)

where Q is a collection of densities. Expression (6) may be converted to a form analo-
gous to (3), possibly releasing the sum-to-one constraint that some have argued is not
appropriate for M-open problems. It is not obvious that a closed form for (6) can be
given; qopt,S might only be available computationally. In either case, qopt,S would depend
on S, give an alternative solution to Shtarkov’s problem, and might perform better for
M-open data than score based stacking. If the authors had any insight on these points,
many readers would be glad to hear them.
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Invited Discussion

Meng Li∗†

1 Introduction

I would like to offer my congratulations to Yao et al. for a welcome and interesting
addition to the growing literature on model averaging. Earlier papers on stacking cited
by the authors have mostly focused on averaging models to improve point estimation.
The authors now demonstrate that the same idea can be extended to the combination of
predictive distributions in the M-open case. In the next several pages, I will first review
the paper connecting it to the related literature (Section 2), then comment on the M-
complete case (Section 3) and an application that may be favorable to the proposed
method (Section 4). Section 5 concludes this comment.

2 Overview

Suppose we have a list of parametric models under consideration M = {M1, . . . ,MK}
for the observations y(n) = {y1, . . . , yn} ∈ Yn with Y the sample space. Yao et al.
(2017) address a general problem of model aggregation from an interesting perspective:
how to average the multiple models in M such that the resulting model combination
has an optimal predictive distribution. This distinguishes its goal from two areas that
have been well studied, i.e., weighing models targeted to an optimal point prediction
and selecting a single model possibly with uncertainty quantification. Yao et al. (2017)
particularly focus on the M-open case (Bernardo and Smith, 1994) to allow the true
model to fall outside of M.

One of the most popular approaches is to use Bayesian model probabilities pr(Mk |
y(n)) as weights, with these weights forming the basis of Bayesian Model Averaging
(BMA). Philosophically, in order to interpret pr(Mj | y(n)) as a model probability, one
must rely on the assumption that one of the models in the list M is exactly true,
known as the M-closed case. This assumption is arguably always flawed, although one
can still use pr(Mk | y(n)) as a model weight from a pragmatic perspective, regardless
of the question of interpretation. In the case of M-complete or M-open, an alternative
approach is to formulate the model selection problem in a decision theoretic framework,
selecting the model in M that maximizes expected utility. Yao et al. (2017) adopt a
stacking approach along the line of this decision theoretic framework (Bernardo and
Smith, 1994; Gutiérrez-Peña et al., 2009; Clyde and Iversen, 2013).

There are various scoring rules available when defining the unity function in a de-
cision theoretic framework. The choice can and probably should depend on the specific

∗This work was partially supported by the Ralph E. Powe Junior Faculty Enhancement Award by
ORAU.

†Noah Harding Assistant Professor, Department of Statistics, Rice University, Houston, TX, U.S.A.,
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application—similar principle has been demonstrated by Claeskens and Hjort (2003)
that model selection may focus on the parameter singled out for interest. The classi-
cal stacking method uses quadratic loss (or energy score with β = 2 in the paper),
targeting at an optimal point prediction. Yao et al. (2017) consider a range of scoring
rules generalizing the stacked density estimation by Smyth and Wolpert (1998). The
authors recommend to use the log scoring rule, which essentially finds the Kullback–
Leibler divergence projection of the true data generating density to the convex hull
C = {

∑K
k=1 wkp(· | Mk) :

∑K
k=1 wk = 1, wk ≥ 0} where p(· | Mk) is the predictive

density under model Mk, targeting at an optimal predictive density.

The decision theoretic framework used in the paper bypasses the need to philosoph-
ically interpret or calibrate model weights, but has to evaluate the expected utility.
Expected utility can be approximated either via cross-validation (Clyde and Iversen,
2013) or using a nonparametric prior (Gutiérrez-Peña and Walker, 2005; Gutiérrez-Peña
et al., 2009). The authors use leave-one-out cross-validation to construct an approxima-
tion of the expected utility, while one may generally consider a k-fold cross-validation as
in Clyde and Iversen (2013). While Bayesian model probabilities often have analytical
forms available thus are computationally appealing (Liang et al., 2008), the computa-
tional burden in cross-validation is unfavorably intensive. The authors overcome this
difficulty by using the Pareto smoothed importance sampling (Vehtari and Lampinen,
2002; Vehtari et al., 2012) to approximate leave-one-out predictive densities, which self
diagnoses the reliability of the approximation based on some estimated parameter and
leads to manageable computation. The authors thoughtfully design simple but effective
simulations to illustrate and compare how stacking of distributions and selected existing
methods behave, and provide R and Stan code for routine implementation.

3 M-complete and nonparametric references

The nonparametric Bayes literature provides a rich menu of possibilities to approximate
the true data generating scheme, ranging from Dirichlet processes to Gaussian processes;
refer to Hjort et al. (2010) for a review. There is a rich literature showing that Bayesian
nonparametric models often have appealing frequentist asymptotic properties, such as
appropriate notions of consistency (Schwartz, 1965) and optimal rates of convergence
(van der Vaart and van Zanten, 2009; Bhattacharya et al., 2014; Castillo, 2014; Shen
and Ghosal, 2015; Li and Ghosal, 2017; Ghosal and van der Vaart, 2017). When an
optimal predictive density is the goal, one may ask why not pursue the direction of
flexible modeling utilizing the rapidly developed nonparametric Bayes literature?

While I look forward to open discussions about the question above, one possible
argument is that although Bayesian nonparametric models are appealing from a pre-
diction viewpoint, they also have disadvantages in terms of not only interpretability
but also in involving large numbers of parameters, which increase automatically as the
sample size increases. This may lead to daunting memory, storage and communication
issues in modern applications involving large data sets. It is thus often preferable from
a variety of viewpoints to approximate the performance of a very rich and provably
flexible nonparametric model by taking a weighted average of much simpler parametric
models.
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Keeping the interpretability in mind while being aware of flexible nonparametric
models, we indeed reach to the case of M-complete which “refers to the situation where
the true model exists and is out of model list M. But we still wish to use the models
in M because of tractability of computations or communication of results, compared
with the actual belief model. Thus, one simply finds the member in M that maximizes
the expected utility (with respect to the true model)”, according to the definition from
Bernardo and Smith (1994). As a result, we can use a nonparametric Bayes surrogate
for the true model and calculate the expected utility based on this surrogate, a general
approach that fits into the M-complete case. Li and Dunson (2018) use a nonparametric
Bayesian reference to assign weights to models based on Kullback–Leibler divergence
to define a model weight that can be used in goodness-of-fit assessments, comparing
imperfect models, and providing model weights to be used in model aggregation. It
seems promising to migrate this idea to the two stacking approaches used in the paper,
one based on optimization using proper scoring rules and the other called pseudo-BMA
in Section 3.4 in a form of exponential weighting (Rigollet and Tsybakov, 2012):

• Stacking using proper scoring rules. One may obtain the weights by optimizing
an approximated version of (3):

min
w∈SK

1

d

(
K∑

k=1

wkp(·|y,Mk), p̂t(·|y)
)

or max
w∈SK

1

S

(
K∑

k=1

wkp(·|y,Mk), p̂t(·|y)
)
, (1)

where p̂t(ỹi) is a nonparametric Bayes model and other notations are defined in
Yao et al. (2017).

• Pseudo-BMA. We replace the empirical observations used in Section 3.4 by the
nonparametric surrogate. Specifically, the quantity elpdk can be estimated by

êlpd
k
=

n∑
i=1

∫
p̂t(ỹi) log p(ỹi|y,Mk)dỹi (2)

instead of êlpd
k

loo used in the paper, and the final weights become

wk =
exp(êlpd

k
)∑K

k=1 exp(êlpd
k
)
. (3)

The use of nonparametric reference models eliminates the need of cross-validation
that gives rise to the main computational hurdle in stacking of distributions. In addi-
tion, this estimate based on nonparametric reference potentially induces an inherent
complexity penalty, a phenomenon observed in Li and Dunson (2018), thus the log-
normal approximation for weights regularization in Section 3.4 may be not necessary.

Although we here focus on Bayesian machinery, one can approximate the expected
utility using any method that estimates d(

∑K
k=1 wkp(·|y,Mk), pt(·|y)). For example,

if we use the recommended Kullback–Leibler divergence, i.e., d(p, q) = KL(q, p), then
there is substantial work that has focused on estimating the Kullback–Leibler divergence
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between two unknown densities based on samples from these densities (Leonenko et al.,
2008; Pérez-Cruz, 2008; Bu et al., 2018). Here the setting is somewhat different as there
is only one sample, but the local likelihood methods of Lee and Park (2006) and the
Bayesian approach of Viele (2007) can potentially be used, among others.

Furthermore, all of these methods in a decision theoretic framework or BMA are
focused on providing weights for model aggregation, and are not useful for goodness-
of-fit assessments of (absolute) model adequacy. The nonparametric reference models
in the M-complete case enables the assessment the quality of each individual model in
M as well as the entire model list. One of course needs to specify an absolute scale to
define what is adequate, but rules of thumb such as the one provided by Li and Dunson
(2018) based on the convention of Bayes factors may be obtainable.

4 Data integration

Section 5.3 makes a great point that an ideal case for stacking is that the K models in
the model list are orthogonal. This ideal case is not fully demonstrated by the paper, but
it insightfully points to a possible solution to a challenging problem—data integration.

Modern techniques enable researchers to acquire rich data from multiple platforms,
thus it becomes possible to combine various data types of fundamental differences to
make a single decision, hopefully more informative than any decision based on an indi-
vidual data resource. In response to this demand, there has been a recent surge of interest
in data integration expanding into a variety of emerging areas, for example, imaging
genetics, omics data, and analysis of covariate adjusted complex objects (such as func-
tions, images, trees, and networks). One concrete example that I have been working on
comprises a cohort of patients with demographic, clinical and omics data; the omics data
include single nucleotide polymorphisms (SNPs), expression, and micro-ribonucleic acids
(miRNAs). In these cases, the dramatic heterogeneity across data structures, which is
one of root causes that fail many attempts especially those trying to map various data
structures to a common space such as the Euclidean space, seems to be a characteristic
favorable to the stacking approach. The sample size is usually not large, thus even the
cross-validation approach without approximation may be computationally manageable.

5 Summary

To summarize, Yao et al. (2017) have tackled the model averaging problem that is one of
fundamental tasks in statistics. They have proposed improvements to existing stacking
methods for stacking of densities. This method requires intensive leave-one-out posterior
distributions to approximate the expected utility, and the authors propose to use Pareto
smoothed importance sampling to scale up the implementation.

I would like to thank Yao et al. for writing an interesting paper. I appreciated that
the paper has several detailed and thoughtful demonstrations to compare the proposed
methods to existing model weights and help readers understand how stacking and BMA
behave differently. The integration with R and Stan makes the method immediately
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available to practitioners. I find the work useful and expect the proposed methods
positively impact model averaging and its application to a wide range of problems
in practice. I hope the comments on M-complete and a possible application to data
application add some useful insights to a paper already rich in content.
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Yao et al. (2018) aim to improve Bayesian model averaging (BMA) in the M-open
(misspecified) case by replacing it with stacking, which is extended to combine predictive
distributions rather than point estimates. We generally applaud the program to adjust
Bayesian methods to better deal with M-open cases and we can definitely see merit
in stacking-based approaches. Yet, we feel that the main method advocated by Yao
et al. (2018), which stacks based on the log score, while often outperforming BMA,
fails to address a crucial problem of the M-open-BMA setting. This is the problem of
hypercompression as identified by Grünwald and Van Ommen (2017), and shown also
to occur with real-world data by De Heide (2016). We explore this issue in Section 2;
first, we very briefly compare stacking to a related method called switching.

