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A B S T R A C T

The article shows Generalized Interpolation Material Point Method numerical simulation of the Sainte Monique
landslide. The simulation uses a strain-rate dependent Tresca constitutive model, extended with strain softening
behaviour for structured clays. First, the paper replicates fall cone tests to validate the constitutive model and to
select the material parameters. Afterwards, the paper shows the Sainte Monique landslide simulation which
additionally considers shear band thickness to reduce the mesh-dependence. The results suggest that the strain-
rate affects the prediction of the run-out distances and leads to the landslide acceleration-deceleration cycles
(reported in, e.g. Corominas et al., 2005; Wang et al., 2010).

1. Introduction

Numerical methods allowing for very large deformation are of great
interest in geotechnical engineering. For example, they may be used to
predict the outreach and severity of the landslides and avalanches, as
well as to simulate penetration problems. One family of the methods
allowing for simulations of very large deformations are those stemming
from the Material Point Method (MPM) by Sulsky et al. [3]. The Gen-
eralized Interpolation Material Point Method (GIMP) [4] is an evolution
of the original MPM with an improved precision and stability and a
method of choice for simulations shown in the paper.

Large deformation problems in geotechnics often involve penetra-
tion of a rigid body into the soil. MPM/GIMP was used to simulate a
large number of those, including the penetration of a strip foundation
[5], the pile installation into a sand layer [6] and the cone penetration
test [7,8]. The mentioned studies ignored the strain rate effects during
the penetration process. However, the strain rate effect of soft clays is
one of the major factors influencing the undrained shear of soil in fall
cone penetration test [9] as well as in the quickness test [10] and the
penetration tests [11–13]. Therefore, the constitutive model used in all
shown simulations incorporates the strain rate effects. The paper first
validates the numerical technique (GIMP) and the constitutive model
with the existing analytical solutions and experimental data for the fall
cone penetration tests, extending the work of Tran et al. [14], while
moving later to simulations of the 1994 Sainte Monique landslide.

Currently, there are many approaches to predict the progressive and
retrogressive failure in sensitive clay landslides. For example, Puzrin
et al. [15] and Quinn et al. [16,17] proposed methods based on the
linear fracture mechanics and the evaluation of the length of existing
shear band. Later, Zhang et al. [18,19] enhanced the method with a
more realistic behaviour of the soil including elastic and non-linear
strength degradation. These analytical models were applied to the in-
clined slopes with the failure driven by shear stresses induced by self-
weight. However, the Sainte Monique landslide has a different char-
acteristic. The landslide behaviour is highly nonlinear and time-de-
pendent as the shear stress is affected by the progressive dislocation of
softening soil mass. Additionally, the soil behaviour in the slide is ra-
ther complex. Therefore, it is necessary to use a numerical model to
reproduce the progressive failure in Sainte Monique landslides instead
of the methods [15–19].

Several numerical methods have been applied to study the spread
failure of sensitive clays landslides including the Finite Element Method
[20–22] and the coupled Eulerian - Lagrangian finite-element model-
ling [23,24]. Material Point Method has also been used to investigate
the landslide failures [25–28] including progressive landslides [29] and
levee failure [30]. However, in those studies, some key features of the
sensitive clays influencing the progressive failure were rarely con-
sidered. Typically, the soil in the previous studies was taken as homo-
geneous, while the undrained shear strength of the natural normally
consolidated clays typically increases linearly with depth. Several
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studies suggested that ignoring the increase of the undrained shear
strength with depth may overestimate the probability of failure of slope
[31], strip footing [32] and tunnels [33]. Furthermore, studies [25–30]
did not consider the strain rate effects affecting the shear strength of
clays, which may play significant role in a landslide. For example, Wang
et al. [2] reported that the increase of the residual shear strength with
shear rate may be a reasonable explanation for the observed behaviour
of the Shiraishi landslide. In the landslide, the rainfall induced a re-
duction of the undrained shear strength which caused a landslide ac-
celeration, while the landslide acceleration resulted in the increase of
undrained shear strength along the failure surface, which, in turn,
caused a landslide deceleration. Similar cycles of shear strength
changes and landslide movements were also described for the natural
slope failure [34]. In addition, the strain rate also affects the char-
acteristics of the post-failure. For example, neglecting the strain rate
effects lead to an overestimation of the run-out distance of the sand
columns [35,36] and the remoulded sensitive clays columns [10].
Therefore, this study considers the strain softening, increase of the
undrained shear strength with depth and the strain rate effects to si-
mulate sensitive clay landslide in Sainte-Monique, Quebec in 1994 in-
cluding the progressive failure and the post-failure stage.

2. Generalized Interpolation Material Point method

The Material Point Method [3] is a numerical method, which can
simulate the behaviour of materials described by continuum mechanics,
similar to the Finite Element Method. In MPM, the material is dis-
cretised by the material points, which store the information required for
the simulation. In the beginning of a time step, the data from the ma-
terial points is transferred to the background grid, where the balance
equations are solved. Afterwards, the material variables are updated
and interpolated back to the material points. Usually, at the end of the
time step, the initial configuration of the grid is reset.

In general, the Material Point Method is viewed as a meshfree/
meshless method well-suited to solve the dynamic large displacement
problems, for which the conventional Finite Element Method applica-
tion is limited due to the mesh distortion. However, the original MPM
has number of numerical instabilities, including the grid-crossing in-
stability [37]. That instability is partially caused by the discontinuous
gradient of the shape functions. The discontinuity in the shape function
gradient results in a sudden change of the stress when a material point
crosses to a new cell. These algorithmic errors are reduced in the newer
formulations of MPM, such as Generalized Interpolation Material Point
Method (GIMP) [4], the MPM using B-spline shape functions [38], the
Dual Domain MPM (DDMP) [39] or the Convected Particles Domain
Interpolation MPM (CPDI) [40]. This paper uses GIMP as encoded in the
Uintah software (http://uintah.utah.edu). In this paper, the fall cone
test simulation uses the shape functions of GIMP in axis-symmetry form
[41] and the slope progressive failure simulation uses 3-dimensional
formulation [4]. Details of the shape functions used in the simulations
are presented in the Appendix.

