
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Geniola, Alberto; Antikainen, Markku; Aura, Tuomas
Automated analysis of freeware installers promoted by download portals

Published in:
Computers and Security

DOI:
10.1016/j.cose.2018.03.010

Published: 01/08/2018

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Geniola, A., Antikainen, M., & Aura, T. (2018). Automated analysis of freeware installers promoted by download
portals. Computers and Security, 77, 209-225. https://doi.org/10.1016/j.cose.2018.03.010

https://doi.org/10.1016/j.cose.2018.03.010
https://doi.org/10.1016/j.cose.2018.03.010

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

Automated analysis of freeware installers

promoted by download portals

Alberto Geniola

a , Markku Antikainen

b , ∗, Tuomas Aura

a

a Aalto University, Finland
b Helsinki Institute for Information Technology, University of Helsinki, Finland

a r t i c l e i n f o

Article history:

Received 24 October 2017

Accepted 26 March 2018

Available online 31 March 2018

Keywords:

Potentially-unwanted program

Pay-per-install

UI-automation

Man-in-the-middle Malware

a b s t r a c t

We present an analysis system for studying Windows application installers. The analysis

system is fully automated from installer download to execution and data collection. The

system emulates the behavior of a lazy user who wants to finish the installation dialogs

with the default options and with as few clicks as possible. The UI automation makes use

of image recognition techniques and heuristics. During the installation, the system collects

data about the system modification and network access. The analysis system is scalable

and can run on bare-metal hosts as well as in a data center. We use the system to analyze

792 freeware application installers obtained from popular download portals. In particular,

we measure how many of them drop potentially unwanted programs (PUP) such as browser

plugins or make other unwanted system modifications. We discover that most installers

that download executable files over the network are vulnerable to man-in-the-middle at-

tacks. We also find, that while popular download portals are not used for blatant malware

distribution, nearly 10% of the analyzed installers come with a third-party browser or a

browser extension.

© 2018 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Most computer users download and install some freeware
applications from the Internet. The source is often one
of the many download portals, which aggregate software
packages and also offer locations for hosting them. It is
common concern that the downloaded software might be
infected with malware or have other unwanted side ef-
fects. Freeware installers are also known for dropping of
potentially unwanted programs (PUP) to the user’s com-
puter. PUP and other unwanted system modifications to
desktop computers can also be considered a security threat

∗ Corresponding author.
E-mail addresses: alberto.geniola@studenti.polito.it (A. Geniola), markku.antikainen@helsinki.fi (M. Antikainen), tuomas.aura@aalto.fi

(T. Aura).

(Emm et al., 2016; Wood et al., 2016). This phenomenon is
partly caused by the pay-per install (PPI) business model where
freeware software developers can monetize their software
effectively by bundling it with other third-party applications
or by promoting some software and services by changing the
user’s default settings. This business model is not always
illegal as the application installer may inform the user about
the third-party software and even allow her to opt-out from

installing third-party applications. However, this is often done
in a way that the user is not completely aware of the choices
he makes.

In this paper, we set out to analyze how prevalent are the
security and PUP problems among the software obtained from

https://doi.org/10.1016/j.cose.2018.03.010
0167-4048/© 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.cose.2018.03.010
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.03.010&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:alberto.geniola@studenti.polito.it
mailto:markku.antikainen@helsinki.fi
mailto:tuomas.aura@aalto.fi
https://doi.org/10.1016/j.cose.2018.03.010
http://creativecommons.org/licenses/by-nc-nd/4.0/

210 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5

download portals. For this, we create an automated analy-
sis system that downloads and installs the applications in

a sandbox while monitoring the target system. The sandbox
emulates the behavior of a lazy user who tries to complete
the installation process with the default settings of the in-
staller. It does this with the help of image recognition on

screenshots and heuristic rules. During the whole process,
we record network traffic and modifications to the target sys-
tem. We demonstrate the capabilities of the system by analyz-
ing nearly 800 popular software installers from eight different
download portals.

As hinted, we have two distinct goals. First, we create a
scalable and fully automated tool for analyzing a large num-
ber of application installers. Unlike other existing application

analysis sandboxes (e.g. Cuckoo Sandbox by Guarnieri et al.,
2012), our tool is not only a plain sandbox but can also in-
teract with application installers. Our second goal is to use
the system to analyze large quantities of software from dif-
ferent download portals in order to better understand the
prevalence of any security problems in them. Unlike earlier
research on PPI and PUP, such as those presented by Caballero
et al. (2011) and Thomas et al. (2016) , we do not try to differ-
entiate between legitimate and malicious actions but try to
cover all potentially unwanted changes to the system. This
not only gives insight to the prevalence of any problems but
also teaches up about the software installers and download

portals in general.
More specifically, our contributions are the following:

• We create a scalable, fully automated, sandboxed analysis
system for software installers. The system uses UI automa-
tion to emulate user interaction and monitors the instal-
lation process. The system supports virtualized as well as
bare-metal sandboxes. The system has been published as
open source.1

• To show the capabilities of the system, we use it to analyze
792 popular freeware installers crawled from eight popu-
lar download portals. The analysis covers file system ac-
cess, registry modifications, and network traffic. We look
for indications of unwanted software drops, other poten-
tially unwanted changes to the system, and vulnerabili-
ties in the network communication of the installers. Our
main findings include that while the download portals do
not distribute malware, 1.3 % of the installers led to the
installation of a well-known potentially unwanted appli-
cation (PUP) and nearly 10 % of the installers came with a
third-party browser (e.g. Chrome) or a browser extension.
Furthermore, we found that the installers often download

the application binaries over HTTP and that over half of
these are do not verify the integrity of the binary and

are thus vulnerable to man-in-the-middle (MitM) attacks.
While some of the analysis results have been published

earlier (Geniola et al., 2017), the results and discussion pre-
sented in this paper are more comprehensive than what
has been published earlier.