1 Stacking and Switching

Standard BMA can already be viewed in terms of minimizing a sum of log score pre-
diction errors via Dawid’s (1984) prequential interpretation of BMA. Based on this
interpretation, Van Erven et al. (2012) designed the switch distribution as a method for
combining Bayes predictive densities with asymptotics that coincide, up to a log log n
factor, with those of the Akaike Information Criterion (AIC) and leave-one-out cross
validation (LOO). It can vastly outperform standard BMA (see Figure 1 from their
paper), yet is designed in a manner that stays closer to the Bayesian ideal than stack-
ing. It has the additional benefit that if one happens to be so lucky to unknowingly
reside in the M-closed (correctly specified) case after all, the procedure becomes sta-
tistically consistent, selecting asymptotically the smallest model Mk that contains the
data generating distribution P ∗. We suspect that in this M-closed case, stacking will
behave like AIC, which, in the case of nested models, even asymptotically will select
an overly large model with positive probability (for theoretical rate-of-convergence and
consistency results for switching see Van der Pas and Grünwald (2018)). Moreover, by
its very construction, switching, like stacking, should resolve another central problem
of BMA identified by (Yao et al., 2018, Section 2), namely its sensitivity to the prior
chosen within the models Mk. On the other hand, in the M-open case, switching will
asymptotically concentrate on the single, smallest Mk that contains the distribution P̃
closest to P ∗ in KL-divergence; stacking will provide a weighted predictive distribution
that may come significantly closer to P ∗, as indicated by (Yao et al., 2018, Section 3.2).
To give a very rough idea of ‘switching’: in the case of just two models M = {M1,M2},
switching can be interpreted as BMA applied to a modified set of models {M〈j〉 : j ∈ N}
where M〈j〉 represents a model that follows the Bayes predictive density of model M1

until time j and then switches to the Bayes predictive density corresponding to model
M2; dynamic programming allows for efficient implementation even when the number

∗CWI, Amsterdam and Leiden University, The Netherlands, pdg@cwi.nl
†CWI, Amsterdam and Leiden University, The Netherlands, r.de.heide@cwi.nl

mailto:pdg@cwi.nl
mailto:r.de.heide@cwi.nl


958 Invited Discussion

of models K is larger than 2. It would be of interest to compare stacking to switching,
and compile a list of the pros and cons of each.

2 Standard BMA, Stacking and SafeBMA

Grünwald and Van Ommen (2017) give a simple example of BMA misbehaving in an
M-open regression context. We start with a set of K + 1 models M = {M1, . . . ,MK}
to model data (Z1, Y1), (Z2, Y2), . . .. Each model Mk = {pβ,σ2 : β ∈ R

k+1, σ2 > 0} is
a standard linear regression model, i.e. a set of conditional densities expressing that
Yi =

∑k
j=0 βjXij + ξi. Here Xij is the j-th degree Legendre polynomial applied to one-

dimensional random variable Zi with support [−1, 1] (i.e. Xi1 = Zi, Xi2 = (3Z2
i − 1)/2,

and so on), and the ξi are i.i.d. N(0, σ2) noise variables. We equip each model with
standard priors, for example, aN(0, σ2) prior on the β’s conditional on σ2 and an inverse
Gamma on σ2. We put a uniform or a decreasing prior on the models Mk themselves.
The actual data Zi, Yi are i.i.d. ∼ P ∗. Here P ∗ is defined as follows: at each i, a fair
coin is tossed. If the coin lands heads, then Zi is sampled uniformly from [−1, 1], and
Yi is sampled from N(0, 1). If it lands tails, then (Zi, Yi) is simply set to (0, 0). Thus,
M1, the simplest model on the list, already contains the density in

⋃
k=1..K Mk that is

closest to P ∗(Y | X) in KL divergence. This is the density pβ̃,1/2 with β̃ = 0, which is
incorrect in that it assumes homoskedastic noise while in reality noise is heteroskedastic;
yet pβ̃,1/2 does give the correct regression function E[Y | X] ≡ 0. M1 is thus ‘wrong
but highly useful’. Still, while M1 receives the highest prior mass, until a sample size
of about 2K is reached, BMA puts nearly all of its weight on models Mk′ with k′

close to the maximum K, leading to rather dreadful predictions of E[Y | X]. Figure 1
(green) shows E[Y | X] where the expectation is under the Bayes predictive distribution
arrived at by BMA at sample size 50, for K = 30. On the other hand, SafeBayesian
model averaging, a simple modification of BMA that employs likelihoods raised to an
empirically determined power η < 1, performs excellently in this experiment; for details
we refer to Grünwald and Van Ommen (2017). We also note that other common choices
for priors on (β, σ2) lead to the same results; also, we can take the Xi0, Xi1, . . . , XiK to
be trigonometric basis functions or i.i.d. Gaussians rather than polynomials of Zi, still
getting essentially the same results. De Heide (2016) presents various real-world data
sets in which a similar phenomenon occurs.

Given these problematic results for BMA in an M-open scenario, it is natural to
check how Yao et al. (2018)’s stacking approach (based on log score) fares on this
example. We tried (implementation details at the end of this section, and obtained
the red line in Figure 1. While the behaviour is definitely better than that of BMA,
we do see a milder variation of the same overfitting phenomenon. We still regard this
as undesirable, especially because another method (SafeBMA) behaves substantially
better. To be fair, we should add that (Yao et al., 2018, Section 3.3.) advise that for
extremely small n, their current method can be unstable. The figure reports the result
on a simulated data sequence, for which, according to the diagnostics in their software,
their method should be reasonably accurate (details at the end of this section). Since,
moreover, results (not shown) based on the closely related LOO model selection with log
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Figure 1: The conditional expectation E[Y |X] according to the predictive distribution
found by stacking (red), standard BMA (green) and SafeBayesian regression (blue),
based on models M1, . . . ,M30 with polynomial basis functions, given 50 data points
sampled i.i.d. ∼ P ∗, of which approximately half are placed in (0, 0). The true regres-
sion function is depicted in black. Behaviour of stacking and standard BMA slowly
improves as sample size increases and becomes comparable to SafeBMA around n = 80
for stacking and n = 120 for BMA. Implementation details are given at the end of the
section.

score yield very similar results, we do think that there is an issue here – stacking in itself
is not sufficient to get useful weighted combinations of Bayes predictive distributions in
some small sample situations where such combinations do exist.

Hypercompression The underlying problem is best explained in a simplified setting
without random covariates: let Y1, Y2, . . . i.i.d.∼ P ∗ and each modelMk a set of densities
for the Yi. Denote by p̃ the density in

⋃
k=1..K Mk that minimizes KL divergence to P ∗.

Then, under misspecification, we can have for some k = 1..K that

EY n∼P∗ [− log p(y1, . . . , yn | Mk)] � EY n∼P∗ [− log p̃(y1, . . . , yn)] . (1)

This can happen even for a k such that p̃ 
∈ Mk. (1) is possible because p(y1, . . . , yn | Mk)
is a mixture of distributions in Mk, and may thus be closer to P ∗ than any single
element of Mk. This phenomenon, dubbed hypercompression and extensively studied
and explained by Grünwald and Van Ommen (2017), has the following effect: if Mj

for some j 
= k contains p̃ and, at the given sample size, has its predictive distribution
p(yn | yn−1,Mj) already indistinguishable from p̃, yet the posterior based on Mk has
not concentrated on anything near p̃ (or Mk does not even contain p̃), then Mk might
still be preferred in terms of log score and hence chosen by BMA. The crucial point
for the present discussion is that with stacking based on the log score, the preferred
method of Yao et al. (2018) (see Section 3.1.), the same can happen: (1) implies that
for a substantial fraction of outcomes yi in y1, . . . , yn, one will tend to have, with
y−i := (y1, . . . , yi−1, yi+1, . . . , yn), that

− log p(yi | y−i,Mk) � − log p̃(yi), (2)

hence also giving an advantage to Mk compared to the KL-best p̃ and Mk′ .
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But why would this be undesirable? It turns out that the predictive distribution p(· |
y−i,Mk) in (2) achieves being significantly closer to P ∗ in terms of KL divergence than
any of the elements inside Mk, by being a mixture of elements of Mk which themselves
are all very ‘bad’, i.e. very far from P ∗ in terms of KL divergence (see in particular
Figure 7 and 8 of Grünwald and Van Ommen (2017)). As a result, using a log score
oriented averaging procedure, whether it be BMA or stacking, one can select an Mk

whose predictive is good, at sample size i, in log score, but quite bad in terms of
just about any other measure. For example, consider a linear model Mk as above.
For such models, for fixed σ2, as a function of β, the KL divergence D(P ∗‖pβ,σ2) :=
EX∼P∗EY∼P∗|X [log p∗(Y | X)/pβ,σ2(Y | X) is linearly increasing in the mean squared
error EX,Y∼P∗(Y −βTX)2. Therefore, one commonly associates a predictive distribution
p(yi | xi) that behaves well in terms of log score (close in KL divergence to P ∗) to be
also good in predicting yi as a function of the newly observed xi in terms of the squared
prediction error. Yet, this is true only if p is actually of the form pβ,σ2 ∈ Mk; the Bayes
predictive distribution, being a mixture, is simply not of this form and can be good at
the log score yet very bad at squared error predictions.

Now it might of course be argued that none of this matters: stacking for the log
score was designed to come up with a predictive that is good in terms of log score. . .
and it does! Indeed, if one really deals with a practical prediction problem in which
one’s prediction quality will be directly measured by log score, then stacking with the
log score should work great. But to our knowledge, the only such problems are data
compression problems in which log score represents codelength. In most applications
in which log score is used, it is rather used for its generic properties, and then the
resulting predictive distributions may be used in other ways (they may be plotted to
give insight in the data, or they may be used to make predictions against other loss
functions, which may not have been specified in advance). For example (Yao et al.,
2018, end of Section 3.1) cite the generic properties that log score is local and proper
as a reason for adopting it. Our example indicates that in the M-open case, such use of
log score for its generic properties only can give misleading results. The SafeBayesian
method overcomes this problem by exponentiating the likelihood to the power η that
minimizes a variation of log-score for predictive densities (the R-log loss, Eq. (23) in
Grünwald and Van Ommen (2017)) in which loss cannot be made smaller by mixing
together bad densities.

Some Details Concerning Figure 1 The conditional expectations E[Y | X] in Figure 1
are based on a simulation in which the models are trained with 30 Legendre polynomial
basis functions on 50 data points, as described in Section 2. The green curve represents
E[Y | X] according to the predictive distribution resulting from BMA with a uniform
prior on the models, where we used the function bms of the R-package BMS. The red curve
is based on stacking of predictive distributions, where we used the implementation with
Stan and R exactly as described in the appendix of Yao et al. (2018). The black line
depicts the true regression function Y = 0. The blue curve is SBRidgeIlog, which is an
implementation of I-log-SafeBayesian Ridge Regression (see Grünwald and Van Ommen
(2017) for details) from the R-package SafeBayes (De Heide, 2016), based on the largest
model MK . The regression functions based on Mk for all k < K are even closer to Y = 0
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(not shown). The regression function according to the Safe BMA predictive distribution
is a mixture of all these Ridge-based regression functions hence also close to 0.

As Yao et al. (2018) note, the implementation of their method can be unstable when
the ratio of relative sample size to the effective number of parameters is small. We
encountered this unstable behaviour for a large proportion of the simulations when the
sample size was relatively small, and the Pareto-k-diagnostic (indicating stability) was
above 0.5, though mostly below 0.7, for some data points. In those cases the method
did not give sensible outputs, irrespective of the true regression function (which we set
to, among others, Yi = 0.5Xi + ξi and Yi = X2

i + ξi, and we also experimented with a
Fourier basis). Thus, we re-generated the whole sample of size n = 50 many times and
only considered the runs in which the k-diagnostic was below 0.5 for all data points.
In all those cases, we observed the overfitting behaviour depicted in Figure 1. This
‘sampling towards stable behaviour’ may of course induce bias. Nevertheless, the fact
that we get very similar results for model selection rather than stacking (mixing) based
on LOO with log-score indicates that the stacking curve in Figure 1 is representative.
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A. Philip Dawid∗

1 Scoring rules

The paper extends the method of stacking to allow probabilistic rather than point
predictions. It does this by applying a scoring rule, which is a loss function S(y,Q)1

for critiquing a quoted probabilistic forecast Q for a quantity Y in the light of Nature’s
realised outcome y. In retrospect this simple extension has been a long time coming.
Although theory and applications of proper scoring rules have been around for at least
70 years, this fruitful and versatile concept has lain dormant until quite recently, and is
still woefully unfamiliar to most statisticians. See Dawid (1986); Dawid and Sebastiani
(1999); Grünwald and Dawid (2004); Parry et al. (2012); Dawid and Musio (2014, 2015);
Dawid et al. (2016) for a variety of theory, examples and applications.

A scoring rule S(y,Q) is a special case of a loss function L(y, a), measuring the
negative worth of taking an act a in some action space A, when the variable Y turns
out to have value y. In this special case, A is set of probability distributions. Conversely,
given any action space and loss function we can construct an associated proper scoring
rule S(y,Q) := L(y, aQ), where aQ is a Bayes act against Q, thus minimising L(Q, a) :=
EY∼Q L(Y, a). This extends stacking to general decision problems.