3. Material behaviour of the clay

In the paper, the basic undrained behaviour of the clay is described
by an elasto-plastic Tresca material model with a non-associated flow
rule. All the simulations in the paper assume the dilation angle equal to
0 leading to no plastic volume change during shearing.

3.1. Effect of strain rate

The dependence of the undrained shear strength su on the shear
strain rate has been generally accepted for clays [42,43]. Considering
the reference undrained shear strength su ref, at a reference strain rate

ref , the effect of strain rate could be presented by a semi-logarithmic
law [44,45] as:

= +s
s

µ1 logu

u ref ref, (1)

However, this study assumes that the strain rate effects on the un-
drained shear strength su at a shear strain rate follow the more re-
cently developed power law proposed by Einav and Randolph [46]:

=s
s

u

u ref ref, (2)

The reason why the Eq. (2) is used instead of Eq. (1) is that in many
clays the strain rate parameters µ are dependent on strain rates
[47,11,48]. As such, µ may not necessarily be a suitable material
constant. The power law (2) can capture the increase of the parameter µ
with the change of the strain rate. Therefore, compared with semi-
logarithmic law in Eq. (1) (linear in semi-logarithmic plot), a nonlinear
fit in semi-logarithmic plot power law (2) may replicate the clay be-
haviour better (see Fig. 1). However, it may be worth noting that the
other studies suggested that the strain rate parameter is not perfectly
constant either. Jeong et al. [49] argued that the strain rate parameter
used in the power law rheological model should be different for the
intact and remoulded low-activity clays because of the difference in the
fabrics and micro-structures. Nevertheless, this study assumes that the
strain rate parameters (Eq.(2)) are constant in the clay materials si-
mulated.

3.2. Effect of the plastic shear strength degradation

Apart from the strain rate effects, sensitive clays show a shear
strength degradation with the increase of the plastic shear strains. After
reaching the maximum shear strength, it is reducing due to the de-
gradation of the sensitive clay structure. Therefore, the assumed con-
stitutive model degrades the undrained shear strength with the increase
of the shear strain [46] as follows.

= +s S s
S S

e( , ) [ 1 (1 1 ) ]u t u ref
t t

,
3 / 95

(3)

where is the current accumulated shear strain, 95 is the accumulated
shear strains required to obtain 95% reduction of shear strength and the
sensitivity St is the ratio of undisturbed over remoulded undrained
shear strength sur ref, :

=S
s
st

u ref

ur ref

,

, (4)

Fig. 1. Comparison between logarithmic law and power law.
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3.3. Formulation of the undrained shear strength and elastic law

Based on the discussion above, the constitutive model used in the
simulation assumes that the undrained shear strength could be de-
scribed as a combination of the strain rate effects and the shear strength
degradation terms taken as:

= + >s S s
S S

e( , , ) 1 1 1 ,u t u ref
ref t t

e,

3
95

(5)

where the shear strain rate is computed from the strain rate tensor as:

= +1
2

2( ) 3ii jj ij
2 2

(6)

The reference undrained shear strength depends on the water con-
tent. The reference remoulded undrained shear strength in Eq. (5) can
be described in power law as:

=s w a w( )ur ref
b

, 1 1 (7)

where a1 (kPa) is the undrained shear strength at w=100% and at a
reference strain rate δγref (kPa), w (%) is the water content and b1is the
model parameter. The presented model has been validated by Boukpeti
et al. [50,51].

Furthermore, while the strain rate influences greatly the undrained
shear strength in the large deformation regime, in the small deforma-
tion regime the dynamic shear modulus also depends on the shear strain
rate. Sorensen et al. [52] has shown that the dependence of the strain
rate on the dynamic shear modulus, therefore, also the dynamic un-
drained shear modulus can be estimated as:

=G G( ) ,u u ref
ref

e,
(8)

The parameter is the same as in Eq.(5), so the increase of the
undrained shear modulus is proportional to the increase of the un-
drained shear strength. Therefore, the adopted formulation keeps the
elastic shear strain value constant when the shear rate change. Fig. 2
depicts the degradation of the undrained shear strength with the in-
crease of the accumulated shear strain for two different constant strain
rates where >2 1, illustrating the implemented model (Eqs. (5) and
(8)).

4. Modelling of fall cone tests

4.1. Problem definition

Fall cone test is a simple laboratory experiment used to determine
the undrained shear strength and the sensitivity of the soft clays.

Because the interpretation of the undrained shear strength depends on
the strain rate effects [9], this paper validates the used computational
framework by replication of fall cone tests with GIMP and the strain-
rate dependent constitutive model. The framework is validated both
against the theoretical solution of Koumoto and Houlsby [9] and the
experimental data, with simulations of 30-degree and 60-degree stan-
dard cones (see Fig. 3).

The theoretical solution [9] used in the validation provides the
undrained shear strength correlated to the cone penetration depth by
means of a cone factor K. As the simulations assume rough contact
between the soil and the cone, the cone factor for the rough cone was
employed in the theoretical calculations.

The experimental data used in the validation comes from Hazell
[53] who performed a series of fall cone experiments on the remoulded
kaolin clays. Hazell [53] gives the cone vertical displacement and ve-
locity based on the data obtained from a high-speed camera, post-
processed with Particle Image Velocimetry analysis. The experiment
also gives forces acting on the cone. Fig. 4 shows the experimental
setup.