1 The analysis system is available at https://github.com/
albertogeniola/TheThing/tree/master .

The rest of this paper is organized as follows. Section 2 re-
views related work. Section 3 describes the overall architec-
ture of the analysis system. Section 4 explains how we were
able to automatically interact with the UI’s of the installers.
Section 5 moves towards using the analysis system and de-
scribes how the system was used to analyze a large num-
ber of freeware installers. Analysis results are presented in

Section 6 and further discussed in Section 7 . Section 8 con-
cludes the paper.

2. Background

This section describes the related work and ideas on which

our research is based.

2.1. Potentially unwanted programs

Downloading applications from the Internet can be danger-
ous, and this also applies to download portals (Heddings, 2014;
2015). The applications might come with unwanted features
that range from clearly malicious, such as bundled malware
and spyware, to minor nuisances like changing the browser’s
default search engine. Such software is often referred to as
potentially unwanted programs (PUP) 2 . We use the broad defini-
tion of Goretsky (2011) , which states that a PUP is an appli-
cation or a part of an application that installs additional un-
wanted software, changes the behavior of the device, or per-
form other kinds of activities that the user has not approved

or does not expect. PUP often functions in a legal and moral
gray area. The threat of legal action from PUP authors has been

suggested as the reason why antimalware labels it as “poten-
tially unwanted” rather than “malicious” (Boldt and Carlsson,
2006; McFedries, 2005).

Recently, Kotzias et al. (2016) have shown that freeware in-
stallers only rarely come bundled with critical malware. More
often, the system modifications are just unnecessary and un-
expected. The user may even be informed about them, for ex-
ample, in the end-user licence agreement (EULA), and the in-
staller may allow a careful user to opt out of unwanted fea-
tures. However, as pointed out by Böhme and Köpsell (2010) ;
Motiee et al. (2010) , users do not always read EULAs and may
be habituated to accept default settings and ok any warnings.
This rushing-user behavior leads the user to giving uninformed
consent to the system modifications. Moreover, PUP installers
often come with a complex EULAs (Good et al., 2005), which

users are more likely to accept blindly (Bruce, 2005). Solutions
to this problem have been proposed (Boldt and Carlsson, 2006).
For example, Boldt et al. (2008) showed that it is possible to
detect some classes of spyware can be detected by analyzing
the EULAs. However, none of the proposals has been widely
adopted.

On mobile platforms, the problem of uninformed consent
has been solved so that the operating system informs the
user about the permissions given to each application. This
may happen either at the install time (e.g. Android 5 and ear-
lier), or when the application requests access to restricted

2 Potentially Unwanted Application (PUA) is another often used

term.

https://github.com/albertogeniola/TheThing/tree/master

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5 211

Fig. 1 – PPI business model.

resources (e.g. Android 6). This, however, requires that all
inter-application communication go through a policy enforce-
ment point. Because of the historical baggage of desktop op-
erating systems, the same solution is not currently feasible on

them.
As a summary, while the anecdotal evidence showing that

download portals distribute PUPs is plentiful (see e.g. Slade,
2015), the true extent of this problem has not been studied me-
thodically. We aim to fill this gap by providing a comprehen-
sive analysis of nearly 800 application installers retrieved from

the most popular download portals. Because manual analysis
of such number of installers is impractical, we have to create
an automated analysis system for this purpose. While the PUP
phenomenon is not limited to a single operating system or
platform, we focus purely on Microsoft Windows, which is the
most popular operating system on desktop and laptop com-
puters with 84% market share according to Statcounter (2017) .

2.2. Pay-per-install business

One root cause for the problem of unwanted software is the
pay-per-install (PPI) business model. PPI is a monetization

scheme where a software developer or distributor gets payed

for dropping unrelated third-party applications to the target
computer. This may be done with or without the user’s
consent.

As Caballero et al. (2011) describe, there are three main ac-
tors in the PPI market: clients, PPI service providers and affili-
ates . Clients are, for example, adware vendors who want to
install their software on a large number of hosts. They pay a
commission to the PPI service provider based on the number
of successful installations. The PPI service providers are the
orchestration points in this distribution model. They charge
clients for every successful software installation and rely on

affiliates to perform those installations. Moreover, PPI service
providers implement affiliate recruitment through advertise-
ments, so that their network reaches a larger number of af-
filiates. Lastly, the affiliates are the publishers and creators
of popular applications. They wrap the application with third

party software provided by the PPI service provider. The affil-
iates are then payed by the PPI service provider based on the
number of third-party application installation they perform.
The business model is illustrated in Fig. 1 .

The PPI application installer typically downloads the third-
party software from a PPI distributor. Caballero et al. (2011)

reverse engineered protocols used by PPI distributors and

found that the choice of applications depends on the target
computer’s geolocation. Another interesting result, by Kotzias
et al. (2016) , is that while PPI distributors do spread some
known malware, this is not a very prevalent phenomenon,
probably because black-listing by anti-virus vendors would

hurt the PPI business.
Thomas et al. (2016) make the distinction between black-

market PPI, which installs third-party applications silently in

the background, and commercial PPI, which does not try to
hide the installation but rather takes advantage of the rush-
ing user behavior. In this paper, we consider commercial PPI
as well as also analyze other unwanted side effects of the in-
stallers even if not part of the PPI business.

2.3. Related work on dynamic analysis

Unattended analysis of large numbers of binaries has been

widely addressed by previous research. Some examples in-
clude Cuckoo Sandbox (Guarnieri et al., 2012), GFISandbox
(Willems et al., 2007), Drakvuf (Lengyel et al., 2014) and Bare-
Cloud (Kirat et al., 2014). These sandboxes are mostly aimed at
analyzing malware samples and are able to collect data on the
behavior of the executed binary. Most of these employ virtu-
alization, while BareCloud also supports bare-metal analysis.