2 Prequential strategies

However, when we take probability forecasting seriously, there are more principled ways
to proceed. Rather than assessing forecasts using a cross-validatory approach—which,
though popular, has little foundational theory and does not easily extend beyond the
context of independent identically distributed (“IID”) observations—we can conduct
prequential (predictive sequential) assessment (Dawid, 1984). This considers the obser-
vations in sequence,2 and at any time t constructs a probabilistic prediction Pt+1 for
the next observable Yt+1, based on the currently known outcomes yt = (y1, . . . , yt).
Any method of doing this is a prequential strategy . Many (though by no means all)
strategies can be formed by applying some principle to a parametric statistical model
M = {Pθ : θ ∈ Θ} for the sequence of observables (Y1, Y2, . . .)—which need not incor-
porate independence, and (in contrast to all the approaches mentioned in § 2 of the
paper) not only need not be considered as containing the “true generating process”,
but does not even require that such a process exist (the “M-absent” case). Example

M -based strategies are the “plug-in” density forecast pt+1 = p(yt+1 | yt; θ̂t), with θ̂t the

∗University of Cambridge, apd@statslab.cam.ac.uk
1Various notations occur in the literature. Mine here, which, compared with the paper, interchanges

the arguments and takes the negative, is perhaps the most traditional.
2If there is no natural sequence, they can be ordered arbitrarily—the specific ordering typically

makes little or no difference.
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maximum likelihood estimate based on the current data yt; and the Bayesian density
forecast pt+1 =

∫
p(yt+1 | yt; θ)πt(θ)dθ, with πt(θ) the posterior density of θ given yt.

2.1 M-closed case

Purely as a sanity check, it can be shown (Dawid, 1984) that the above M -based strate-
gies are typically consistent for hypothetical data generated from some distribution inM
(a fictitious M -closed scenario). Straightforward extensions base forecasts on a discrete
collection M of parametric statistical models, and exhibit consistency for fictitious data
generated from any distribution in any of these. Another possible M-based prequential
strategy in this case (though computationally demanding, and restricted to IID models)
might be based on forecasting Yt+1 by applying the paper’s stacking methodology (using
a suitable scoring rule) to the partial data yt. It would be interesting to investigate its
sanity under the fictitious M-closed assumption.

2.2 M-open case

Consider a model M = {Pθ}, and a hypothetical generating distribution Q 
∈ M . All
these distributions can exhibit dependence between observations. For data yT the “best-
fitting” value of θ is θ∗T , minimising the cumulative discrepancy

∑T
t=1 d(Qt, Pθ,t), where

Pθ,t [resp., Qt] is the forecast distribution for Yt given yt−1 under Pθ [resp., Q], and
d is the discrepancy function associated with proper scoring rule S.3 In the M-closed
case that Q = Pθ0 ∈ M , for any choice of S we will have θ∗T = θ0; but otherwise θ∗T
will typically depend on S—which is why it is important to choose S appropriate to
the context, and not, say, to assess an estimate based on log-score using a quadratic
criterion. Moreover, in non-IID cases θ∗T is typically data-dependent. In any case θ∗T
depends on the unknown (even fictional) Q. However, we could estimate θ∗T by the

“best-performing” value θ∗∗T , minimising the empirical score
∑T

t=1 S(yt, Pθ,t). Under
very broad conditions (typically not requiring e.g. ergodicity) this will be consistent
even in the M -open case, in the sense that, no matter what Q may be, θ∗∗T − θ∗T → 0 as
T → ∞, almost surely under Q (Skouras and Dawid, 2000). Again, this M -open sanity
check (which subsumes the M -closed sanity check) extends to the case of a collection
M of models; and again it would be interesting to check whether a prequential stacking
strategy could preserve this property.

2.3 M-absent case

The most incisive test of a forecasting method is its performance in the M-absent case.
The overall (negative) performance of any strategy, on a full data-set yT , can be assessed

by its total prequential score
∑T

t=1 S(yt, Pt), which judges forecasts relative to actual
data, so allowing direct data-driven comparison of strategies.

Consider now a model M = {Pθ}, and (for data yT ) the best-performing value
θ∗∗T as defined in § 2.2. There is a wealth of theory (again, woefully ignored by most

3Again, my notation transposes the arguments of d compared with that of the paper.
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statisticians), developed in the discipline of “prediction with expert advice”(Vovk, 2001),
which shows that, under suitable conditions, we can construct a prequential strategy
P which for any data whatsoever will perform essentially as well as Pθ∗∗ ; for example
(Cesa-Bianchi and Lugosi, 2006; Rakhlin et al., 2015) such that, for any infinite data-
sequence y = (y1, y2, . . .),

lim
T→∞

T−1

{
T∑

t=1

S(yt, Pt)−
T∑

t=1

S(yt, Pθ∗∗
T ,t)

}
= 0.

By adding probabilistic assumptions about the origin of y we can then (if so desired)
recover some of the consistency results in § 2.1 and § 2.2 above. And again extension
to forecasts based on a collection M of models is straightforward. I wonder how well
stacking would perform by this criterion?
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Contributed Discussion

William Weimin Yoo∗

In this paper, Yao et al. (2018) consider the problems of model selection and aggre-
gation of different candidate models for inference. Inspired by the stacking of means
method proposed in the frequentist literature, the authors generalize this idea by devel-
oping a procedure to stack Bayesian predictive distributions. Given a list of candidate
models with their corresponding predictive distributions, the goal here is to find a lin-
ear combination of these distributions such that it is as close as possible to the true
date generating distribution, under some score criterion. To find the linear combination
(model) weights, they replace the full predictive distributions with their leave-one-out
(LOO) versions in the objective function, and proceed to solve this convex optimization
problem. The authors then propose a further approximation to LOO computation by
importance sampling, with the importance weights obtained by fitting a generalized
Pareto distribution. To showcase the benefits of the newly proposed stacking method,
the authors conducted extensive simulation studies and data analyses, by comparing
with other techniques in the literature such as BMA (Bayesian Model Averaging), BMA
with LOO (Psedo-BMA), BMA with LOO and Bayesian Bootstrap, and others.

We can take a graphical modeling perspective on LOO. For example, replacing
marginal likelihoods p(y|Mk) with

∏n
i=1 p(yi|yj : j 
= i,Mk) is akin to simplifying a

complete (fully connected) graph linking observations to one where the Markov as-
sumption holds, i.e., the node corresponding to yi is independent conditioned on its
neighbors {yj : j 
= i}. In the proposed stacking method, the full predictive distribution
p(ỹ|y) is approximated by the LOO p(yi|yj : j 
= i), and further approximation is needed
because the LOO is typically expensive to compute. However if there are some struc-
tures in the data, such as clusters of data points/nodes, then one can take advantage
of this by conditioning on a smaller cluster B of nodes around yi and compute instead
p(yi|yj : j 
= i, j ∈ B). This would then further speed up computations as one can fit
models using only local data points.

Another point I would like to make is that the superb performance of the stacking
method warrants further theoretical investigations. Figure 2(c) in the simulations shows
that the proposed method is robust to incorrect/bad models, in the sense that its per-
formance stays unchanged even if more incorrect models are added to the list. It would
be nice if we will also have some theoretical guarantees that the stacking method will
concentrate on the correct (M-closed) or the best models (M-complete) in the model
list. In addition, Figure 9 shows that this method is able to “borrow strength” across
different models, by using some aspects of a model to enhance performance of a different
model. Therefore aggregation by stacking adds value by bringing the best out of each
individual model component, and it would be interesting to characterize through theory
what this added value is. This then invites us to reflect on how the quality of individual
model component affects the final stacked distribution. For example, given posterior

∗Mathematical Institute, Leiden University, The Netherlands, yooweimin0203@gmail.com
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contraction rates for the different posterior models, what would be the aggregated rate
for the stacked posterior? Also, how does prediction/credible sets constructed using the
stacked posterior compare with those constructed from each model component, will it
be bigger, smaller or something in between?

As most existing methods including the newly proposed stacking method use some
form of linear combinations, it would be interesting to find other ways of aggregation.
As pointed out by the authors, linear combinations of predictive distributions will not
be able to reproduce truths that are generated through some other means, e.g., convo-
lutions. To apply stacking in the convolutional case, I think one way is to do everything
in the Fourier domain, by stacking log Fourier transforms (i.e., log characteristic func-
tions) of the predictive posterior densities, exponentiate and then apply inverse Fourier
transform to approximate the truth generated through convolutions.

I think another possible area of application for the stacking method is in distributed
computing. In this modern big data era, data has grown to such size that it is some-
times infeasible or impossible to analyze them using standard Markov Chain Monte
Carlo (MCMC) algorithms on a single machine. Hence this gave rise to the divide and
conquer strategy where data is first divided into batches and (sub)posterior distribution
is computed for each batch. The final posterior for inference is then obtained by aggre-
gating these (sub)posteriors. To this end, I think the present stacking method can be
deployed after some modifications, with potential to yield superior performance when
compared with existing weighted average-type approaches.

I find the paper to be very interesting and the stacking method proposed is a key con-
tribution to the Bayesian model averaging/selection literature. It is shown to be superior
than the golden standard, i.e., BMA and its finite sample performance is tested compre-
hensively though a series of numerical experiments and real data analyses. I think this
is a very promising research direction, and any future contributions are very welcomed.
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Robert L. Winkler∗, Victor Richmond R. Jose†,
Kenneth C. Lichtendahl Jr.‡, and Yael Grushka-Cockayne§

Yao et al. (2018) propose a stacking approach for aggregating predictive distributions
and compares its approach with several alternatives, such as Bayesian model averaging
and mean stacking. Because distributions are more informative than point estimates and
aggregating distributions can increase the information upon which decisions are made,
any paper that encourages the use of distributions and their aggregation is important
and most welcome. Therefore, we applaud the authors for bringing attention to these
issues and for their careful approach to distribution stacking using various scoring rules.

To stack distributions, the authors propose the use of convex combinations of com-
peting models’ cdfs. The different cdf stackers they consider vary in the (non-negative)
weights assigned to each model in the combination. This cdf stacking approach is framed
by the logic of Bayesian model averaging: there is a prior distribution over which model
is correct and the data are generated by this one true model. The result is a convex com-
bination of the competing models, where the weights follow from the prior distribution
over which model is correct.

The idea of a “true model” is in the spirit of hypothesis testing in the sense that it is
black and white–one truth that we try to identify. In most real-world situations, however,
the existence of a “true model” is highly doubtful at best. A better approach may be
to think in terms of information aggregation from multiple inputs/forecasters/models.
Under this approach, no base model is true, but all provide some useful information
that is worth combining. The following example illustrates this point and motivates the
idea of aggregating information with a quantile stacker.

Suppose there are k ≥ 2 forecasters. Forecaster i privately observes the sample
xi = (xNi−1+1, . . . , xNi) of size ni for i = 1, . . . , k, where Ni =

∑i
j=1 nj . Each forecaster

will report their quantile function Qi for the uncertain quantity of interest xNk+1. The
data are drawn from the normal-normal model: μ ∼ N(μ0,mλ) and (xj |μ) ∼iid N(μ, λ)
for j = 1, . . . , Nk + 1, where λ denotes the precision.

Forecaster i’s posterior-predictive beliefs are (xNk+1|xi) ∼ N(μi, λi), where μi =
m/(m+ni)μ0+ni/(m+ni)x̄i, x̄i = (1/ni)

∑ni

j=1 xNi−1+j , and λi = (m+ni)/(m+ni+1)λ
(Bernardo and Smith, 2000, p. 439). The corresponding quantile function is Qi(u) =

μi+λ
−1/2
i Φ−1(u), where Φ is the standard normal cdf. Once the decision maker hears the

forecaster’s updated quantile functions, his updated beliefs are (xNk+1|Q1, . . . , Qk) ∼
N(μdm , λdm), where μdm = m/(m + Nk)μ0 + Nk/(m + Nk)x̄, x̄ = (1/Nk)

∑k
i=1 nix̄i,

and λdm = (m+Nk)/(m+Nk+1)λ. The decision maker’s posterior-predictive quantile
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function Qdm(u) = μdm + λ
−1/2
dm Φ−1(u) can be rewritten as

Qdm(u) =
m

m+Nk
μ0 +

Nk

m+Nk

k∑
i=1

nix̄i

Nk
+ λ

−1/2
dm

k∑
i=1

Φ−1(u)

k

=
m− km

m+Nk
μ0 +

k∑
i=1

(
m+ ni

m+Nk
− 1

k

λ
1/2
i

λ
1/2
dm

)
μi +

k∑
i=1

1

k

λ
1/2
i

λ
1/2
dm

Qi(u).

(1)

According to the example above, the result of aggregating the forecasters’ informa-
tion is mean/quantile stacking. The mean/quantile stacker in (1) is a linear combination
of the prior-predictive mean, the forecasters’ posterior-predictive means, and the fore-
caster’s posterior-predictive quantiles. Interestingly, only the weights on the quantiles
are necessarily positive. Choosing this linear combination to optimize a quantile scoring
rule (Jose and Winkler, 2009; Gneiting, 2011; Grushka-Cockayne et al., 2017), such as
the pinball loss function, may be a useful way to choose the weights.