4.2. Constitutive parameters for kaolin clays

Hazell conducted the dynamic measurements of fall cone test ex-
periments with artificial remoulded kaolin clays (mixing kaolin powder
with water to reach different water contents). Therefore, the simula-
tions used constitutive parameters (Table 1) based on the published
data for these clays. Those were taken from Boukpeti et al. [50] who
investigated remoulded kaolin clays during the solid fluid transition by
measuring the remoulded undrained shear strength at different water
contents. The parameters related to the influence of water content re-
trieved from those experimental data gave a1=0.205 and b1 =3.86.
Also, in the Hazell’s experiment, the rough cone penetratedFig. 2. Tresca model with strain rate and shear strength degradation.

Fig. 3. Schematic of the 30° and 60° cone. Unit: mm.
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approximately 20mm which corresponds to kaolin clay with sur ref, ≈
2.75 kPa (w=51%), based on the theoretical solution of Koumoto and
Houlsby [9].

The range of the strain rates in the free-falling cone tests are ap-
proximately from 1 to 10 s−1 and are roughly in the range of the strain
rates in the vane shear tests (from 0.05 to 100 s−1) [54]. Therefore, the
parameters for the strain rate effects for the fall cone test simulations
could be calibrated based on the vane shear test from Boukpeti et al.
[50], who performed the vane shear test for kaolin clays with different
rotation rates. In [50], the minimum rotation rate 1%/s corresponds to
the shear strain rate of about 0.5 s−1 [11]. This shear strain rate value
was selected as the reference shear strain rate in the numerical model.
Boukpeti et al. [50] have also shown that the strain rate parameter β,
which is related to the increase of the undrained shear strength with the
increase of the shear strain rate, was between 0.04 and 0.08 (see Fig. 5).
That is similar to the increase of the resistance of penetrometers with
the penetration rate given by Lehane et al. [12] with β = 0.06–0.08 and
Chung et al. [55] with β = 0.05–0.07. Similarly, Rattley et al. [56]
selected β = 0.05 based on triaxial tests for the centrifuge uplift tests.
Based on the above suggestions, β is set to be 0.06 which seem to be a

reasonable average value for the numerical model. The reference un-
drained elastic modulus is set to be 167 times of the reference un-
drained shear strength, as suggested by Moavenian et al. [57]. Table 1
summarizes the parameters for the penetration simulations.

4.3. Validation of the model based on the fall cone tests on kaolin clays

In the fall cone test simulations, the theoretical undrained shear
strengths of kaolin clays su theo, are computed based on Eq. (7) with the
given water contents w for the numerical model being:

=s w w( ) 0.205u theo,
3.86 (9)

The calculated undrained shear strengths su cal, in the fall cone si-
mulations are computed based on the Koumoto and Houlsby [9] as:

=s KQ
du cal

p
, 2 (10)

where Q (g) is the weight of the fall cone =Q m g· with m is the
mass of the cone and g is the gravitational acceleration, dp is the pe-
netration depth obtained from the simulation and K is the cone factor.
The cone factor depends on the type of the fall cone, cone roughness
and the strain rate parameters. The simulation assumed that the contact
between the cone and clay is rough. Therefore, the cone factors:
K=1.03 for 30° cone and K=0.25 for 60° cone, are taken for the
rough contact assumption [9].

In the shown simulations, the friction contact with the friction
coefficient μ by Bardenhagen et al. [58] has been adopted. Fig. 6 shows
the sensitivity analysis of the friction coefficient for the reference case
with =s 2.75 kPau theo, and the 30° cone. The figure shows that higher
friction coefficient than 0.2 does not change significantly the penetra-
tion depth – in other words, the friction coefficient of 0.2 is enough to
prevent the sliding between cone and soil and can represent the rough
cone, while minimising unwanted numerical effects related to e.g. in-
terlocking effects [59,60] in nearly incompressible materials. As such,
the friction coefficient of 0.2 was applied in all shown numerical ana-
lyses.

The number of background grid cells in GIMP plays a crucial role for
the accuracy of the solution. Therefore, the grid density was varied to
investigate how the number of cells affect the solution. The tested
structured grid squares sizes (h×h) were h=1, 0.5, 0.25, 0.16mm,
each time with 9 material points per cell. These corresponds to 5400,
21,600, 86,400 and 211,500 material points in a simulation, respec-
tively.

For the 100 g, 30° cone, the theoretical range of undrained shear
strength is between 2 kPa and 10 kPa. Fig. 7 shows that the numerical

Fig. 4. Fall cone experiment setup [53]

Table 1
Parameters used in the fall cone simulations.

a1 (kPa) b1 w (%) δγref (s−1) β Gu, ref (kPa) υu St

0.205 3.86 45–120% 0.5 0.06 167su, ref 0.49 1

Fig. 5. Strain rate parameter β interpreted from experiment for kaolin clays
[50] Fig. 6. Influence of friction coefficient in the penetration depth of 30° cone.
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simulations of the fall cone tests with a 30° cone converge well to the
theoretical solutions at different assumed undrained shear strength. In
the Fig. 7, the ideal solution would be such that the obtained undrained
shear strength from the simulation, based on the simulated cone pe-
netration and Eq. (10) would be the same as the assumed undrained
shear strength of the soil in the simulation. In such case the points
would be on the 45-degree line. Upon examination of Fig. 7 we observe
that the correct solution is being approached with the increase in grid
density.

To further examine the convergence rates of the numerical model,
the error of the fall cone test is defined as a relative difference between
the expected penetration depth dp theo, for the given theoretical un-
drained shear strength, based on Koumoto and Houlsby [9], and the
penetration depth obtained in the numerical simulation dp cal, as:

=
d d

d
error %p theo p cal

p theo

, ,

, (11)

Fig. 8 shows that for 30° cone the errors clearly reduce as the
number of grid cell increase. Notably, the errors for the higher pene-
tration depth were smaller than for the shallower penetration depth.
That can be perhaps explained by the unstructured grid used – for a
higher undrained shear strength the expected penetration depth is

small, hence fewer material points are in the area of penetration. As
such, a different grid, denser around the tip of the cone, would be more
numerically efficient. Alternatively, for small penetration depths, the
boundaries are far from the deformed material. Therefore, a smaller
numerical domain with a denser mesh around the cone, without an
increase in total number of material points, would be preferable.
Nonetheless in the simulations, to allow for an easier comparison of
results, always the same size of the problem was simulated.