As mentioned, these sandboxes are primarily meant for
the analysis of malicious software. Thus, they typically pri-
oritize stealthiness in their design. Also, from the aforemen-
tioned sandboxes, only Cuckoo Sandbox provides scripts for
automating user interaction. However, the scripts are rather
rudimentary and cannot deal with complex user interfaces.
Since our study focuses on the large-scale study of legitimate
(yet unwanted) applications that require complex UI automa-
tion, we opted for creating our own analysis system.

3. Automated application-installer
analysis system

This section describes the analysis process and the system ar-
chitecture of the analysis system. We have made the source
code of the analysis system

3 and its documentation

4 publicly
available.

3.1. Methodology overview

Our goal is to implement automated analysis of large numbers
of Windows freeware installers. For this, we need a fully auto-
mated infrastructure that automatically downloads, executes
and analyzes the application installers. From the beginning,
we decided not to do manual work and focus on improving
the automation.

On a high lever, the analysis system (1) Crawls selected

download portals for Windows freeware intallers, (2) automat-
ically runs them in guest machines with emulated user in-
teraction, (3) monitors the modifications made to the guest

3 https://github.com/albertogeniola/TheThing/tree/master .
4 http://thething.readthedocs.io/en/latest/ .

https://github.com/albertogeniola/TheThing/tree/master
http://thething.readthedocs.io/en/latest/

212 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5

Fig. 2 – Analysis system architecture.

machine as well as network communication, and (4) saves the
results for later use.

In addition to targeting a large number of installers, it-
erative development of the analysis system means that we
needed to run thousands of installers daily. Thus, the infras-
tructure must be scalable and flexible. For scalability, we rely
on a distributed architecture and take advantage of virtualiza-
tion technologies. The amount of data collected is potentially
huge, and we had to make tradeoffs to keep it under control.
The whole system is designed to be modular and to run on

multiple host platforms, with possibility of adding support for
further guest OSs.

No existing system fulfilled all the requirements, and we
opted for creating one ourselves. In particular, no existing
analysis system provides tools for the complex graphical UI
interactions required for emulating user behavior with un-
known software. Since the goal is to analyze legitimate soft-
ware installers and not viruses or worms, stealthy monitoring
is not our priority.

3.2. Analysis system architecture

The architecture of the analysis system is shown in Fig. 2 . First
of all, we implemented crawlers for selected download portals.
They retrieve installers from each site and store fetched bi-
naries together with metadata to a database. The job database
is a central point in the architecture and will also store the
analysis results. The host controller is responsible for orches-
trating the actual analysis. It handles the life cycle of the guest
machines (GM in Fig. 2), in which the installers are executed.
This essentially means that the host controller is responsible
for (1) fetching a job from the database, (2) initializing a guest
machine and serving it the installer binary, (3) pre-processing
and storing data about the installation process, and finally (4)
cleaning up the guest machine. Our implementation supports
both virtual guest machines (as in the figure) and bare-metal
guest machines. In each guest machine, there is a guest agent
(GA in Fig. 2) that receives the installer from the host controller
and drives its execution by launching it and interacting with

its UI. The agent also monitors the system for modifications
and reports these to the host controller. The network traffic to
the guest machines is routed through a network sniffer, which

captures it.
The analysis system is modular and can support any

guest OS. However, we only implemented the guest agent for

32-bit Windows 7 guest machines (64-bit support is being de-
veloped at the time of writing). The other parts of the archi-
tecture are OS agnostic. The host controller and crawler were
written in Python, and the platform-dependent parts were
isolated so that the same architecture can be run on differ-
ent hypervisors. We implemented support for Virtualbox hy-
pervisors, Openstack cloud, and even a pool of bare metal
machines. Fig. 3 illustrates some of the possible deployment
strategies. In Fig. 3 a, the whole analysis system runs on a singe
(local) server, which natively runs the crawlers, database, and

host controller. The guest machines are run as VirtualBox vir-
tual machines on the same physical host. In Fig. 3 b, the virtual
machines are moved to OpenStack cloud. This enable easy
scaling of the analysis system. In the third option (Fig. 3 c), each

guest machine is run on a dedicated physical computer. This
makes the analysis of more evasive malware easier.

It should be noted that, because the architecture allows
analyzing binaries both in virtualized as well in bare-mental
guest machines, it is also possible to analyze the same bi-
nary in different environments. This could potentially be used

to automate the analysis of evasive malware as any differ-
ences in the analysis results could be caused by some evasion

techniques.

3.3. Guest machine life-cycle management

Once the database is filled with binaries, the host controller
may start the guest machine. Before this, however, the guest
machine needs to be initialized. This, essentially, means boot-
ing the guest machine from a base image , which is a disk that
contains Windows 7 as well as the guest agent. The base im-
age from which the guest machine is booted needs to be pre-
pared before the automated analysis. It is basically just a fresh

Windows 7 installation with all required drivers installed on it
and all available updates applied to it. The only extra applica-
tion that we installed on the base image was the guest agent,
which the analysis system requires.

Cloning the base image every time a guest machine is
launched is time consuming as the image may be gigabytes
in size. Thus, the guest machines use differential file systems
on top of an immutable base image. The use of differential
file system brings several benefits. Firstly, a clean OS installa-
tion may be tens of gigabytes in size. Thus, the use of differ-
ential file system brings potentially significant performance
improvements as it removes the need to clone the entire disk
every time a guest machine is initialized (creating a new dif-
ferential file system on the other hand the requires very few

write operations). Also, it naturally reduces the need for stor-
age space thus decreasing the cost of building the analysis
system. Finally, if the analyzed applications do not perform

many writes, it is possible to store the entire differential disk
in the memory to speed up the analysis. A small differential
disk can also be stored in its entirety for later analysis. This
would not be practical without the use of differential file sys-
tem when analyzing hundreds of application.