In fact, a quantile stacker solves the example in Yao et al’s Section 4.1 exactly and
would be perfectly calibrated. The quantile stacker 0.6Q3(u)+0.4Q4(u), where Qi(u) =
μi+Φ−1(u) and μi = i, yields the aggregate quantile function 3.4+Φ−1(u), which is the
quantile function of the true data-generating process in Section 4.1. A quantile stacker
may also work well in the regression example of Section 4.2.

When aggregating model forecasts of a continuous quantity of interest, each model
may be well-calibrated to the training data, although each model may have different
sharpness. In this case, a result in Hora (2004) kicks in. The convex combination of
well-calibrated models’ cdfs cannot be well-calibrated (unless they are all identical).
Typically, the convex combination of cdfs will lead to an underconfident aggregate cdf
(Lichtendahl Jr et al., 2013). The same holds for forecasts of a binary event; see Ranjan
and Gneiting (2010). Because the average quantile forecast is always sharper than the
average probability forecast (Lichtendahl Jr et al., 2013), the average quantile may be
better calibrated when the average cdf is underconfident.

In the case of aggregating binary-event forecasts, such as the example in Yao et al’s
Section 4.6, it might be optimal to transform the probabilities prior to combining them
in a generalized linear model. Lichtendahl Jr et al. (2018) propose a Bayesian model in
the spirit of the example given here. The model results in a generalized additive model
for combining the base model’s binary-event forecasts.

We are thankful that the authors highlight the importance of combining predictive
distributions, and we hope this paper stimulates further work in this area.
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Contributed Discussion

Kenichiro McAlinn∗, Knut Are Aastveit†, and Mike West‡

1 Combination of Predictive Densities

The authors address model combination when the data generating process is unavail-
able (M-complete) or unattainable (M-open). A starting-point is that Bayesian model
averaging (BMA) is widely applied in contexts that violate the M-closed assumptions–
the assumptions under which it is the “right way” to combine predictive densities. The
failure of BMA is highlighted by the authors in examples. Some of our own interests
are in time series forecasting, with multiple examples of BMA degenerating fast to the
wrong model, and failing to adapt to temporal shifts in the data. This is not a failure
of Bayesian thinking, of course; the message remains follow-the-rules, but understand
when assumptions fail to justify blind application of the rules. The authors’ methodol-
ogy relates to other methods responding to this. For example, optimal pooling (Geweke
and Amisano, 2011) as referenced by the authors, and the DeCo approach (Billio et al.,
2013; Aastveit et al., 2018), address the problem explicitly in the M-incomplete setting.
Focused on time series examples, the conceptual basis of these works is of course much
broader.

The authors development of density combination methods based on prior uses of
stacking in point estimation also parallels the historical development of Bayesian density
combination methods following the literature on combination of point forecasts (e.g. Hall
and Mitchell, 2007; Geweke and Amisano, 2011; Billio et al., 2013; Aastveit et al., 2014;
Kapetanios et al., 2015; Aastveit et al., 2018; Del Negro et al., 2016, and references
therein). Then, much of the density combination literature has grown from somewhat
algorithmic and empirical model-based perspectives. We regard the stacking approach as
largely adopting this perspective. While the authors argue cogently for the construction,
connect with what they term “pseudo”-Bayesian thinking and aspects of asymptotics,
the import of the work is largely– and strongly– based on the examples and empirical
evaluation. We are led to ask, is this new approach to “averaging Bayesian predictive
distributions”. . . really Bayesian?

2 Bayesian Predictive Synthesis

The recently developed approach of Bayesian predictive synthesis (BPS: McAlinn and
West, 2018; McAlinn et al., 2018) is explicitly founded on subjective Bayesian principles
and theory, and defines an over-arching framework within which many existing density
(and other) combination “rules” can be recognized as special cases. Critically, this pro-
vides opportunity to understand the implicit Bayesian assumptions underlying special
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cases. BPS links to past literature on subjective Bayesian “agent/expert opinion analy-
sis” (e.g. Genest and Schervish, 1985; West and Crosse, 1992; West, 1992) and provides
a formal Bayesian framework that regards predictive densities from multiple models (or
individuals, agencies, etc) as data to be used in prior-posterior updating by a Bayesian
observer (see also West and Harrison, 1997, Sect 16.3.2). The approach allows for the
integration of other sources of information and explicitly provides the ability to deal
with M-incompleteness. A main theoretical component of BPS is a general theorem
describing a subset of Bayesian analyses showing how densities can be “synthesized”.
Special cases include traditional BMA, most existing forecast pooling rules, and– in
terms of theoretical construction– the stacking approach in the article.

In McAlinn and West (2018) and McAlinn et al. (2018) BPS is developed for time
series forecasting where the underlying Bayesian foundation defines a class of dynamic
latent factor models. The sequences of predictive densities define time-varying priors for
inherent latent factor processes linked to the time series of interest. BPS is able to learn
and adapt to the biases, aspects of mis-calibration, and– critically– inter-dependences
among predictive densities. A further practical key point is that BPS can– and should–
be defined with respect to specific predictive goals; this is a point of wider import
presaged in the earlier Bayesian macroeconomics literature and illustrated in McAlinn
and West (2018) and McAlinn et al. (2018) through separate forecast combination
models for multiple different goals (multiple-step ahead forecasting). Applications in
macroeconomic forecasting in these papers demonstrate that a class of proposed BPS
models can significantly improve over conventional methods (including BMA and other
pooling/weighting schemes). Further, as BPS is a fully-specified Bayesian model within
which the information from each of the sources generating predictive density are treated
as (complicated) “covariates,” posterior inferences on (time-varying or otherwise) pa-
rameters weighting and relating the sources provides direct access to inferences on their
biases and inter-dependencies.

It is of interest to consider how the current stacking approach relates to BPS through
an understanding of how the resulting rule for predictive density combination can be
interpreted in BPS theory (see equation (1), and the discussion thereafter, in McAlinn
and West 2018). As with other combination rules, an inherent latent factor interpreta-
tion is implied and this may provide opportunity for further development. In related
work with BPS based on mixture models, Johnson and West (2018) highlight the oppor-
tunities to improve both resulting predictions and generate insights about the practical
impact of model inter-dependencies that are largely ignored by other approaches. This
can be particularly important in dealing with larger numbers of predictive densities
when the underlying models generating the densities are known or expected to have
strong dependencies (a topic touched upon in Section. 5.3 in the article).
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Contributed Discussion

Minsuk Shin∗

Overview

I congratulate the authors on an improvement in predictive performance of Bayesian
model averaging. This improvement is considerably significant under M-open settings
(Bernardo and Smith, 2009) where we know that the true model is not one of the con-
sidered candidate models. As the authors pointed out, it is well-known that the weights
of standard Bayesian model averaging (BMA) asymptotically concentrates on a single
model that is closest to the true model in Kullback–Leibler (KL) divergence. This would
be problematic under M-open settings, because a single (wrong) model would dominate
the predictive inference so that its predictive performance might be attenuated.

To address this issue, the authors bring the stacking idea to BMA. Instead of mini-
mizing the mean square error of the point estimate as in original stacking procedures,
they propose a procedure to evaluate the model weights that maximizes the empirical
scoring rule based on the leave-one-out (LOO). This results in a convex combination
of models that is empirically close (in terms of the considered score rule or the di-
vergence function) to the true model that generates the observed data. The authors
also circumvent the computational intensity of the LOO procedure by adopting Pareto
smoothed importance sampling (Vehtari et al., 2017). This importance sampling proce-
dure uses the importance sampling weights approximated by the order statistics of the
fitted generalized Pareto distribution, so refitting each model n times can be avoided.

Some Issues in Extensions to High-dimensional Model
Selection

I think that the proposed work is very interesting under a situation where the number of
models is fixed as n increases. It would be also interesting to investigate theoretical prop-
erties of the stacking procedure under high-dimensional model (or variable) selection
regime (Narisetty et al., 2014; Castillo et al., 2015). In theory of high-dimensional vari-
able selections, it is not uncommon to assume that the number of predictors, saying p,
increases at a certain rate of n. When p is fixed and only n increases, the asymptotic
results in Section 3.2 should hold. However, when p increases faster than n, the uniform
convergence (over models) of the estimator of the score rule may not hold, because the
total number of models increases at an exponential rate of p, that is 2p. It is well-known
that Akaike Information Criterion (AIC) is asymptotically equivalent to LOO, and AIC
is not consistent in model selection even under low-dimensional settings. So, the stack-
ing procedure based on LOO might not be optimal in selecting the best model under
high-dimensional settings, and might suffer from high false discovery rates.
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Also, in computational aspects for high-dimensional variable selection (for linear
regression models), it would be interesting to consider a stochastic search algorithm such
as shotgun stochastic search (SSS) (Hans et al., 2007) that is developed for standard
Bayesian variable selection. By slightly modifying the SSS algorithm, one might be able
to explore models having high predictive densities. However, the number of candidate
models is enormous under high-dimensional settings, and the approximation of the
predictive densities for all the candidate models is computationally intensive even when
the Pareto importance sampling technique is used. A possible option might be a two-
step procedure that first collects a number of models by using a standard Bayesian
variable selection procedure such as (George and McCulloch, 1993; Raftery et al., 1997;
Hans et al., 2007), then the stacking weights can be evaluated based on the pre-specified
models. However, standard Bayesian variable selection procedures choose models with
large posterior model probability that is proportional to the marginal likelihood, so the
pre-selected models might not be optimal in prediction.

Conclusion

Once again, I would like to congratulate the authors of this paper, and I think that it
would be interesting to extend the idea to high-dimensional model selection problems.
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Contributed Discussion

Tianjian Zhou∗

I congratulate the authors for an insightful discussion of combining predictive distri-
butions using stacking. Consider a set of predictive distributions built from multiple
models, p(ỹ | y,Mk) for k = 1, . . . ,K. A combination of these predictive distributions

has the form p̂(ỹ | y) =
∑K

k=1 wkp(ỹ | y,Mk). The coherent Bayesian method of choos-
ing the weights (wk’s) is Bayesian model averaging (BMA) with posterior model prob-
abilities. However, this approach has several limitations. The authors therefore propose
stacking of predictive distributions, which chooses the weights by minimizing divergence
of p̂(ỹ | y) from the true distribution.

Model Space and Computational Complexity Some considerations of BMA still apply
also for stacking. For example, the choice of candidate models. For a regression analysis
with p predictors, there are 2p possible linear subset regression models. One could
potentially consider most or all of them, as in Section 4.5. Sometimes it is also necessary
to consider interaction and nonlinear terms, as in Section 4.6. Thus, the size of the model
space can be enormous, making computation infeasible for reasonably large p. Similar
strategies as for implementing BMA could potentially also be used for stacking.

Compared to BMA, stacking is more appropriate for the M-open case. That is, the
true model need not be in the model space M. Still, it would be better if the true model
or a model close to the true model were included in the set of candidate models. For
example, comparing Figures 3 and 4 the performance of stacking is better under the M-
closed case compared to the M-open case, in terms of predictive density. Thus, from a
practical perspective, it is still desirable to work with a reasonably large class of models.

In all examples, the candidate models belong to the same model family (e.g., of
regression models). It would be interesting to see if performance can be further improved
by combining models that belong to different model families. For example, combining
linear regression models and regression tree models.

Alternatives As discussed by the authors, sometimes it is preferable to fit a super-
model that includes the separate models as special cases. For example, a regression
model that includes all predictors and possible interaction and nonlinear terms, using,
for example, a spike-and-slab prior for the regression coefficients. I would like to point
out another interesting alternative, Bayesian nonparametric (BNP) models. BNP mod-
els do not necessarily include the separate models as special cases, but can be chosen to
put positive prior probability mass everywhere, that is, within arbitrary neighborhoods
of any model. In that sense, BNP models are “always right”. Importantly, BNP priors
make fewer parametric assumptions and are highly flexible. For example, for Section 4.1,
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a natural choice would be the widely used Dirichlet process mixture model. For Sec-
tion 4.6, a natural choice could be a Bayesian additive regression tree (BART) model
or a Gaussian process prior. Of course, BNP models have their own limitations, such
as often difficult implementation, complex computation and possibly poor performance
with small sample size. A possible way out could be to include BNP models as candidate
models in stacking. Little would change in the overall setup.

Applications I would like to suggest potential applications of the proposed method to
biomarker discovery and the prediction of patient outcomes. A biomarker refers to a
measurable biological signal whose presence is indicative of some outcome or disease.
Examples of biomarkers include physical characteristics such as height, weight, blood
pressure, as well as genomic level measurements such as gene expression. Outcomes of
interest include, for example, the presence or progression of cancer and risk of mortality
or risk of readmission. The goals are: (1) finding a subset of biomarkers that are highly
predictive of the outcome of interest, and (2) predicting the outcome of interest for a fu-
ture patient. Traditional variable selection approaches ignore model uncertainty and use
a single set of selected biomarkers for prediction. Model combination approaches, on the
other hand, report a set of possible models and average over these models for prediction.
Therefore, model combination approaches might give more sensible biomarker selections
and have better prediction accuracy. There are some existing works using BMA (e.g.
Volinsky et al. 1997 and Yeung et al. 2005). Considering the better performance of
stacking relative to BMA, stacking should be considered for the same applications and
could improve existing analyses.