Subsequently, the simulations were repeated for the 10 g 60° cone.
Such a cone is commonly used in tests when the remoulded shear
strength is expected to be lower than 2 kPa, which is typical for the very
sensitive clays. Fig. 9 shows the convergence of the undrained shear
strength obtained from simulations of 60° fall cone tests. The con-
vergence rate trends are similar as in the 30° cone simulations. Again,
the convergence to the correct results when shallower penetration is
slower. For such low penetration depths, the grid in the simulation is
also far from optimal.

Finally, in the simulations, the maximum normal stress on the cone
is proportional to the undrained shear strength of the clay; therefore,
the friction contact forces, which increase proportionally to the normal
stresses, could increase significantly for the high strength materials. As
such, the adopted contact law inaccuracies may have more impact on
clays with higher undrained shear strength. Based on the sensitivity
study (see Figs. 8 and 10), we expect the simulation results would

Fig. 7. Convergence of numerical undrained shear strength for 30° cone for
square grid with size h between 1mm and 0.16mm.

Fig. 8. Spatial errors of numerical solutions for 30° cone.

Fig. 9. Convergence of numerical undrained shear strength for 60° cone.

Fig. 10. Spatial errors of numerical solutions for 60° cone.
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converge to the analytical result, provided we use a much higher
amount of material points and/or a differently denser structured grid
(see Fig. 11). Therefore, we think it is unlikely that the contact law
introduced systematic errors.

4.4. Simulation of the instrumented fall cone test on kaolin clay

Hazell [53] documented kinematics of the 100 g, 30° fall cone test.
Simulation of such experiment provides further validation of the com-
putational framework, as the simulated acceleration, velocity and force
acting on the cone can be checked against the experimental values. In
the experiment, the cone was free-falling into the kaolin clay body and
reached the maximum penetration depth of 19.5 mm during approxi-
mately 0.1 s. Based on the penetration depth, the undrained shear
strength calculated from Eq. (10) is 2.75 kPa with water content
w=51%. The numerical simulation replicating the experiment used
the parameters given in Table 1.

In general, the simulation replicates the experiment very well with
grid size 0.16× 0.16mm and 9 material points per grid cell, the same
grid size which gave accurate results in the previous validation. Fig. 12
shows the acceleration profile during the experiment and in the simu-
lation. Notably, the acceleration at the very beginning of the experi-
ment was lower than the gravitational acceleration because the cone
was slowed down due to the friction mobilized in the cone shaft during
the cone release for the free fall. To simulate those effects, the nu-
merical model had a force acting in the opposite direction to the gravity
which replicates the friction. The initial value of the force was 1 N and
it was gradually reduced to 0 N after 0.01 s. From that time, the gravity
was the only driver of the penetration process.

In the simulation, the cone acceleration oscillated close to the final
value of the penetration. The amplitude of those oscillations reduced
slowly. Those oscillations result from the assumed elastic behavior of
the material and the explicit nature of the simulation leading to the
elastic waves being reflected by the boundaries of the domain leading

to oscillations. Those effects are only visible because there was no nu-
merical damping applied in the simulation, to allow for the proper
dynamic simulation of the whole process.

Figs. 13 and 14 show the convergence of the penetration depth and
velocity compared with the experiment. The values of the displacement
and the maximum velocity increase with the increase of grid density.
However, the influence of Poisson’s ratio, examined for the finest grid,
is not significant – there is very little difference between undrained
Poisson’s ratio vu of 0.49 and 0.499. Therefore, Poisson’s ratio of 0.49
was selected for all simulations due to much lower computation time, as
the time step depends on the bulk modulus value of the material.

Fig. 15 shows the forces acting on the cone in both the experiment
and in the numerical simulations. The forces in the simulations at given
penetration depth slightly decrease with the increase of grid density,
leading to a very good agreement with the experiment at highest grid
density. More importantly, the peak value of the force measurements

Fig. 11. Penetration depth of different mesh density.

Fig. 12. Cone acceleration during penetration.
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increased as the penetration depth increased and it practically con-
verged to the experimental value at the grid density of 0.16× 0.16mm.
As such, the simulations of the fall cone test agree with the experiment
well.

In summary, the simulations of fall cone tests replicate very well the
theoretical predictions and the experiment where strain rate is varying,
giving some assurance that similar replication may be possible in larger
scale simulations, such as those of progressive landslides. Similar vali-
dation, not included in this paper has been made based on the

spreading tests of sensitive clays [10], which again replicate the ex-
periments well and give some assurance that the framework can be used
to modelling of structured sensitive clays. As such, it seems that the
developed modelling framework allows for rather accurate replication
of undrained clay behaviour under dynamic conditions.

5. Modelling of progressive failure of the sensitive clays slope in
Sainte-Monique, Quebec, Canada

According to the 2014-updated Varnes classification of landslides
[61], the sensitive clay landslides can be divided into three categories:
sensitive clay flowslides, translational progressive landslides and sen-
sitive clay spreads. The concept of the progressive failure may help
interpret the failure mechanism of the sensitive clay landslides. With
that concept, the translational landslides could be considered as a
downward progressive failure, because the trigger mechanism (e.g.,
embankment loading, piling) in the upslope area induces a failure
surface propagating to the downslope area [62–66]. In contrast, the
spreads could be classified as an upward progressive failure because the
trigger mechanism (e.g., erosion, excavation) causes a horizontal failure
surface propagating upwards [62,66–68]. Such upward progressive
failure consists of two processes: (i) the propagation of a horizontal
quasi-static failure surface (shear band) and (ii) the extension and
dislocation of the soil mass above the remoulded shear surface, forming
hosts and grabens. In 1994, a sensitive clay landslide occurred in
Sainte-Monique, Quebec. The landslide was characterized as spreads
failure with horsts and grabens observed in the site. In the subsequent
sections, the paper will replicate numerically the upward progressive
failure in the sensitive clay landslide in Sainte-Monique, Quebec, Ca-
nada in 1994.