As already discussed, the guest machines may be virtu-
alized or run on bare metal. When using the bare metal ap-
proach (depicted in Fig. 3 c) the booting process is slightly more
complicated than with virtual machines, which are easily con-
figured to use differential file systems and easy to restart as

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5 213

Fig. 3 – Different deployment strategies for the analysis system. Current implementation supports virtualized guest
machines with VirtualBox (a) and OpenStack (b), as well bare metal guest machines (c).

well as power on and off. Instead of having physical hard disks
on the bare-metal guest machines, the immutable base image
is stored on the same physical host that also runs the host
controller. The differential file system, which are attached to
the bare-metal guest machines, are created on demand by the
host controller when the guest machines are booted. The de-
tailed boot sequence for a bare-metal guest machines is fol-
lowing. First, the guest machine is configured to boot from a
USB stick, which contains a custom Preboot eXecution Envi-
ronment (PXE). The script on the PXE creates a HTTP request
to the host controller, which triggers the creation of a new dif-
ferential VHDX disk on top of the immutable base image. After
this, the host controller will expose the newly created disk to
the guest machine over iSCSI and gives the guest machine in-
structions to boot from that image. Following this, the booting
process continues as with virtual guest machines.

There are several benefits in using diskless bare-metal
guest machines. As already discussed, using differential file
system significantly increases the analysis system perfor-
mance and reduces the need for storage space thus decreasing
the deployment cost. Moreover, the diskless bare-metal guest
machines are more resilient against hardware failures. That
is, having no disks on them makes it is possible to hard-reboot
the machines without hardware hazard. On the downside, re-
lying on iSCSI requires fast network connection between the
guest and host machines. Also, the host controller has to im-
plement iSCSI target services as well as virtual disk manage-
ment services. Currently, our implementation supports this
only when the host controller runs on a Windows Server.

As far as we are aware, no other open-source bare-metal
sandbox-system has similar feature. That is, the use of differ-
ential file systems on the guest machines differentiates our
analysis system from other malware analysis sandboxes that
support bare-metal analysis (e.g. Kirat et al., 2014).

The host controller is also responsible for the end side of
the guest machines’ life-cycle. When the host controller de-
tects that an installer analysis has finished, it starts clean-
ing the guest machine. There are two different events that
may trigger the cleaning. First, if the installer process and all
subprocesses it has spawned have exited, the installation is
deemed finished. Alternatively, after 20 min timeout, the guest
agent starts sending the collected data to the host controller
and attempts to gracefully shutdown the system. If this does
not succeed, the host controller performs a hard shutdown

after 30 min. On bare-metal guest machines, the hard shut-
down was implemented with TP-Link HS100 smart plugs
through which they draw their power. This also requires en-
abling a BIOS setting that restarts the guest machine once it
regains power – this way the guest machine boots up once the
smart plug is switched on. Because the bare-metal guest ma-
chines are diskless, the hard power-off does not risk the hard-
drives.

Finally, when the results have been collected from the
guest machine and it has been powered off, the guest machine
can be initialized to analyze a new binary. If the guest machine
runs as a virtual machine, this is done through the hypervi-
sor’s APIs. With bare-metal guest machines, the differential
file systems are simply reinitialized.

3.4. Installer execution and interaction

The actual installer analysis can start after a guest machine
has been set up and started. Right after the OS has booted,
the guest agent requests an installer binary from the host
controller. This happens over a HTTP connection. The down-
loaded installer is then executed. The installer, naturally, re-
quires user attention. Therefore, we implemented a heuristic
interaction system which emulates the behavior of a lazy user
during the installation process. When the installer runs, the
guest agent detects when it is waiting for user input and then

sends the input event that is most likely to cause progress. It
does this by trying identify and rank potential buttons shown

on the UI. As an example, button-like shapes containing labels
such as “Next”, “Finish”, and “Install” are preferred over labels
such as “Cancel” or “Quit”. The UI interaction heuristics in the
guest agent were optimized for Windows; however, they could

easily be adapted to other operating systems. We explain the
UI-automation mechanisms in detail in Section 4 .

3.5. Installer monitoring

We monitored the installer throughout the installation pro-
cess. The system collects data at two different places. First,
all system modifications, including file and registry writes, are
logged within the guest machine. Second, all network traffic to
and from the guest machine is logged in the external sniffer.
We now discuss these in order.

214 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5

Table 1 – Hooked functions in ntdll and kernel32.

Library/
service

Function Use of the function

ntdll NtCreateFile Create file
ntdll NtOpenFile Retrieve handle to file
ntdll NtDeleteFile Delete file
ntdll NtSetInformationFile Alter file metadata
ntdll NtCreateKey Create key in the registry
ntdll NtCreateKeyTransacted Creates key in registry
ntdll NtOpenKey Get handle to registry key
ntdll NtOpenKeyEx Get handle to registry hive
ntdll NTClose Close file/registry handle
kernel32 CreateProcessInternalW Spawn new process
kernel32 ExitProcess Clean process resources

3.5.1. Monitoring modifications to guest machine
The level on which the system resources are monitored is a
tradeoff. Monitoring at a lower layer, closer to the hardware,
makes it more difficult for an application to evade the detec-
tion. An extreme approach would be to implement the mon-
itoring by modifying the device drivers, or when the guest
machine is virtual, in the hypervisor. That, however, would

require intimate knowledge of the underlying hardware and

associated communication protocols, and the lack of abstrac-
tions at the lower layer would reduce the quality of collected

data and make data analysis more difficult. For a suitable bal-
ance, we placed our monitoring agent between the user and

kernel-space.
We used API hooking by Microsoft Detours (Hunt and

Brubacher, 1999) to monitor the API exposed by ntdll , which

every Windows process is required to load (Faircloth et al.,
2006). (If hooking to the ntdll did not succeed for some rea-
son, the analysis system exits). Detours re-routes selected

ntdll function calls to our logging functions. More specif-
ically, the inline hooking in Detours overwrites the first in-
struction of library functions after they have been loaded

into the process memory, so that our monitoring code is exe-
cuted within the process before and after certain ntdll func-
tion calls. Thus, inline hooking can target selected processes,
which are the installers in our case.