There are some challenges for using stacking, specific to this application. First, the
number of candidate biomarkers can be large, especially for genomic level biomarkers.
Biomarkers can also have non-additive and nonlinear effects on the outcomes. Second,
missing data are common. Third, it is very common that the patient population is
heterogeneous, and different subgroups of patients might call for different outcome-
predictive biomarkers. I have discussed the first issue in the second paragraph. For the
second issue, the candidate models should be able to handle missing data. To reduce the
sensitivity of the analysis with respect to missing data, we could average over multiple
models with different strategies of dealing with the missing data, and different assump-
tions about the missingness. Similarly, for the third issue, some candidate models should
be included that account for the possibility of subgroup effects.
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Contributed Discussion∗

Lennart Hoogerheide† and Herman K. van Dijk‡

Basic practice and probabilistic foundation A basic practice in macroeconomic and
financial forecasting1 is to make use of a weighted combination of forecasts from several
sources, say models, experts and/or large micro-data sets. Let yt be the variable of
interest, and assume that some form of predictive values ỹ1t, . . . , ỹnt is available for
yt with a set of weights w1t, . . . , wnt where n is also a decision variable. Then, basic
practice in economics and finance is to make use of:

n∑
i=1

witỹit. (1)

A major purpose of academic and professional forecasting is to give this practice a
probabilistic foundation in order to quantify the uncertainty of such predictive density
features as means, volatilities and tail behaviour. A leading example of a forecast density
being produced and used in practice is the Bank of England’s fan chart for GDP growth
and inflation, which has been published each quarter since 1996. For a survey on the
evolution of density forecasting in economics, see Aastveit et al. (2018) and for a related
formal Bayesian foundational motivation, see McAlinn and West (2018).

Proposal by Yao, Vehtari, Simpson and Gelman In recent literature and practice in
statistics as well as in econometrics, it is shown that Bayesian Model Averaging (BMA)
has its limitations for forecast averaging, see the earlier reference for a summary of the
literature in economics. The authors focus in their paper on the specific limitation of
BMA when the true data generating process is not in the set and also indicate the
sensitivity of BMA in case of weakly or non-informative priors. As a better approach
in terms of forecast accuracy and robustness, the authors propose the use of stacking,
which is used in point estimation, and extend it to the case of combinations of predictive
densities. A key step in the stacking procedure is that an optimisation step is used to
determine the weights of a mixture model in such a way that the averaging method is
then relatively robust for misspecified models, in particular, in large samples.

Dynamic learning to average predictively We fully agree that BMA has the earlier
mentioned restrictions. However, we argue that a static approach to forecast averaging,

∗This comment should not be reported as representing the views of Norges Bank. The views ex-
pressed are those of the authors and do not necessarily reflect those of Norges Bank. An extended
version is available as Tinbergen DP.
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as suggested by the authors, will in many cases remain sensitive for the presence of a
bad forecast and extremely sensitive to a very bad forecast. We suggest to extend the
approach of the authors to a setting where learning about features of predictive densities
of possibly incomplete or misspecified models can take place. This extension will im-
prove the process of averaging over good and bad forecasts. To back-up our suggestion,
we summarise how this has been developed in empirical econometrics in recent years
by Billio et al. (2013), Casarin et al. (2018), and Baştürk, Borowska, Grassi, Hooger-
heide, and Van Dijk (2018). Moreover, we show that this approach can be extended
to combining not only forecasts but also policies. The technical tools necessary for the
implementation refer to filtering methods from the nonlinear time series literature and
we show their connection with dynamic machine learning.

The fundamental predictive density combination Let the predictive probability dis-
tribution of the variable of interest yt of (1), given the set ỹt = (ỹ1t, . . . , ỹnt)

′
, be

specified as a large discrete mixture of conditional probabilities of yt given ỹt coming
from n different models with weights wt = (w1t, . . . , wnt)

′
that are interpreted as proba-

bilities and form a convex combination. One can then give (1) a stochastic interpretation
using mixtures. Such a probability model, in terms of densities, is given as:

f(yt|ỹt) =

n∑
i=1

witf(yt|ỹit). (2)

Let the predictive densities from the n models be denoted as f(ỹit|Ii), i = 1, . . . , n,
where Ii is the information set of model i. Given the fundamental density combination
model of (2) and the predictive densities from the n models, one can specify, given
standard regularity conditions about existence of sums and integrals, that the marginal
predictive density of yt is given as a discrete/continuous mixture,

f(yt|I) ∼
n∑

i=1

wit

∫
f(yt|ỹit)f(ỹit|Ii)dỹit (3)

where I is the joint information set of all models. The numerical evaluation of this equa-
tion is simple when all distributions have known simulation properties. An important
research line in economics and finance has been to make this approach operational to
more realistic environments by allowing for model incompleteness and dynamic learning
where the densities have no known simulation properties; see the earlier cited references.

Mixtures with model incompleteness and dynamic weight learning A first step is
to introduce, possibly, time-varying model incompleteness by specifying a Gaussian
mixture combination model with time varying volatility which controls the potential
size of the misspecification in all models in the mixture. When the uncertainty level
tends to zero then the mixture of experts or the smoothly mixing regressions model
is recovered as limiting case, see Geweke and Keane (2007), Jacobs et al. (1991). The
weights can be interpreted as a convex set of probabilistic weights of different models
which are updated periodically using Bayesian learning procedures. One can write the
model in the form of a nonlinear state space which allows to make use of algorithms
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Figure 1: Data driven density combinations and machine learning.

based on sequential Monte Carlo methods such as particle filters in order to approximate
combination weight and predictive densities.

Forecast combinations, policy combinations and machine learning To extend the
predictive density combination approach to a policy combination one with time-varying
learning weights is a very natural step in economics. We summarise in Figure 1 how
to combine forecasts and policies using a two-layer mixture. That is, we start with a
mixture of predictive densities of three data driven time series models, i.e. a Vector-
Autoregressive model (VAR), a Stochastic Volatility model (SV) and a Dynamic Factor
Model (DFM). These are combined with a mixture of two data driven portfolio strategies
that are known as momentum strategies. For background on the model and residual
momentum strategies we refer to Baştürk, Borowska, Grassi, Hoogerheide, and Van Dijk
(2018). It is noteworthy that this graphical representation is similar to the one used in
machine learning. In our procedure the unobserved weights are integrated out using
(particle) filtering. Our empirical results, see Baştürk, Borowska, Grassi, Hoogerheide,
and Van Dijk (2018), show that the choice of a model set in a mixture is important
for effective policies. We emphasise that this approach is fully Bayesian and does not
contain an optimisation step as is used in stacking approach. However, the optimisation
can be easily made dynamic. For a similar technique used in optimal pooling of forecasts
we refer to Geweke and Amisano (2011).
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Contributed Discussion

Haakon C. Bakka∗, Daniela Castro-Camilo†, Maria Franco-Villoria‡,
Anna Freni-Sterrantino§, Raphaël Huser¶, Thomas Opitz‖, and H̊avard Rue∗∗

The problem of estimating the leave-one-out predictive density (LOOPD) for a model
can be clarified when considering a regression-type setup. Let η be the linear predictor
for conditionally independent data y, so that yi relates to ηi only through the likeli-
hood p(yi|ηi). For simplicity, we fix and then ignore the remaining variables (see Rue
et al., 2009, Sec. 6.3, for a more general treatment). We can compute the LOOPD from
p(ηi|y−i) ∝ p(ηi|y)/p(yi|ηi), noting that p(yi|ηi) is a known function of ηi. Suppose that
we can estimate p(ηi|y) well in the region [μi − γσi, μi + γσi] (with obvious notation),
and that this region contains most of the probability mass. The question is whether the
correction needed for removing yi (i.e., the denominator p(yi|ηi)) is “small enough” so
that also p(ηi|y−i) has most of its probability mass in the same region. If so, computing
p(ηi|y−i) by correcting p(ηi|y) in this way is stable; otherwise, it is potentially unre-
liable and should be computed from a rerun without yi. Depending on the inference
algorithm, initial values can be extracted from the full model to speed up the corrected
run. Following this rationale, (R-)INLA (Rue et al., 2009; Martins et al., 2013; Rue
et al., 2017; Bakka et al., 2018) compute LOOPDs using integrated nested Laplace ap-
proximations. Cases where the above test does not hold are marked as “failures”. The
failed cases can then be recomputed after the corresponding observations are removed,
and we gain speed by using the joint fit as initial values. In addition to being faster
than Markov chain Monte Carlo methods, we also get smooth estimates of the posterior
marginals, which helps the optimisation step for the weights. Held et al. (2010) discuss
this approach in more details and compare it with estimates obtained by Markov chain
Monte Carlo.

Recently, Bakka et al. (2018) used leave-one-out cross-validation (LOOCV) log-
scores in spatial modelling. That paper introduces the Barrier model, a non-stationary
model dealing with coastlines and other physical barriers. The goal was to compare
several spatial and non-spatial models through LOOCV. When comparing several mod-
els using the mean LOOCV log-score, we always end up choosing one model as “the
best”. However, such a way to rank models ignores uncertainty. With our dataset, a
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Figure 1: Left: Histogram of differences in LOOCV log-predictive density between two
spatial models for a dataset on fish larvae. Right: Bootstrapped mean differences for
one non-spatial model (M5) and for 5 different spatial models (M1 to M4 and M6). See
the supplementary material of Bakka et al. (2018) for more details.

small subset of the individual log-scores strongly influenced the model selection result.
For illustration, the left panel of Figure 1 depicts the histogram of log-score differences
between two example models (for each held-out point in the leave-one-out procedure),
from which the mean (or sum) is usually computed. It is clear that we cannot conclude
that one model is superior to the other (i.e., that zero is a bad choice for the center of
this distribution). In the context of stacking, we cannot give more weight to one of these
two models with any degree of confidence. To further assess the variability inherent to
the LOOCV estimate of marginal predictive performance, we bootstrapped the mean-
differences to compute uncertainty intervals, and decided to conclude that one model
was better than another only if this interval did not include zero; see the right panel
of Figure 1 for this computation on our dataset. The first interval in this figure corre-
sponds to the histogram in Figure 1. The non-spatial model 5 (M5) performs poorly,
but we cannot conclude that there is a best model. In the context of stacking, the five
“equivalent” models would be weighted by highly arbitrary weights to create a stacked
model, which we find questionable. We wonder whether combining the bootstrapped
uncertainty intervals with the stacking idea (in some way) could lead to a more robust
approach to stacking.

We question the authors’ choice to compare the stacking approach to the other
methods presented in the paper. Indeed, they point out that Bayesian model averaging
(BMA) weights reflect only the fit to the data (i.e., within-sample performance)without
maximizing the prediction accuracy (i.e., out-of-sample performance). Thus, the com-
parison of BMA (or its modified versions, Pseudo-BMA and Pseudo-BMA+) against
the stacking of distributions, which is conveniently constructed to improve prediction
accuracy, does not seem fair. To highlight the gains and the pitfalls of stacking predic-
tive distributions, it would be more reasonable to compare the prediction ability of the
stacking approach against the prediction ability of each one of the stacked models.

In Section 3.3, the authors advocate the use of Pareto-smoothed importance sam-
pling as a cheap alternative to exact LOOCV, which can be computationally expensive
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for large sample sizes. We agree with the authors’ guidelines, and we here re-emphasize
that this approach is potentially unstable/invalid when the importance ratios have a
very heavy or “noisy” tail. Indeed, it is well-known that the ith order statistics X(i) in
a sample of size n from the GP distribution with shape parameter k has finite mean
for k < n− i+ 1, and finite variance for k < (n− i+ 1)/2; see, e.g., Vännman (1976).
In particular, this implies that the maximum X(n) has infinite mean for k ≥ 1. As the
GP shape parameter is usually estimated with high uncertainty, especially with heavy
tails, a conservative decision rule is preferred in practice. Moreover, we want to stress
that the estimation of the shape parameter k via maximum likelihood may be strongly
influenced by the largest observations. Therefore, more robust approaches might be
preferred. Possibilities include using methods based on probability weighted moments,
which were found to have good small sample properties (Hosking and Wallis, 1987;
Naveau et al., 2016), or using a Bayesian approach with strong prior shrinkage towards
light tails. Opitz et al. (2018) recently developed a penalized complexity (PC) prior
(Simpson et al., 2017) for k, designed for this purpose.
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Contributed Discussion

Marco A. R. Ferreira∗

I congratulate the authors on delivering a stimulating and thought-provoking article.
In this comment, in the context of data observed over time, in cases when one model
has a posterior probability close to one but a stacking weight much smaller than one,
I suggest a way to investigate the causes of the disagreement.