5.1. Problem definition

This study investigates the progressive failure and post-failure of a
sensitive clay landslide which occurred in Sainte-Monique, Quebec,
Canada in 1994. Fig. 16 depicts the representative cross-section of the
sensitive clay slope being basis for the 2D numerical model. The total
initial height of the slope was about 16.7 m with the inclination of
approximately 24°. The simulation used unit weight of the clay equal to
16 kN/m3. In the numerical model, the square grid resolution is
0.2× 0.2m with 4 material points per cell, leading to the total number
of material points of approximately 500,000. The numerical analysis
assumes that:

– even though the in-situ sensitive clay layer was very thick, simula-
tion of only 5m under the failure surface is sufficient. Sensitivity
analyses made have shown that extra thickness added does not have
significant influence on the results, while increases the number of
material points significantly.

– the left and right boundary are fixed in the horizontal direction
while the bottom boundary is fixed in the vertical direction.

– the initial stress condition was generated in drained condition with a
typical drained shear strength of Canadian sensitive clays. Because
the spread failure occurs rapidly, the soils was modelled in un-
drained condition with the initial undrained shear strength obtained
from the soil investigations [68].

– the erosion at the toe of the slope triggered the failure of the slope.
The progressive failure simulation represents the erosion as a small
amount of soil excavated on the toe of the slope, see Fig. 16.

– the model does not consider several important features of natural
sensitive clays such as anisotropy and creep. Long terms behaviour
of the slope is not considered and as such the simulations neglect the
long-term aspects of clay behaviour, related to effects such as fa-
tigue, weathering and chemical effects. Those simplifications may
be reassessed in the further research, which may consider more
complexities of the clay behaviour.

Fig. 13. Cone penetration depth vs. time.

Fig. 14. Cone penetration velocity vs. time.

Fig. 15. Fall-cone forces during the penetration.
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5.2. Pre-failure initial stress condition

Canadian sensitive clays, in drained condition, have typical value of
cohesion (c′) and friction angle (ϕ′) of 10 kPa and 25–40°, respectively
[69]. These values are obtained based on drained triaxial compression
tests with the range of reconsolidation pressure of 5–30 kPa and pre-
consolidation pressure from 100 to 400 kPa. In the numerical model,
the sensitive clays are represented by the non-associated Mohr-Cou-
lomb model with cohesion of 10 kPa, friction angle of 30° and zero
dilatancy angle. The initial stress in the pre-failure condition was gen-
erated by the gravity loading. As the clay is normally consolidated, the
earth pressure coefficient Ko was taken as 0.5. For the Mohr-Coulomb
model, it corresponds to the Poisson’s ratio is equal to 0.33 calculated
from Eq. (12).

= = v
v

K
1o

h

v (12)

Figs. 17 and 18 presents the initial stress in the failure surface ob-
served on the site. The vertical and horizontal stress increase gradually
from the toe of the slope upwards. Far away from the toe of the slope,
the ratio of the horizontal and vertical stress at rest is equal to 0.5
(133.6 kPa/267.2 kPa). The shear stress increases to the maximum
about 30 kPa at approximately 40m from the toe of the slope and re-
duces to zero at 80m from the toe of the slope.

5.3. Soil investigation and the numerical parameters of the sensitive clay

The soil investigation found a thick brown sand reaching 2 m from
the ground surface. For the sake of simplicity, the undrained shear
strength for this layer was taken as constant. Below the sand layer,
there is a thick layer of a firm, sensitive, normally consolidated clay
reaching the depth of 44m. The undrained shear strength of that
sensitive clays was determined by the fall cone tests, the vane shear
test and the CPTUs. The undrained shear strength profile determined
from these in-situ tests are used here to calibrate the numerical
parameters of the constitutive model. The sensitive clays from 2m to
10m deep were slightly over-consolidated and interspersed with -
sandy layers. Below 10m depth, the sensitive clays were normally
consolidated with the undrained shear strength increasing linearly
with depth. The intact undrained shear strength at a depth z can may
be approximated as:

=
<

+
s z
s s z z zs (z)

2 m 10 m
( ), 10 mu ref

uz ref

uz ref u ref
,

, (z),

, (z) (13)

where suz ref, is the reference undrained shear strength at the re-
ference depth zref =10m and su is the amount of the undrained shear
strength increase per meter depth. With the sensitivity kept constant,
the numerical model replicated the linear increase of the remoulded
undrained shear strength observed on-site by the suitable reduction of
the water content with depth, as given in Eq. (13). Fig. 19 shows the
undrained shear strength in the numerical model and Fig. 20 compares

Fig. 16. Schematic of the slope used in the numerical model.

Fig. 17. Initial stress condition along the failure surface.

Fig. 18. Initial vertical stress of the slope.