It is not sufficient to hook ntdll functions on the installer
process that is being analyzed because installers often spawn

new processes or use Windows services. Thus, we hooked on

functions that spawn child processes and recursively applied

hooking on them. Also, we hooked to two system services, Dis-
tributed COM (DCOM) and Microsoft Installer Service (MSI),
which are often used by installers. Table 1 lists all the func-
tions on the libraries and services which the current imple-
mentation hooks on. (Future releases of the analysis system

will extend the hooking, for example, to Transaction Based

APIs, which are used in Windows 7, 8 and 10).
Since the goal is to monitor changes to the target system,

we only log data on operations with the write permission.
That is, whenever a registry or file is either opened, created or
deleted, we check whether the operation is granted write per-
mission. If so, the hooked process is blocked while the analy-
sis system logs information about the event and computes the
hash of the object that will be modified. For example, upon a

call to NtOpenFile, the system calculates the hash of the file
before the access. The later write calls (e.g. with NtWriteFile)
are not logged, thus avoiding excess data. Finally, when the file
is closed with NtClose, we again calculate the file hash. That
is, we keep track of file versions but not individual file writes.
Operations on registry keys are logged similarly: we log the
registry values when a registry key is opened and when it is
closed.

The DLL hooking is the most OS-dependent part of the
analysis system. We currently support 32-bit Windows 7, and

are developing support for 64-bit Windows 7, which are well
documented and has commonly been used for malware anal-
ysis. Nevertheless, it seems that only few adjustments would

be needed to support newer Windows versions. Similar mon-
itoring could well be implemented for Linux guest machines,
but the mechanisms and collected data formats would be
quite different.

3.5.2. Network sniffing and traffic analysis
We implemented network sniffing on an external virtual ma-
chine, which also provides basic network services (DHCP, DNS,
and NAT) for the guest machines. When using bare-metal
guest-machines, the sniffer is located on a dedicated physical
host. The sniffer logs all DNS requests and network connec-
tions from the guest machines. To gain access to encrypted

streams, we put our own root certificate on the guest ma-
chines and HTTPS proxy on the sniffer to capture all connec-
tions to port 443. Unlike other parts of the analysis system,
the sniffer was implemented on Linux, taking advantage of
its built-in networking services.

The sniffer logs all traffic with tcpdump into a pcap file.
During traffic post-processing, we use tshark to extract L3 in-
formation such as connections and peer hosts. For HTTP con-
nections, we use tcpflow to reconstruct response bodies and

downloaded files. We then calculate their hashes. We also re-
cursively calculate the hashes of files in compressed down-
loads. This provides information about the exact source of files
installed on the guest machine.

3.6. Analysis system performance

To test the performance of the system, we used it to ana-
lyze 1177 installers (we explain how the installers were cho-
sen in Section 5). Automatic execution of the analysis on the
entire input set required 36 h, using 8 virtual machines on

a single HP Proliant BL280c G6 blade server. The blade was
equipped with twin quad-core Intel Xeon e5640 processors
and 64 DDR3 GB RAM. To test scalability, the analysis was re-
peated with two identical blade servers, one running eight vir-
tual machines on Windows Server 2012 x64 and the other six
virtual machines on Ubuntu Server 10.14 x64. The latter test
required 21 h to complete, demonstrating both scalability and

multiplatform compatibility. This translates to 1 installer/min

throughput. More recent hardware (e.g. high-speed solid-state
drives) could further improve the performance of the system.

We also analyzed the same set of installers with a bare-
metal setup. More specifically, we used four DELL Optiplex 960,
each one running a single Intel Q9550 processor and having
8 GB of DDR3 memory. The machines did not have physical
hard drives. Instead, we manually configured them to boot

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5 215

Fig. 4 – CDF showing the analysis time for a single installer.

from USB flash memory sticks. In order to implement hard re-
booting of the guests, the machines drew power through TP-
Link HS100 smart plugs. A fifth DELL Optiplex 960 (with same
configuration, but with physical hard drive installed) was used

as hardware sniffer. Host controller and database were hosted

on a Fujitsu ESPRIMO D556 with 32 GB of DDR3 memory and

500 GB SSD.
Fig. 4 shows the CDFs of the analysis times with virtualized

and bare-metal systems. With the virtualized system, the av-
erage analysis time for an installer was 15 min 15 s and me-
dian 17 min 53 s. With bare-metal setup, the times were 13 min

9 s and 13 min 36 s, respectively. With both system setups,
the CDF shows a steady raise between 0–20 min after which

it bounces sharply. This is caused by the 20 min timeout, af-
ter which the system attempts to retrieve all collected data
and tries to gracefully shut down the guest machine unless
the guest agent still tries to interact with the installer.

The relatively high average analysis time is caused by the
way we monitor the completion of the installation. That is, we
monitor every process spawned by the installer and deem an

installation finished only when all of the spawned processes
have exited. However, often the installers either start the ap-
plication or open up some webpage at the end of the instal-
lation. In the worst case, this causes the analysis not to finish

before the 30 min hard timeout occurs and the guest machine
is powered off. Because of this, the analysis system should be
scaled horizontally rather than vertically, that is, by increasing
the number of guest machines instead of improving the per-
formance of the individual hardware parts. This can also be
seen by comparing our experiments done with virtualized and

bare-metal systems: while the bare-metal environment does
outperform the less powerful virtualized analysis system, in

both cases about 40% of the installers do not finish before the
timeouts.

4. Automated UI interaction

This section explains how we automated the interaction with

the installer UIs. The topic deserves its own section because
there are many GUI frameworks and we try to deal with all of
them at once.