Here we focus on the case when data arrives over time. To simplify the discussion, let
us assume that data are observed at discrete time points. Let yt be a vector that contains
all the data observed at time t, t = 1, . . . , T . Further, let y1:t = (y′1, . . . , y

′
t)

′. Then,
instead of using the leave-one-out predictive density p(yi|y−i,Mk), we may consider the
one-step ahead predictive density p(yt|y1:(t−1),Mk) which is given by

p(yt|y1:(t−1),Mk) =

∫
p(yt|y1:(t−1), θk,Mk)p(θk|y1:(t−1),Mk)dθk.

We note that after yt has been observed, comparing p(yt|y1:(t−1),M1), . . . , p(yt|y1:(t−1),
MK) allows one to evaluate the relative ability of each model to predict at time t − 1
the vector of observations yt. Hence, in the context of data observed over time, instead
of p(yi|y−i,Mk), it seems more natural to use the one-step ahead predictive density
p(yt|y1:(t−1),Mk). Thus, for data observed over time the stacking of predictive distribu-
tions would choose weights

ŵ = argmaxw∈SK
1

T∑
t=t∗+1

log

K∑
k=1

wkp(yt|y1:(t−1),Mk), (1)

where the summation on t starts at t∗ + 1 because the first t∗ observations are used
to train the models to reduce dependence on priors for parameters. We note that the
above equation is very similar to that of the optimal prediction pools of Geweke and
Amisano (2011, 2012), except that they start the summation at t = 1.

It is also helpful to consider the formula for the posterior probability for each model.
To keep exposition simple, let us assume equal prior probabilities for the competing
models. Further, we assume that the first t∗ observations are used for training. Then,
the posterior probability for model Mk is

P (Mk|y1:T ) =
∏T

t=t∗ p(yt|y1:(t−1),Mk)∑K
k=1

∏T
t=t∗ p(yt|y1:(t−1),Mk)

. (2)

Keeping (1) and (2) in mind, what can we infer when a model M̃ has posterior
probability close to one but its weight w̃ in the stacking of predictive distributions is
much smaller than one? The posterior probability being close to one means that M̃
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is probably, amongst the K models being considered, the model closest in Kullback–
Leibler sense to the true data generating mechanism. But its weight w̃ being much
smaller than one means that there are important aspects of the true data generating
mechanism that have not been incorporated in M̃ .

We note that both (1) and (2) depend on the data only through the one-step ahead
predictive densities p(yt|y1:(t−1),Mk). Thus, for data observed over time, when there are
disagreements between the posterior probabilities of models and the stacking weights,
an examination of the one-step ahead predictive densities p(yt|y1:(t−1), Mk) such as
plotting them over time as in Vivar and Ferreira (2009) may help identify what aspects

of the true data generating mechanism are being neglected by model M̃ .

For example, an examination of p(yt|y1:(t−1),Mk) may indicate that model M̃ pro-
vides better probabilistic predictions 95% of the time, but that in the remaining 5%
of the time the observations are outliers with respect to M̃ but are not outliers with
respect to a model M∗ that has fatter tails than M̃ . In that situation, the outlying
observations would prevent w̃ from being close to one. Further examination of the out-
lying observations could possibly suggest ways to improve model M̃ to get it closer to
the true data generating mechanism.

As another example, an examination of p(yt|y1:(t−1),Mk) may indicate that M̃ and
another model M∗ take turns at providing better probabilistic predictions. For example,
say that for a certain environmental process, M̃ provides better predictions during a
certain period of time, and then after that M∗ provides better predictions, and after
that M̃ provides better predictions, and so on. In that case, probably the environ-
mental process has different regimes, and thus for example a Markov switching model
(Frühwirth-Schnatter, 2006) may be adequate to model such environmental process.

I would imagine that a sensibly estimated leave-one-out predictive density p(yi|y−i,
Mk) could also be used for diagnostics. I would appreciate if the authors can comment
on advantages and difficulties associated with such use.

Finally, in the M-closed case, will the stacking weight of the true model converge
to one as the sample size increases?
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Luis Pericchi∗†

This article gave me a Déja Vu, of 25 years ago in London when the book by Bernardo
and Smith (1994) was being finished and Key et al. (1999) was starting. With the
formalization of the complement of the M-closed perspective, the end of Bayes Factors
and Bayesian Model Averaging (BMA) was predicted or at least confined to a very
small corner of statistical practice. However, re-sampling Bayes Factors, particularly the
Geometric Intrinsic Bayes Factors were being invented around the same years and these
re-sampling schemes changed completely the perspective. For some historical reasons
however, non re-sampling Intrinsic Bayes Factors were much more developed along the
years. Perhaps this will be one of the positive consequences of this paper and the previous
in this line, to recover the thread of development, theoretical and practical, of the rich
mine vein of re-sampling Bayes Factors.

Just two illustrations of the fundamentally different behavior of re-sampling Bayes
Factors, more in tune with open perspectives are in Bernardo and Smith (1994) p. 406
(Lindley’s paradox revisited) and in Key et al. (1999) p. 369 on which the Intrinsic
Implicit Priors were first named. However this paper seems to restrict its scope to non re-
sampling Bayes Factors which is insufficient. On the other hand the paper interestingly
relinquishing marginal likelihoods appears to get away, at least to some extend by using
K-L loss. This should be study also theoretically, but it should be noted that the loss
function, even restricted to K-L functional form, changes also whenever the training
sample and validation sample sizes change, and the change is huge. This paper seems
also restricted to n − 1 cross validation. Also it seems that the only goal of statistics
is to make good predictions, but good explanations are also of paramount importance.
In that direction Key et al. (1999) define different combinations of training sizes that
show the differences.

I finish with a list of questions and a conjecture: The questions are,

1. Are these stacking solutions asymptotically efficient estimators? Is L2 convergence
sufficient in this context?

2. Are these approximations really Bayesian? in the sense that: is there a prior that
would produce asymptotically equivalent inference with stacking? In other words
Intrinsic Implicit Priors exists here?

3. Is there an optimal training sample size or combination of global and Local utility
functions, when the objective is prediction? Identification?

∗I am grateful to Adrian Smith and Jim Berger for many discussions on the subject of Bayesian
Model Selection and Hypothesis Testing along the years.

†Department of Mathematics, University of Puerto Rico Rio Piedras, PR, USA,
luis.pericchi@upr.edu

mailto:luis.pericchi@upr.edu


L. Pericchi 989

4. The difficult problem of calculation of posterior model probabilities in the open
perspectives can be inversely solved as an optimization problem maximizing utility
functions?

Finally I conjecture that casual choice of estimators within models would lead to un-
Bayesian inefficient solutions, and the authors seem to agree with this conjecture in 5.3.
Careful consideration of all the entertained models and admissible estimators for pa-
rameters should be considered prior to the optimization procedures. In fact this may
solve the old conundrum of whether the same priors should or not be used for estimation
and Selection.
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Christopher T. Franck∗

I congratulate the authors on a fascinating article which will positively impact statistical
research and practice in the years to come. The authors’ procedure for stacking Bayesian
predictive distributions differs from Bayesian model averaging (BMA) in two important
ways. First, the stacking procedure chooses weights based directly on the predictive
distribution of new data while BMA chooses weights based on fit to observed data.
Second, the stacking procedure is not sensitive to priors on parameters to the extent that
BMA is. The leave-one-out approach in the stacking procedure bears some resemblance
to intrinsic Bayes factors, which made me curious as to whether intrinsic Bayesian
model averaging (iBMA) can make up some of the reported performance difference
between stacking and BMA. In this note, I restrict attention to the authors’ linear
subset regressions example, adopt the authors’ Bayesian model, and compare BMA
with iBMA. Since iBMA does not improve prediction over BMA in this initial study,
I ultimately suggest that the stacking procedure is superior to iBMA for prediction.

It appears that the stacking procedure’s replacement of the full predictive distri-
bution with the leave-one-out predictive distribution

∫
p(yi|θk,Mk)p(θk|y−i,Mk)dθk is

the major mechanism that bestows invariance to priors. This approach makes priors
resemble posterior distributions by conditioning on a subset of the data. Further, a
simple re-expression of p(θk|y−i,Mk) via Bayes’ rule reveals that nuisance constants
which accompany priors (discussed by the authors in the BMA segment of Section 2)
cancel out when any portion of the data is used to train priors. This is the same tac-
tic that partial Bayes factors (Berger and Pericchi, 1996) use to cancel the unspecified
constants which accompany improper priors and contaminate resulting Bayes factors.
Briefly, a partial Bayes factor takes a training sample from the observed data, uses the
likelihood of the training sample to update the prior, and forms a Bayes factor as the
ratio of marginal likelihoods that adopt the trained prior alongside the remainder of the
likelihood. An intrinsic Bayes factor is an average across some or all possible training
samples. Where the original motivation for intrinsic Bayes was to enable model selec-
tion using improper priors, the approach is also used for model selection that is robust
to vague proper priors. For improper priors, the goal is usually to choose a minimal
training sample size to render the prior proper. As the training sample size increases
for fixed n, the prior exerts less influence on the posterior model probabilities, but the
method becomes less able to discern competitive models (Fulvio and Fulvio, 1997).

Using the authors’ Bayesian model and data generating process and a similar out-
of-sample testing procedure, I compared standard BMA with iBMA. In the iBMA case,
I formed intrinsic Bayes factors which I then translated to posterior model probabilities
for use in model averaging. I obtained 50 Monte Carlo replicates with 10 test points.
I considered iBMA training sample sizes of 1, 5, and n−1. TheM-open case (not shown)
favored the iBMA setting with n− 1 training samples, leaving only one data point for

∗Department of Statistics, Virginia Tech, chfranck@vt.edu
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Figure 1: Averages of log predictive densities for 10 test points based on 50 Monte Carlo
replicates. Black corresponds to authors’ prior, red corresponds to a more vague prior
on coefficients. Increasing the training sample size diminishes the effect of the prior but
also reduces log predictive density at higher sample sizes. None of the iBMA settings
produce predictive densities substantially higher than the BMA approach (open circles).

the likelihood. This setting barely changed the posterior model probabilities from their
uniform prior, which works well only in this specific case where a near uniform mixture
of the 15 candidate models performs adequately. TheM-closed results shown in Figure 1
confirm that (i) iBMA diminishes influence of the prior as the size of the training sample
increases (note overlap in n− 1 training lines), (ii) an excessively large training sample
proportion erodes the predictive density especially at larger sample sizes, and more
importantly suggests that (iii) endowing BMA with prior-invariance machinery that
resembles the stacking procedure’s does not appear to offer any advantage in predictive
density. Hence, I second the authors’ conclusion that stacking is a superior approach for
prediction. The present study suggests that the stacking procedure’s prior invariance
property is a convenient bonus but not the major reason for its impressive performance.
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Eduard Belitser† and Nurzhan Nurushev∗‡

We thank the authors for an interesting paper that takes the idea of stacking from the
point estimation problem and generalize to the combination of predictive distributions.
Let us first mention some key ides of the present paper. One of the main problems in
statistics is prediction in the presence of multiple candidate models or learning algo-
rithms M = (M1, . . . ,MK). In Bayesian model comparison, the relationship between
the true data generator and the model list M = (M1, . . . ,MK) can be classified into
three categories: M-closed, M-complete and M-open. These mentioned problems in
the present paper are addressed by providing new stacking method. The authors com-
pare this method to several alternatives: stacking of means, Bayesian model averag-
ing (BMA), Pseudo-BMA, and a variant of Pseudo-BMA that is stabilized using the
Bayesian bootstrap. Based on simulations and real-data applications, they recommend
stacking of predictive distributions, with bootstrapped-Pseudo-BMA as an approximate
alternative when computation cost is an issue.

We enjoyed reading the paper and would like to make three comments/question.
First, the methodology of the present paper relies on the knowledge of K, the number
of models in the list M = (M1, . . . ,MK). Without loss of generality assume K ∈ (0, n].
We wonder whether the authors could come up with a general idea of how to extend the
stacking method to the unknown number of models, i.e., K is unknown. Perhaps the
problem can be addressed by adding prior on K in author’s framework, but it might
lead to big computational costs.