Q.-A. Tran, W. Sołowski Computers and Geotechnics 106 (2019) 249–265

256



the calibrated numerical model used and the data obtained based on the
in-situ tests (CPTUs and vane shear tests). The suz ref, =25 kPa at
zref =10m with the rate su =2.6 kPa seem to be a reasonable

estimation.
In this study, the calculations used the undisturbed undrained shear

strength obtained from the soil invetigation (see Fig. 20) while the re-
moulded undrained shear strengths ranged from 0.7 kPa (value ob-
tained from the fall cone test) to 10 kPa. Furthermore, the parameter 95
was selected as 120% to replicate the softening behaviour observed in
the direct simple shear tests (see Fig. 21). For the strain rate effects, the
reference strain rate is 0.05 s−1 which corresponds to the shear strain
rate of the standard van shear tests at the rotation rate of 0.1 deg/s
[50]. For the undisturbed Canadian clays, the strain rate effects para-
meters µ in Eq. (1) are between 0.1 and 0.2 [43,45]. These values, with
reference to Fig. 1, lead to the strain rate parameter (in Eq. (2)) be-
tween 0.035 and 0.065. That is confirmed by other studies, e.g. [70],
which suggested that for the intact sensitive clays is in the range
between 0.025 and 0.07. However, it should be noted that the value of
strain rate parameters could be higher for the remoulded sensitive
clays [49] ( = 0.05–0.17 for the remoulded low-activity clays). As
such, it is difficult to choose a single correct value of the strain rate
parameter for the clay. Therefore, several numerical analyses were
performed with clay having the strain rate parameter within the es-
tablished range, that is between 0 and 0.17. Similar to the fall cone test,
the dynamic shear modulus used was equal to 167 su, ref, while the
Poisson’s ratio was taken as 0.49 due to undrained conditions. Table 2
sumarizes the numerical parameters of sensitive clays.

The GIMP numerical results are sensitive to the grid density and
number of material points. Therefore, to remove some of the mesh-
dependency, a scaling law is applied to the numerical model by con-
sidering an embedded shear band [71], corresponding to the shear zone
thickness of the shear band. The scaling law aims to keep the strain
energy independent from the grid size. Considering the strain energy in
the shear band (see Fig. 22), the increment of strain energy in the shear
zone can be written as:

= =V t tU 1
2

. . 1
2

. . .shear shear shear shear FE shear (14)

where Vshear is the volume of the representative square element in the
shear band, tshear is the thickness of the shear band, tFE is the size of grid
cell, is the stress and is the strain in the shear band. In the nu-
merical model, the strain energy is computed as:

= =V t tU 1
2

. . 1
2

. . .model model model FE FE model (15)

where Vmodel is the volume of the representative square element in the
numerical model. To obtain the same strain energy =U Umodel shear , the
increment shear strain should be scaled as follow:

= t
tshear

FE

shear
model (16)

The shear zone thickness of the shear band is a critical parameter
during the progressive failure. The shear zone of the sensitive clays can
vary from 3 to 5mm in the laboratory scale [72] to few decimetres in-
situ [34,20]. In this study, we assume that the shear zone thickness tshear
is 0.2m.

Fig. 19. Undrained shear strength of the slope.

Fig. 20. Undrained shear strength profile [68]

Fig. 21. Stress-strain behaviour in direct shear test [68]
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5.4. Result of progressive failure analysis

5.4.1. Influence of grid density
The grid density and the number of material points have influence

on the numerical solutions in the Generalized Interpolation Material
Point Method. For example, the prediction of run-out distance may be
much affected by the grid density, as illustrated by Fig. 23, which shows
different run-out distances for 2 different grids (0.2× 0.2m and
0.4×0.4m) with the remoulded shear strength of 1.6 kPa and β =
0.17. As such, the simulations of the progressive failure include the
shear band thickness (Eq. (14)–(16)) which reduces the grid-depen-
dence of the numerical solution. To evaluate the efficiency of the al-

gorithm, the numerical model used 3 different cell sizes (0.4m, 0.3 m,
0.2 m) with the remoulded shear strength of 1.6 kPa and β = 0.17.
These grid cell sizes, with 4 material point per cell, correspond to ap-
proximately 180.000, 256.000 and 400.000 material points, respec-
tively. Fig. 24 presents the contour map of all the progressive failure
cases in the beginning of the stage at 5 s and 8 s. Visually, the or-
ientation of the shear band as well as the kinematic behaviour (velocity,
displacement) are similar between different grid densities. That means
that taking into account the shear band thickness improves the simu-
lation results and reduces greatly their dependence on grid density. To
that end, Fig. 25 shows the final stage of the progressive failure for
three grid densities. Again, in general, all the cases here gave a similar

Table 2
Parameters in the progressive failure of the sensitive clays slope.

Layer suz ref, (kPa) su (kPa) zref (m) St 95 δγref (s−1) β Gu, ref (kPa) υu tshear (m) sur (kPa)

Crust 50 0 – – – – – 8350 0.49 – –
Sensitive clay 25 2.6 10 4–55 1.2 0.05 0–0.17 167su, ref 0.49 0.2 su ref

St
,

Fig. 22. Schematic of the scaling grid cell.

Fig. 23. Influence of grid size in the retrogression distanc.

Fig. 24. Effect of mesh size on the numerical result at 5 s and 8 s.
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retrogressive distance of the sensitive clay landslide. However, still the
more material points and denser grid leads to smaller errors, hence, the
cell size 0.2 m was applied to analyse the Sainte-Monique landslide in
greater detail.

5.4.2. Influence of grid orientation
The effects of grid orientation were investigated by considering 2

cases including a horizontal structured grid and a 30-degree inclined
structured grid for grid size of 0.3× 0.3m (see Fig. 26). The grid ro-
tation changes somewhat the orientation of the shear bands. In general,
there is a similar failure pattern, including the horizontal failure surface
and the multi-inclined shear bands above the failure surface. The in-
fluence of the grid orientation on the results needs further investigation.
It perhaps might be mitigated with an anti-locking technique or mesh
refinement. In this paper, we only apply the horizontal structured grid
for the landslide simulations.

5.4.3. Influence of Poisson’s ratio
Fig. 27 shows the influence of Poisson’s ratio to the numerical

results for the finest grid 0.2× 0.2m. Two Poisson’s ratios are selected
for the comparison including 0.49 and 0.499. Visually, we observe that
the landslide has a similar retrogression distances and similar shear
band orientations for both calculations. Therefore, the Poisson’s ratio of
0.49 was selected for all the landslide simulations as it leads to lower
computational cost.