4.1. GUI frameworks and automation

There are several GUI APIs for Windows, such as the Winforms
library in the .NET framework (Microsoft, c). There are also
multiplatform UI libraries, such as Sciter and Qt (Blanchette
and Summerfield, 2008). In Sciter, which is increasingly used

by installers, the front-end is implemented with HTML5 and

JavaScript. These libraries differ greatly from each other both

in their look-and-feel and how they function under the hood.
There are also various libraries for automating UI interac-

tions, such as the Microsoft Spy++ (Brenner, 2007) and Snoop

5 .
Some GUI frameworks, like Sciter, provide their own inspec-
tion tools, which are mainly meant for debugging.

There are two problems with these inspections tools.
Firstly, the amount of data they generate can be overwhelm-
ing. Secondly, they are specific to a particular UI framework
and cannot detect the custom controls or messaging of other
frameworks. Sciter is among the most difficult frameworks to
automate because it only registers one monolithic window to
the OS and handles all messages with an internal event han-
dler Sciter .

To summarize, no single inspection framework can provide
exhaustive information when dealing with advanced graphi-
cal interfaces. We therefore developed a more generic heuris-
tic process for automating GUI interaction, which uses im-
age processing, i.e. shape and text recognition, for identifying
UI elements in a specific window. This enables a framework-
agnostic interpretation of the GUI.

4.2. UI interaction engine

Our UI interaction engine resides inside the guest machine
where the installer is run. It automates the software instal-
lation by emulating the behavior of a habituated user. That is,
it follows the path of most obvious progress in the installation

process. In the rest of this section, we explain the details of the
process.

4.2.1. Finding the active window

The very first step performed by the engine is to check
whether the installer process under analysis is still alive. If it is
not, the engine terminates. Otherwise, it waits short moment
to allow the UI to update and then identifies all the windows
that are owned by the analyzed process. From these, the en-
gine chooses the active window and analyzes its content, as
described below.

4.2.2. Detecting when to interact
We first need to determine when a window is waiting for user
input. There is no standard technique for this. The heuristic
approach we found good is to observe when the UI becomes
stable. Installers tend to show a progress indicator to reassure
the user that work going on, but when the UI requires user in-
put, the indicator stops changing. We exploit this observation

as follows: when the active window does not change visibly
for two seconds, it is likely to be waiting for user action.

5 https://snoopwpf.codeplex.com/documentation .

https://snoopwpf.codeplex.com/documentation

216 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5

The interaction engine implements heuristic by taking pe-
riodic screenshots of the active windows, applying edge de-
tection algorithm on the image, and calculating a hash of the
processed image. The image processing is necessary to ignore
subtle changes caused, for example, by UI animations.

The UI stability detection can cause a false positive when a
single-threaded installer become stuck due to heavy process-
ing or blocked IO access. We avoid such mistakes by checking
whether the installer process is active, i.e. whether it called

the hooked ntdll functions. The ability to combine the visual
and low-level API information was one of the reasons for de-
veloping our own guest agent instead of using existing sand-
boxes.

The window stability detection is used for three purposes.
As already mentioned, it indicates when the UI is waiting for
user input. Additionally, the hashes indicate whether an inter-
action with the UI was successful: if the previous interaction

with the UI did not change it visibly, it is considered unsuc-
cessful. This may happen, for example, if the engine tries to
interact with an element that was misidentified as a button.
A different interaction can then be tried. Finally, it is possible
that the interaction with the UI goes to a loop. For example, a
Back button can cause the automation to loop back to the pre-
vious screen. These loops are also detected by comparing the
hashes of the screenshots. If the engine cannot get out of the
loop, it terminates.

4.2.3. Detecting UI elements
Once the engine deems the UI stable, it tries to detect UI ele-
ments in the active window. As mentioned above, this is not
trivial because the different frameworks handle low-level UI
messages in different ways. Thus, we opted for a hybrid ap-
proach. On one hand, we use the Microsoft UIAutomation li-
brary to list native Windows UI elements (i.e. Winforms). On

the other hand, we run our own visual recognition process to
discover the UI elements of other frameworks.

The visual recognition is illustrated in Fig. 5 b. First, the en-
gine performs image preprocessing to remove color and to
reduce the amount of detail. It then applies shape recogni-
tion (implemented with AForge.NET). The engine particularly
tries to identify quadrilateral shapes that may be buttons. We
then use OCR to extract textual information from the detected

button-like objects (implemented with Tesseract OCR). Finally,
the button positions and text data are combined with that
from UIAutomation. In case of approximate duplicates, we
prioritize the UIAutomation data because it also includes the
type of the UI element and the supported interaction patters
(e.g. whether it is a button or checkbox).

4.2.4. Selecting UI element
Once the interaction engine has detected the UI elements,
it assigns scores to them based on their position and text.
Native UI elements also have other properties such as whether
they are disabled. These scores are summed up to get the final
score for each element. The screenshot on Fig. 5 c illustrates
this with an example where the install button has received a
score 290. This value comes because the common string “ac-
cept and install” is whitelisted giving the button a value of 280.
The additional 10 points come from the location of the button:
we found that the proceed buttons are usually located on the Fi
g.

5

–
V

is
u

al

U

I
el

em
en

t
d

et
ec

ti
on

: (
a)

O

ri
gi

n
al

sc

re
en

sh
ot

; (
b)

fi

lt
er

ed

sc

re
en

sh
ot

, f
ro

m

w

h
ic

h

th

e
h

as
h

is

ca

lc
u

la
te

d
, w

it
h

sh

ap
e

re
co

gn
it

io
n

fo

r
p

ot
en

ti
al

bu

tt
on

s
(c

)
bu

tt
on

s
id

en
ti

fi
ed

by

co

m
bi

n
in

g
sh

ap
e

an
d

O

C
R

.

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5 217

Table 2 – Scoring rules for UI elements as well as the black

and whitelisted words. The last four rules are only used

with native Windows UI elements as this information is
not available when using custom UI.