Second, all problems discussed in the present paper are examples of supervised learn-
ing. In other words, for each observation of the predictor measurements xi, i = 1, . . . , n,
there is an associated response measurement yi. The authors wish to fit a model that
relates the response to the predictors, with the aim of accurately predicting the response
for future observations (prediction) or better understanding the relationship between
the response and the predictors (inference). In contrast, unsupervised learning describes
the somewhat more difficult situation in which for every observation i = 1, . . . , n, we
observe a vector of measurements xi but no associated response yi. For instance, it is
not possible to fit linear or logistic regression models, since there is no response vari-
able to predict. This situation is referred to as unsupervised because we lack a response
variable that can supervise our analysis. One of the popular examples of unsupervised
learning is cluster analysis. The goal of cluster analysis is to ascertain, on the basis of
x1, . . . , xn, whether the observations fall into relatively distinct groups(e.g., stochastic
block model, see Holland et al. (1983)). We wonder whether it is possible to extend
the stacking method to the examples of unsupervised learning (e.g., stochastic block
model).

∗Research funded by the Netherlands Organisation for Scientific Research NWO.
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The third comment is related to the simulation subsection 4.2. In that subsection
the authors consider some K = 15 different models of linear regression Y = β1X1 +
. . .+ βJXJ + ε, ε ∼ N(0, 1), where the number of predictors J is 15. However, the total
number of all possible linear regressions with at most J = 15 predictors is 215. We
wonder whether the methods studied in the present paper with all K = 215 possible
models would be computationally costly. For instance, LASSO and Ridge methods solve
this problem without any big computational costs. It would be also interesting to know
for the future research whether the corresponding estimators of the present paper can
achieve the minimax rate for sparse linear regression problem studied in Bunea et al.
(2007).

We hope these comments will inspire the authors and other people to work on these
interesting problems in the future.
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Matteo Iacopini∗,† and Stefano Tonellato‡

We congratulate the authors for their excellent research which leaded to the development
of a new statistical method for model comparison. The procedure is computationally
fast and can be applied in a variety of settings ranging from mixture models to variable
selection in regression frameworks.

Pseudo Bayesian model averaging and reference pseudo
Bayesian model averaging

The authors mentioned the contribution by Li and Dunson (2016) as a possible alterna-
tive for weighting competing models. In this discussion, we present a small simulation
study comparing the performance of the pseudo Bayesian model averaging (Pseudo-
BMA) introduced in Section 3.4 with the performance of the reference pseudo Bayesian

model averaging (Reference-Pseudo-BMA), mentioned in Section 2, and based on K̃L2,
as in Li and Dunson (2016).

The data are generated from the following model: Yi|xi ∼ e−2xiN (y|x, 0.1) + (1 −
e−2xi)N(y|x4, 0.1), Xi ∼ U(0, 1), i = 1, . . . , N . We estimated K = 5 different linear
regression models, where model Mk is defined as: Yi|xi = βkx

k + εi, εi ∼ N(0, 0.1),
βk ∼ N(0, 10) and σ ∼ Ga(0.1, 0.1).

Reference-Pseudo-BMA requires the preliminary estimation of the predictive den-
sity via a Bayesian nonparametric approach, which we computed by using a weight
dependent Dirichlet process prior for the estimation of a fully nonparametric Bayesian
density regression (Müller et al., 2013, ch. 4).

We run 100 simulations for each different value of the sample size in the grid
N ∈ {5, 10, 20, 30, 40, 50} and for each N we computed the mean log-predictive den-
sities of the two combination methods. The results are shown in Figure 1, which plots
the posterior log-predictive density (averaged over simulations) for each value of the
sample size, for the two cases. As expected, the Pseudo-BMA performs better than the
Reference-Pseudo-BMA, and the difference of performance decreases with N .

For one of the previously run simulations (similar results were found in the other
cases), Figure 2 shows the true conditional density p(y|x) (red curve) at some fixed
values of the covariate x together with the predictive densities provided by Pseudo-
BMA (blue) and by Reference-Pseudo-BMA (black), respectively. The unsatisfactory
approximation of the true predictive density is due to the inadequacy of the parametric

∗Ca’ Foscari University of Venice, Cannaregio 873, 30121, Venice, Italy
†Université Paris I – Panthéon-Sorbonne, 106-112 Boulevard de l’Hôpital, 75642 Paris Cedex 13,
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Figure 1: Posterior log-predictive density of model (a) (blue) and model (b) (black), for
different values of the sample size N ∈ {5, 10, 20, 30, 40, 50}.

Figure 2: Conditional densities p(y|x) for several values of x, N = 20. True function
(red), model (b) estimate (black) and model (a) estimate (blue).
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models under comparison, not to the methods used in order to produce stacking. What
is interesting to notice is that despite the different weights computed according to the
two schemes, the combined conditional predictive densities are rather similar for all the
values of the conditioning variable x. This feature has been proved to hold also when
the sample size increases and similar results (not reported here) have been obtained for
different model specifications.

The main insight from this small simulation study is twofold: first, the approach
proposed by the authors outperforms the alternative weighting schemes, both in fitting
and in computational efficiency. Second, the scheme of Li and Dunson (2016) yields
comparable results in terms of conditional density estimation. This might suggest that
coupling Pseudo-BMA and Reference-Pseudo-BMA might be a successful strategy in
those circomstances when leave-one-out or Pareto smoothed importance sampling leave-
one-out cross-validation are suspected to produce unstable results, due to small sample
size or large values of k̂.
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Contributed Discussion

Merlise Clyde ∗

Stacking (Wolpert, 1992; Breiman, 1996b,a) has seen renewed attention in recent years
as an ensemble learning method for prediction, particularly among kaggle competitions!
In the M-open context, Clyde and Iversen (2013) arrived at stacking of densities from
a decision-theoretic solution using a log scoring rule (see also Walker et al. (2001) for
an alternative computational approach to the same problem). I hope the authors con-
tributions to predictive density estimation will encourage more practitioners to look
beyond point estimation and consider quantification of uncertainty. Examples where
uncertainty quantification is being addressed quite successfully with ensemble learn-
ing of densities include computer models, such as those used in weather forecasting.
Raftery et al. (2005); Gneiting and Raftery (2007) and related papers propose log-
scoring rules among other utilities for ensemble learning with implementation in the
R package ensembleBMA (Fraley et al., 2018). Other examples include forecasting with
economic time series (see discussion by McAlinn et al. of Yao et al.). A key distinguish-
ing feature in density ensemble learning methods in the M-open context is whether the
predictive densities or parameters of the densities are independent of the data used to
learn the weights (computer models) or that the available data must be used to both
learn the predictive densities and the optimal weights for the ensemble. The former case,
as used in examples in section 4.1 of the paper, does not require any data splitting such
as Leave-One-Out cross-validation to learn the predictive densities and then solve the
predictive optimization problem and can help illustrate potential problems.

Faraway, So Close

Let’s reconsider the example of section 4.1 of the authors, but change the true data
generating distribution to a N(42, 1) while keeping the candidate densities for ensemble
learning to be the same as in the paper: N(μk, 1) with μk = k for k = 1, . . . , 8. Traditional
Bayesian Model Averaging (BMA) will degenerate to the model closest to the true model
in Kullback–Leibler divergence, hence, the N(8, 1). However, stacking of densities, will
fair no better and could be worse if the weights do not degenerate to zero for k < 8.
Raftery et al. (2005) and following papers, explicitly accommodate potential bias in
computer models used in the means of each of the predictive densities in the ensembles;
applying that approach rather than using a N(μk, 1) we could correct for bias using
components that are N(ak + bkμk, 1) where ak and bk are learned from the data. In our
simple example, it would appear that there would be no unique solution to the weights
or ak and bk. This is not a concern if one is only interested in predictive analytics
without the desire to interpret weights as a measure of importance, etc.

Stacking can also fail if the component densities are too simple. Consider the situa-
tion where the true data generating model is Y =

∑K
k=1 Xkβk + ε with ε ∼ N(0, In) as
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in example 4.2. We will take the candidate densities to be Gaussian densities centered
at Xkβ̂k where β̂k is the ordinary least squares estimate of β from the simple linear
regression of Y on Xk. In the case that Xj and Xk are all mutually orthogonal vectors,

β̂k is as unbiased estimate of βk, however, the stacked predictive mean,
∑

k x
∗
kβ̂k us-

ing either squared error or log-scoring rules will be asymptotically biased as individual
weights will be less than 1. There is the potential that the bias will actually grow with
k, as more predictors will dilute the weights. In this case, the bias corrections posed in
Raftery et al. (2005) would have no effect. The more realistic case where the Xk are not
orthogonal or the component densities are centered at Bayesian estimates may suffer
from the same problems.

Arguments in Clyde and Iversen (2013) showed that BMA would fail when the true
model was outside the class of models used in BMA, however, these examples illustrate
that stacking can suffer from similar problems as BMA. While both BMA and stacking
of densities are guaranteed to be “close” in some measure, they may still be far from
the truth.

Choice of Weights Revisited

In the original papers on stacking (Breiman, 1996a,b; Wolpert, 1992), the constraints
that the weights sum to one and be non-negative did not follow from any first principles,
but appeared to work well in practice. For the above regression example using squared
error loss, the non-negativity constraint on weights is in fact not binding, however,
the sum to one constraint is the source of the problem. By relaxing that constraint,
one can recover the true predictive mean asymptotically, however, it is not obvious
what the weights should sum to as part of the optimization problem. In terms of the
dual Lagrangian formulation of the constrained optimization problem, the choice of
constraint for the sum of the weights is related to the pre-specification of the penalty
in lasso regression.

For stacking with densities, the solution for the weights based on an EM algorithm
to find the optimal weights under the log-scoring rule (Clyde and Iversen, 2013) demon-
strates that the weights always satisfy the constraints of non-negativity and sum to one
so that relaxation is not a possible avenue to address the problems identified above.

The arguments above suggest that stacking of densities, like BMA, may be sensitive
to the choice of models that are used in the ensemble.
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Rejoinder

Yuling Yao∗, Aki Vehtari†, Daniel Simpson‡, and Andrew Gelman§

We thank the editorial team for organizing the discussion. We are pleased to find so many
thoughtful discussants who agree with us on the advantage of having stacking in the
toolbox for combining Bayesian predictive distributions. In this rejoinder we will provide
further clarifications and discuss some limitations and extensions of Bayesian stacking.

1 When is leave-one-out cross validation appropriate?

1.1 Exchangeability

Stacking maximizes the weighted leave-one-out (LOO) scoring rule using all observa-
tions:

max
w∈SK

1

1

N

N∑
i=1

S
( K∑
k=1

wkp̂k,−i, yi

)
, (1)

where SK
1 denotes the simplex space {w :

∑K
k=1 wk = 1, wk ∈ [0, 1]} and p̂k,−i(·) =∫

p(·|xi, y−i, θk,Mk)p(θk|y−i, x−i,Mk)dθk is the leave-i-out predictive density for model
Mk. To emphasize the data generating models, we include here covariates x, which were
suppressed in the main paper for simplicity.

The asymptotic optimality of stacking relies on the consistency of the leave-one-out
scoring rule:

1

N

N∑
i=1

S (p̂k,−i, yi)− E(x̃,ỹ)|(x,y) S (p(·|x̃, x, y,Mk), ỹ) → 0. (2)

The conditional iid assumption of y given x is typically sufficient and is used in many
proofs, but it is not necessary. The key assumption we need is exchangeability (Bernardo
and Smith, 1994, Chapter 6).

As discussed by Dawid and Clarke, it is not clear what happens to LOO or LOO-
stacking in the asymptotic limit, if there is no true data-generating mechanism, p(ỹ|x̃).
Assuming such a true or underlying distribution is equivalent to assuming stationarity
of the data-generating process. From a Bayesian standpoint, it is appropriate to model
a non-stationary process with a non-stationary model. Realistically, though, whatever
model we use, stationary or not, when applied to real data will encounter unmodeled
trends; hence we any asymptotic results can only be considered as provisional.
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1.2 Data-generating mechanisms and sample reweighting

If we have not yet observed the new data point (yN+1, xN+1), we can use LOO to
approximate the expectation over different possible values for (yN+1, xN+1). Instead of
making a model p(y, x), we re-use the observation as a pseudo-Monte Carlo sample from
p(yN+1, xN+1), while not using it for inference about θ.

For the predictive performance estimate, however, we need to model know how the
future xN+1 will be generated. In standard LOO we implicitly assume future xN+1

comes from the empirical distribution 1
N

∑N
i=1 δxi .

If we assume that the future distribution is different from the past, then the covariate
shift can be taken into account by weighting (e.g. Shimodaira, 2000; Sugiyama and
Müller, 2005; Sugiyama et al., 2007). When we know exactly or have estimated from
extra information pN+1(xN+1) = p(xN+1|x), we can use importance weighting to adjust

the sample weights ri ∝ pN+1(xi)/p(xi) and replace (1) by
∑N

i=1 riS(
∑K

k=1 wkp̂k,−i, yi).
The LOO consistency asks for∑N

i=1 riS (p̂k,−i, yi)∑N
i=1 ri

− Ex̃ Eỹ|(x̃,x,y) S (p(·|x̃, x, y,Mk), ỹ) → 0.