5.4.4. Sensitivity study on the propagation of failure
One of the important characteristics of the sensitive clay landslide is

the retrogression distance. In the Sainte-Monique landslide, this retro-
gression distance was approximately 142m in a representative cross
section on-site. Fig. 28 shows the influence of the strain rate β on the
retrogression distance of the sensitive clay landslide. In fact, the nu-
merical model predicts the obserbed retrogression distance when the
remoulded undrained shear strength at the failure surface are 1.6 kPa,
2.5 kPa and 3 kPa coupled with strain rate parameter β of 0, 0.06 and
0.17. These case correspond to the sensitivity of 25, 16 and 13.3 re-
spectively.

The retrogression distance could be larger with the remoulded shear

Fig. 25. Effect of mesh size on the numerical result at final stage.

Fig. 26. Effect of grid orientation on the numerical result at final stage.

Fig. 27. Slope failure with Poisson’s ratio of 0.49 and 0.499.
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strength at the failure surface sur < 2 kPa if there were no debris of the
1979 landslide (dark grey on the right in Fig. 30) acting as a barrier to
block the debris flow of the 1994 landslide. Without the barrier, the
retogression distance could be very high such as for the case β of 0.17
(dot line marked without barrier in Fig. 28). In general, the inclusion of
the strain rate effects in simulation led to the replication of the retro-
gression distance closer to the observed retrogression distance on site
with the calculations using the remouled undrained shear strength of
0.7 kPa determined from the fall cone test.

Because the Canadian sensitive clays typically have a high value of
sensitivity (St > 25) and low value of remoulded undrained shear
strength (sur < 2kPa), the reference case with sur =1.6 kPa, St=25 and
β = 0.17 was selected to analyze the global dynamic behaviour of the
landslide. Fig. 29 presents the ground levels and failure surfaces observed
on site and in the numerical model. The failure surface is almost planar
and propagate from the toe of the slope to approximately 120m.

5.4.5. Global dynamic analysis
In the Sainte-Monique landslides, the erosion near the river bank may

have triggered the initial instability of the slope. In the numerical model,
the erosion was represented by a small amount of soil excavated on the
toe of the slope. Fig. 30 presents the numerical results from the initial
condition to the post-failure state of the landslide in 5 s, 8 s, 16 s and 34 s
with the shear strain contour map. The red colour denotes the clays in
excessive shear strains (γ> γ95 = 120%) and thus zones where the clays
had been fully remoulded. To describe the failure process, we selected 4
points along the failure surface (B, C, E, G) for the analysis. The initial
positions of these points are 123.73m, 117.09m, 82.56m and 43.1m.

In the beginning after 5 s, the erosion induced a thin horizontal
shear band propagating from the toe of the slope upward to point B. The
shear stress at point B reached the maximum value corresponding to the

current dynamic undrained shear strength of the sensitive clays (see
Fig. 32) while the shear strain value along the current failure surface
were very high. Therefore, the shear stress at that failure surface was
already reduced and close to the remoulded undrained shear strength.
Apart from the formation of the horizontal failure surface, the first
failure of the slope occurred with a curve shear band propagating from
the horizontal failure surface to the ground surface. After that, the
horizontal failure surface was developing with the maximum shear
stress point propagating from the toe of the slope to the points B, C, E
and G at 5 s, 8 s, 16 s and 34 s respectively. During this process, above
the horizontal failure surface, the neighbouring blocks were moving
and dislocating. It was followed by a propagation of inclined shear
bands between blocks from the horizontal failure surfaces (remoulded
shear strengh) to the ground surfaces. The sensitive clays inside the
inclined shear bands became remoulded. The propagations of the in-
clined shear bands formed the horsts and grabens which are made from
relatively undisturbed materials characterised by a high undrained
shear strength.

To further investigate the dynamic motion of the landslide, Fig. 31
presents the numerical results with the velocity field contours of the soil
mass at 4 different times since the initiation of the landslide (5 s, 8 s,
16 s and 34 s respectively). In general, each horsts and grabens had a
similar lateral displacement rate (same colours of each blocks in
Fig. 31), with the velocity increasing dramatically to approximately
4m/s and reaching the equilibrium after 34 s.

In the presented numerical model, the complete upward progressive
failure including the formation and propagation of the horizontal and
inclinced shear bands is replicated. However, it should be noted that the
tip of the horst in the numerical model was arround 90°while this angle
was approximately 60°on-site. That discrepancy between observation
and the numerical simulation may be due to the simplification of the
constitutive model. It is likely that a more advanced constitutive model
with effective stress analysis may be able to capture the correct shape of
the horsts and grabens.

5.4.6. Stress-strain-strain rate relationship
As the upward progressive failure was successfully simulated, this

section examines the influence of the strain rate on the shear stress and
dynamic motion of the landslide. In the previous studies, Locat et al. [22]
and Dey et al. [24] assumed that the peak undrained shear strength and
peak shear stress along the failure surface were constant during the oc-
currence of the landslide because no strain rate effects were taken into
account. To further investigate the shear stress along the horizontal shear
band, Fig. 32 presents the mobilized shear stress and the corresponding
shear strain rate for the maximum shear stress along the horizontal shear
band. In general, along the failure surface, the peak shear stress values
were approximately 40 kPa, a value close to the value obtained from the
vane shear test in the field and the direct shear test (see Fig. 21). Notably,
the peak shear stress values were not constant but correlated with the
shear strain rate. The shear strain rate represents the rate of propagation
speed of the horizontal failure surface. As the shear strain rate changes,

Fig. 28. Influence of strain rate in the retrogression distance.