Property Evaluation Score

Text on element null string -30
exact match to whitelisted string 280
partial match to whitelisted string 30
exact match to blacklisted string -280
partial match to blacklisted string -30

Position bottom right corner 10
top left corner 0
other scores interpolated

Type of element information not available 0
button 50
checkbox 15
radiobutton 15
hyperlink 10

Enabled? element is enabled 0
element is disabled -1000

Checked? checkbox/radiobutton is checked -100
checkbox/radiobutton is unchecked 50

Focused? element is focused 50
element is unfocused 0

Whitelist
next, continue, [i] agree, [i] accept, ok, install, finish, run, done, yes,
accept and install, next >

Blacklist
back, disagree, cancel, abort, exit, back < , decline, quit, minimize,
no, close, pause, x, _, do not accept, < , [forward | backward | back]
by [small | large] [amount]

bottom right of the window. The scoring rules (see Table 2)
were obtained experimentally through trial and error.

The interaction engine then chooses the element with the
highest positive score and interacts with it. If no items are
available or they all have a negative score (e.g. cancel button),
the engine repeats the inspection every three seconds until a
timeout or until all the monitored processes exit.

4.2.5. UI interaction

How the engine interacts with the chosen UI element depends
on whether the element is a native Windows UI element or
not. For native elements, the engine uses UIAutomation and

an interaction that matches the type of the element. Our cur-
rent implementation supports checkboxes, radio buttons and

regular buttons. On the other hand, if the chosen UI element
is not native, the engine simply simulates a mouse click event
over the element.

After interaction, the engine waits for a reaction from the
UI. This mimics the user behavior: the UI is expected to react
to a successful interaction. If no reaction is observed within

500 ms, the engine assumes that the interaction failed and

tries to interact with the UI element that received the next
highest score, and so on until the interaction is successful or
no elements with positive score remain. In both cases, the en-
gine then starts whole process described in this section again

from the stability detection.

Table 3 – Download portals studied in this paper.

Download Alexa Filters Down- Success-
portal rank loaded fully

Oct.2016 files analyzed

download.cnet.com 159 Win,free 200 146
softonic.com 285 Win7,free 170 126
filehippo.com 662 Win 90 64
informer.com 881 Win,free 200 117
softpedia.com 1732 Win,free 200 148
majorgeeks.com 6077 Win,free 55 37
soft32.com 7279 Win,free 200 113
brothersoft.com 8600 Win,free 41 26
manual download – – 20 15

1177 792

5. Large scale analysis of freeware installers

So far, we have described our analysis system as well as some
design and implementation decisions we made during its de-
velopment. We now report how the system was used to study
freeware installers obtained from various download portals.

5.1. Installer crawling

We chose eight download portals based on their Alexa rank-
ings (Table 3). While some of these sites also provide other
content than application downloads, the ranking gives rough

picture of their popularity and perceived trustworthiness.
Each studied download portal promotes a list of most pop-

ular applications on its front page, except Softpedia which

promotes recent downloads. We decided to focus on the pro-
moted applications and set a crawler to download up top 200
installers from each portal. When possible, it applied a filter
for 32-bit Windows freeware. With some portals, there were
fewer than 200 actual downloads, mainly because of the limi-
tations of the web interface. Table 3 summarizes portals cho-
sen for our study and the number of downloaded files.

In addition to crawling, we also manually downloaded in-
stallers for the most popular freeware applications directly
from the developers’ websites. We used Alexa rankings of top

freeware applications as well as Google Trends for the most
popular searches that include the words “software download”.
The manual download was done to compare the behavior of
the installers from shareware authors with those provided by
the download portals. However, it should be emphasized that
we only downloaded 20 installers manually.

5.2. Automated installer analysis

As discussed in Section 3 , the analysis system supports both

bare metal and virtualized guest machines. We conducted this
study with with guest machines running on VirtualBox, which

ran on a Windows Server 2012 host machine in a local data
center. Table 4 lists the software that the system used at the
time of analysis.

Our UI automation engine was not able to automatically
finish every installer properly. First, 10% of the crawled files
failed either because the application was not an installer in

218 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5

Table 4 – Used software platforms and libraries.

Node Software Version

component

Host controller 1 Operating system Windows 2012 R2
std 6.3.9600 (x64)

Host controller 2 Operating system Ubuntu server
14.04 (x64)

Host controller Crawling Python 2.7 (x32) scripts
1 and 2 Database PostgreSQL 9.5 (x64)

Logic Python 2.7 (x32)
Hypervisor VirtualBox 5.0.18 (x64)

+ SDK

Sniffer Operating system Ubuntu server
14.04 (x64)

Packet capture Tcpdump 4.5.1
MitM proxy MitM proxy 0.17

Guest machine Operating system Windows 7 pro SP1
6.1.7601 (x32)

API hooking Microsoft Detours
Express 3.0 (x32)

Guest agent Runtime .NET Framework 4.0
Image processing Aforge 2.2.5
OCR Tesseract 3.0.2

the first place (e.g. a stand-alone application) or because of
missing hardware, software dependency, product key, or a
similar reason. Additionally, 23% of the installers failed be-
cause the automated UI interaction was not smart enough.
The reason was mostly complex interaction, such as selecting
directory to which the program should be installed. Another
reason was that the installer used some other language than

English. The high percentage of successful installers (67%) is
the result of iterative improvements to the UI automation and

other parts of the analysis system.
The results discussed in the rest of this paper were ob-

tained from the 792 installers completed successfully. Of these
files, 751 were unique. We nevertheless consider even the in-
stallers with the same hash as distinct because some down-
load portals have in the past served identical installers for sev-
eral applications 6 . In these cases, the installer executable de-
termined the further files to download and install based on its
own filename.