In particular, the convergence of importance sampling does not require independence
of covariates x1, . . . , xN .

1.3 Fixed design

If x is fixed or chosen by design, we can still make a conditional model p(y|x, θ) and
analyze the posterior distribution, p(θ|x, y). We can reinterpret ri as the weight for the
i-th observation. Standard LOO will assign equal weights on each xi. If we care about
the performance for some fixed xi than for others, we can use different and weighting
schemes to adjust.

1.4 Non-factorizable models

Our fast LOO approximation (PSIS-LOO) generally applies to factorizable models

p(y|θ, x) =
∏N

i=1 p(yi|θ, xi) such that the pointwise log-likelihood can be obtained easily
by computing log p(yi|θ, xi).

Non-factorizable models can sometimes be factorized by re-parametrization. For
example, consider a multilevel model with M groups, if we denote the group level
parameter and global parameter as θm and ψ, then the joint density is

p(y|x, θ, ψ) =
J∏

j=1

⎡⎣ Nj∏
n=1

p(yjn|xjn, θj)p(θj |ψ)

⎤⎦ p(ψ), (3)

where y are partially exchangeable, i.e. ymn are exchangeable in group j, and θm are ex-
changeable. Rearrange the data and denote the group label of (xi, yi) by zi, then (3) can

be reorganized as
∏N ′

i=1 p(yi|xi, zi, θ, ψ) so the previous results follow. Furthermore, de-
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pending on whether the prediction task is to predict a new group, or a new observations
within a particular group j, we should consider leave-one-point-out or leave-one-group-
out, corresponding to modeling the new covariate by p(x̃, z̃) ∝ δ(z̃ = j)

∑
zi=j δ(x̃ = xi)

or
∑J

z=1

∑
zi=j δ(z̃ = j, x̃ = xi).

When there is no obvious re-parametrization making the model conditional factoriz-
able, the pointwise log-likelihood has the general form log p(yi|y−i, θ). It is still possible
to use PSIS-LOO in some special non-factorizable forms. Vehtari et al. (2018a) provide
a marginalization strategy of PSIS-LOO to evaluate simultaneously autoregressive nor-
mal models. Bakka et al. express concerns about the reliability of PSIS. We refer to
Vehtari et al. (2017) and Vehtari et al. (2018b) for computation and diagnostic details.

Lastly, although we used LOO, other variations of cross-validation could be used in
stacking. Roberts et al. (2017) review cross-validation strategies for data with temporal,
spatial, hierarchical, and phylogenetic structure. Many of these can also be computed
fast by PSIS as demonstrated for m-step-ahead cross-validation for time series (Buerkner
et al., 2018).

2 Stacking in time series

2.1 Prequentialism

When observation yt come in sequence, there is no reason in general to use a condition-
ally independent or exchangeable for them. Nevertheless, LOO and LOO-stacking can
still be applicable if the concern is the whole structure of the observed time points. For
example, we might be interested analyzing whether more or less babies would be born
on some special days of the year.

If the main purpose is to make prediction for the next not-yet-observed data, we can
utilize the prequential principle (Dawid, 1984):

p(y1:N |θ) =
N∏
t=1

p(yt|y1:t−1, θ),

and replace the LOO density in (1) by the sequential predictive density leaving out all
future data: p(yt|y<t) =

∫
p(yt|y1:t−1, θ)p(θ|y1:t−1)dθ in each model, and then stacking

follows. This is similar to the approach developed by Geweke and Amisano (2011, 2012).
Ferreira and Dawid suggest similar ideas. The ergodicity of y will yield,

lim
N→∞

1

N

N∑
t=1

S (p(·|y<t), yt)− lim
N→∞

1

N
EY1:N

N∑
t=1

S (p(·|Y<t), Yt) → 0. (4)

When there is a particular horizon of interest for prediction, p(yt|y<t) above is general-
ized to m-step-ahead predictive density p(yt<m|y<t) = p(yt, . . . , yt+m−1|y1, . . . , yt−1) =∫
p(yt<m|y<t, θ)p(θ|y<t)dθ.

However, the prequential approach introduces a different prediction task. Unless
some stationarity of the true data generating mechanism is assumed (e.g., P (yt|y<t) =
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P (yt′ |y<t′)), the average cumulative performance (the second term in (4)) is different
from the one-step-ahead assessment in (2), which is only evaluated at next unseen
observation t = N + 1.

2.2 Dynamic approximation of posterior densities

The exact prequential evaluation requires refitting each model for each t, which can be

approximated by PSIS as, p(yt|y<t) =
∫
p(yt|θ, y<t)

p(θ|y<t)
p(θ|y) p(θ|y)dθ. We then start from

the full data inference p(θ|y) and dynamically update p(θ|y<t) using PSIS approxima-
tion. When p(θ|y<t) reveals large discrepancy from p(θ|y) for some small t, which can

be diagnosed by PSIS-k̂, we refit the model p(θ|y<t) and update the proposal. Buerkner
et al. (2018) verify such approximation gives stable and accurate results with minimal
number of refits in an auto regressive model.

2.3 Dynamic stacking weights

Hoogerheide and Dijk and McAlinn, Aastveit and West point out that static
weighting is not desired in time series, as a model good at making short-term prediction
might not do well in the long run. Stacking can be easily made dynamic, allowing the
explanation power of models to change over time. A quick fix is to replace model weights
wt in (1) by time-varying wt,k in the t-th term. To incorporate historical information, we

can add regularization term −τ
∑N

t=2 ||wt,· −wt−1,·|| in the stacking objective function.
The heterogeneity of stacking weights can also be generalized to other hierarchical data
structures, and this can be seen as related to a generalization of the mixture formulation
of Kamary et al. (2014).

Bayesian predictive synthesis (BPS, McAlinn and West, 2017; McAlinn et al., 2017)
has been developed for dynamic Bayesian combination of time series forecasting. The
prediction in BPS takes the form

∫
α(y|z)

∏
k=1:K hk(zk)dz where z = z1:K is the la-

tent vector generated from predictive densities hk(·) in each model and α(y|x) is the
distribution for y given z that is designed to calibrate the model-specific biases and
correlations. We agree that BPS is more flexible in its combination form, for stacking
is restricted to linear weighting α(y|z) =

∑
k αk(z)δzk(y). On the other hand, stack-

ing has its flexibility that can be tailored for decision makers’ specific utility, and the
convex optimization is more computationally feasible for complicated models. It will be
interesting to make further comparisons in the future.

3 Response to other discussions

3.1 Reliance on the list of models and the restriction to linear
combinations

We agree with Clyde and Zhou that the performance of stacking depends on the choice
of model list, as stacking can do nothing better than the optimal linear combination
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from the model list. Stacking is not strongly sensitive to the misspecified models (see
Section 4.1 of our paper), but it will be sensitive to how good an approximation is
possible given the ensemble space.

We discuss the concern of inflexibility of linear-additive-form of density combina-
tion in Section 5.2, and construct the same orthogonal regression example as Clyde,
in which stacking will not work to approximate the true model that is a convolution of
individual densities. By optimizing the leave-one-out performance of combined predic-
tion, the stacking framework can be extended to more general combination forms, such
as the posterior family used in the BPS literature. Furthermore, simplex constraints
will be unnecessary if it goes beyond the linear combination of densities. We are inter-
ested in testing such approaches. Yoo proposes another way to obtain convolutional
combinations by stacking in the Fourier domain.

3.2 Model expansion as an alternative

One setting where stacking can be used, but full model expansion could be more difficult,
is when some set of different sorts of models have been separately fit. The same idea
is summarized by Pericchi as “careful consideration of all the entertained models and
admissible estimators for parameters should be considered prior to the optimization
procedures.” We are less concerned about the situation described by Belitser and
Nurushev, Shin, and Zhou, in which the number of models are so large that stacking
can be both computationally expensive and theoretically inconsistent, because in that
setting we would recommend moving to a continuous model space that encompasses the
separate models in the list.

Stacking is not designed for model selection, but for model averaging to get good
predictions. We do not recommend to use it as model selection, although models with
zero weights could be discarded from the average. For large p and small n, instead
of stacking or other model averaging methods, we recommend using an encompass-
ing model with all variables and prior information about the desired level of sparsity
(Piironen and Vehtari, 2017b,c). For example, the regularized horseshoe prior can be
considered as a continuous extension of the spike-and-slab prior with discrete model av-
eraging over models with different variable combinations (Piironen and Vehtari, 2017c).
For high-dimensional variable selection we recommend a projection predictive approach
(Piironen and Vehtari, 2016, 2017a), which has a smaller variance in selection process
due to the use of the encompassing model as a reference model and has better predictive
performance due to making the inference conditional on the selection process and the
encompassing model.

3.3 Nonparametric approaches

Li and Iacopini and Tonellato suggest the use of nonparametric reference models
to eliminate the need of cross-validation. If we are able to make a good nonparametric
model there is probably no need for model averaging. Although model averaging might
be used as part of model reduction, instead of using component models p(·|y,Mk) we
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would prefer to form the component models using a projection predictive approach which

projects the information from the reference model to the restricted models (Piironen

and Vehtari, 2016, 2017a).

Zhou suggests Bayesian nonparametric (BNP) models as an alternative to model

averaging. Indeed, the spline models used in the experiments in Section 4.6 of our paper

can be considered as BNP models. We can compute fast LOO-CV also for Gaussian

processes and other Gaussian latent variable models (Vehtari et al., 2016).

3.4 Logarithmic scoring rules

Finally, we emphasize that the choice of scoring rules in stacking depends on the under-

lying application, and it is unlikely to give one optimal result that is applicable to any

situation in advance. As Winkler, Jose, Lichtendahl and Grushka-Cockayne and

Grüwald and Heide point out, there is no need to use log score if the focus is some

other utility. Our proposed stacking framework is applicable to any scoring rule. We

are particularly interested in interval stacking that optimizes the interval score, which

is likely to provide better interval estimation and posterior uncertainties.

We thank Franck for numerically verifying that stacking outperforms intrinsic

Bayesian model averaging (iBMA) in simulations. This result suggests that the stacking

procedure’s prior invariance property is a convenient bonus but not the only reason for

its impressive performance.
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stein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W., et al. (2017). “Cross-
validation strategies for data with temporal, spatial, hierarchical, or phylogenetic
structure.” Ecography , 40(8): 913–929. 1003

Shimodaira, H. (2000). “Improving predictive inference under covariate shift by weight-
ing the log-likelihood function.” Journal of Statistical Planning and Inference, 90(2):
227–244. MR1795598. doi: https://doi.org/10.1016/S0378-3758(00)00115-4.
1002

Sugiyama, M., Krauledat, M., and Müller, K.-R. (2007). “Covariate shift adaptation
by importance weighted cross validation.” Journal of Machine Learning Research,
8(May): 985–1005. 1002

Sugiyama, M. and Müller, K.-R. (2005). “Input-dependent estimation of generalization
error under covariate shift.” Statistics & Decisions, 23(4/2005): 249–279. MR2255627.
doi: https://doi.org/10.1524/stnd.2005.23.4.249. 1002

Vehtari, A., Buerkner, P., and Gabry, J. (2018a). “Leave-one-out cross-validation
for non-factorizable models.” Technical report. URL http://mc-stan.org/loo/

articles/loo2-non-factorizable.html 1003

Vehtari, A., Gabry, J., Yao, Y., and Gelman, A. (2018b). “loo: Efficient leave-one-out
cross-validation and WAIC for Bayesian models.” R package version 2.0.0. 1003

Vehtari, A., Gelman, A., and Gabry, J. (2017). “Pareto smoothed importance sampling.”
arXiv preprint arXiv:1507.02646. 1003

Vehtari, A., Mononen, T., Tolvanen, V., Sivula, T., and Winther, O. (2016). “Bayesian
leave-one-out cross-validation approximations for Gaussian latent variable models.”
Journal of Machine Learning Research, 17(1): 3581–3618. MR3543509. 1006

http://arxiv.org/abs/1711.01667
http://arxiv.org/abs/1601.07463
http://www.ams.org/mathscinet-getitem?mr=3664859
http://www.ams.org/mathscinet-getitem?mr=1795598
https://doi.org/10.1016/S0378-3758(00)00115-4
http://www.ams.org/mathscinet-getitem?mr=2255627
https://doi.org/10.1524/stnd.2005.23.4.249
http://mc-stan.org/loo/articles/loo2-non-factorizable.html
http://mc-stan.org/loo/articles/loo2-non-factorizable.html
http://arxiv.org/abs/1507.02646
http://www.ams.org/mathscinet-getitem?mr=3543509