Fig. 29. Cross section for the representative case =s 1.6 kPaur , β = 0.17.
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the numerical analysis shows that the shear strain rate experienced a
cycle of acceleration-deceleration.

Initially, the erosion induced an instability which caused the first
acceleration. After 2 s, a high strain rate of 0.15 s−1 was observed at
point A where the shear stress is, at that time, maximal. After that, the
strain rate reduced significantly to 0.001 s−1 after 5 s at point B before
increasing again to nearly 0.2 s−1 at point D after 10 s. Three cycles of
acceleration-deceleration have been observed during the progressive

failure. After 34 s, the soil mass stopped moving and it reached the
equilibrium condition.

To have a better understanding of the dynamic motion of the
landslide at the post-failure, Fig. 33 shows the displacements of points
A, D and F (see Fig. 30) along the horizontal shear failure. The material
points near the toe of the slope have greater displacements and higher
maximum velocities. Because the velocities of material points experi-
enced the dynamic oscillations, Fig. 34 presents the smoothed velocity

Fig. 30. Illustration of progressive failure of the sensitive clay slope.

Fig. 31. Dynamic motion of the sensitive clay landslides.
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evolving with time. Point A and point D had 3 cycles of acceleration-
deceleration movements because of the strain rate effects and the
change of the geometry during the landslide. In contrast, point F had a
lower maximum velocity, therefore, the strain effects were minimal and
no extra acceleration-deceleration cycle occurred at this point.

In summary, the simulations suggest that the changes of undrained
shear strength due to strain rate affect greatly the dynamic motion of the
sensitive clays landslides. The simulations also show that changes of the
shearing resistance due to the change of the strain rate could induce a
cycle of the acceleration-deceleration movement. The acceleration-de-
celeration cycle occurs not only in the progressive failure phase, when
the undrained shear strength changes with the strain rate, but also in the
post-failure phase, when the velocity of the soil mass experiences a cycle
of the acceleration-deceleration movement. That movement is similar to
that shown in previous studies mentioning the acceleration-deceleration
landslide motion for the catastrophic failures of landslides [73], Vall-
cebre landslide in Spain [1] and Shiraishi landslide in Japan [2]. In a
slow-moving landslides such as creeping landslides, strain rate effects
may be less pronounced, with perhaps other factors such as hydraulic
conditions and thermal effects affecting the shear strength of the material
and influencing the motion of the landslide. However, for a fast-moving
landslide such as in Sainte-Monique, the strain rate effects seem to be
significant and having a major influence on the landslide movement.

6. Conclusions

The paper validates the constitutive model and the Generalized
Interpolation Material Point Method by replicating both theoretical and
experimental solutions of the fall cone penetrometer tests.
Subsequently, the paper shows a complete simulation of the upward
progressive failure of the 1994 Sainte-Monique landslide. Based on the
numerical analysis, we conclude that:

– In the fall cone simulations, the numerical solutions (penetration
depth and calculated undrained shear strength) converge to the
theoretical solutions with the increase of grid density. With the fine
grid density as well as the strain-rate dependent constitutive model,
GIMP can replicate the kinematic motion of the cone and forces
acting to the soil during the penetration process.

Fig. 32. Mobilized shear stress and shear strain rate on the horizontal failure surface.

Fig. 33. Evolution of displacements in the landslides.

Fig. 34. Evolution of velocities in the landslides.
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– In the progressive failure simulations, full process of sensitive clay
landslide including propagation, formation of shear bands and disloca-
tion of soil blocks is simulated, under assumption that the landslide was
triggered by erosion near the toe of the slope. The simulation captures
known feature of the landslide as well as the final spread well.

– Similar to the penetration simulations, the results of the progressive
failure simulations depend on the grid density. However, employed
scaling law which consider the shear band thickness reduced the
mesh dependence of the numerical results.

– The numerical analysis showed that the large retrogression landslide
can occur with the clays with high value of sensitivity (St > 25) and
low value of remoulded undrained shear strength (sur < 2 kPa).
Apart from the remoulded undrained shear strength and the de-
gradation rate of the shear strength [22], the strain rate dependency
of the undrained shear strength is a crucial factor for the prediction

of retrogression and run-out distances.
– The strain-rate effects lead to a significant change of the dynamic
undrained shear strength during the progressive failure. The varia-
tion of the shear strength induces the change of the shear stress in
the failure surface during the progressive failure and cycles of ac-
celeration-deceleration movement in the post-failure.

Acknowledgements

This research was funded by the Academy of Finland, Finland under
the project ‘Progressive failure and post-failure modelling of slopes with
Generalized Interpolation Material Point Method (GIMP)’ under deci-
sion number 286628. The authors would like to thank Matti Lojander
for providing references and data for the sensitive clays.

Appendix A. Shape function in axi-symmetry form in the applications of penetration tests [41]

For the axis-symmetry form with an element size ×r z in the r z plane, the shape functions S r z x( , , )ip 3 and the gradient of shape function
of node dS r z x( , , )ip 3 can be described as a function of a distance between the material point and the node in radial direction =r r rp i and vertical
direction =z z zp i, a current material point size l2 P and a cell spacing r z, [41]. The shape function of node ‘i’ is written as (see Fig. 35):
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Fig. 35. Shape function in the radial direction r.
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The gradient of the shape function G r z( , , )ip and T r z( , , )ip are used to update the nodal internal forces as follows:
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Appendix B. Shape function in plane strain form in the applications of progressive failure [4]

For the plane strain form with an element size ×h h, the shape functions S x x x( , , )ip 1 2 3 and the gradient of shape function dS x x x( , , )ip 1 2 3 can be
described as a function of a distance between the material point x( )p and the node x( )i =x x xp i, a current material point size l2 P and a cell spacing h
[4]:
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The gradient of the shape function dS x x x( , , )ip 1 2 3 is used to update the nodal internal forces:
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Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.compgeo.2018.10.020.
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