6. Results

We present the results of our analysis in two parts.
Section 6.1 describes what we can learn simply by look-
ing at the files served by the download portals. Then,
Section 6.2 presents the results of dynamic analysis. All the
results are based on the 792 installers that were successfully
executed. Some of the results are not directly related to se-
curity but are of general interest and serve as background

information.

6 CNET’s downloader VT report available at https://virustotal.
com/it/file/9961ebc9782037f68b73096bcff3047489039d6dc5c089
f789b3dbff4109e21b/analysis/ .

While we have published some of these results ear-
lier (Geniola et al., 2017), the discussion presented here is more
comprehensive than what has been published earlier.

6.1. Static properties of the installers

This section describes some of the basic properties of the an-
alyzed installers.

6.1.1. Analyzed applications
We first compare the applications promoted on different por-
tals. This helps to understand the data and is interesting in it-
self. We manually grouped the different versions of the same
applications. Table 5 shows the overlap in applications at dif-
ferent portals. The number of distinct applications served by
each portal is on the diagonal.

Our first observation is that the portals serve quite differ-
ent sets of applications. Those promoted by CNET, FileHippo,
Informer and Soft32 overlap the most. On the other hand, Soft-
onic and Softpedia tend to promote applications that are not
on the other portals. In the case of Softpedia, the reason may
be that it does not promote the most popular software but the
latest downloads. Finally, some portals use only the last week’s
downloads for the popularity ranking. This metric is suscepti-
ble to manipulation and short-term fluctuation, e.g. when an

update is published. For these reasons, one has to be very care-
ful when comparing different download portals based on our
data.

6.1.2. Application signing
Our first security-related question was whether the appli-
cations are signed. Recent research showed that while mal-
ware is generally not signed, potentially unwanted programs
are (Kotzias et al., 2015). We wanted to know where software
distributed by the download portals stands.

Microsoft Authenticode is a digital signature system based

on the PKCS#7 standard for signing executable file formats
such as PE (Microsoft, a). Before executing a downloaded file,
such as installer, the operating system checks whether it is
signed by a trusted publisher. Upon the execution of the in-
staller, Windows User Account Control (UAC) shows the user a
different warning dialog depending on the signature. The dia-
log advices greater caution with unsigned installers as well as
if the signature is not trusted or is invalid. However, it should

be noted that the signature itself does not mean that the soft-
ware publisher is trustworthy: signed code might behave ma-
liciously and vice versa. It is up to the user to decide whether
she trusts the publisher.

We analyzed the downloaded executables with the
Sigcheck 7 utility. The results are shown in Table 6 .

While most of the analyzed binaries (64%) had a valid sig-
nature, 30 (3.8%) cases did not verify correctly. Publisher cer-
tificate expiration was the most common cause of failure (24
cases). Other causes were explicit revocation (1 case) and un-
trusted root certificate-authority (5 cases). The remaining 32%

of the analyzed installers were unsigned.

7 https://technet.microsoft.com/en-us/sysinternals/bb897441.
aspx .

https://virustotal.com/it/file/9961ebc9782037f68b73096bcff3047489039d6dc5c089f789b3dbff4109e21b/analysis/
https://technet.microsoft.com/en-us/sysinternals/bb897441.aspx

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5 219

Table 5 – Number of common applications served by each download portal pair. Different versions of same application

have been combined.

Brothersoft CNET FileHippo Informer MajorGeeks Soft32 Softonic Softpedia manual

Brothersoft 26 1 3 2 0 0 1 0 0
CNET 1 144 19 22 6 21 7 0 4
FileHippo 3 19 64 18 6 15 4 1 4
Informer 2 22 18 117 7 14 3 0 5
MajorGeeks 0 6 6 7 35 3 1 0 1
Soft32 0 21 15 14 3 112 6 2 2
Softonic 1 7 4 3 1 6 125 2 0
Softpedia 0 0 1 0 0 2 2 148 0
manual 0 4 4 5 1 2 0 0 15
distinct files 26 146 64 117 37 112 126 148 15

Table 6 – Signature verification of analyzed installers.

Verification outcome # .EXE # .MSI # Total

Signed and verified 486 23 509
Verification Error 26 4 30
Unsigned 239 14 253

Interestingly, there were differences between the down-
load portals. CNET, FileHippo and informer had about 80% cor-
rectly signed code while Soft32, Softonic and Softpedia had

lower rates (62%, 61%, 44%, respectively). The rest appeared to
belong to the latter group, but there were too few installers
for a fair comparison. The high percentage of signed files in

three of the four most popular download sites seems to indi-
cate that there is value for the publishers in code signing even

though the portals do not require it.

6.1.3. Installer ages
Software requires maintenance over the time. The new ver-
sions may add missing features, but they also patch discov-
ered security vulnerabilities and other bugs. Thus, software
age may be an indication of how seriously the publisher or
portal take security. To map the situation, we investigated the
age of the software in the crawled portals.

Given a binary file, there are a few ways of detecting its
age. One possibility is to simply look at its metadata, relying
on the last indicated modification date. Binary files also con-
tain the timestamp of the linking process, added directly by
the compiler, in the PE header. While that information may
be accurate in most of the cases, there is at least a theoreti-
cal possibility of tampering. Instead of relying on information

in the binary files themselves, we chose to use the first-seen
date from VirusTotal 8 . Our assumption is that popular soft-
ware tends to be submitted to VirusTotal soon after release.
Although the first-seen date does not precisely tell how old a
binary file is, it gives an indication of when the software began

spreading more widely.
Table 7 depicts results of aging analysis for each portal. The

overall observation is that much of the popular freeware is not

8 https://virustotal.com/en/about/ .

Table 7 – Age in days of crawled binary files. Minimum

age for each portal was zero days.

1 st q Median 3 rd q Max

Brothersoft 38.25 953 1735.5 2978
CNET 28 111 428 3504
FileHippo 27.75 159.5 925.5 3397
Informer 187 604 1054 3329
MajorGeeks 6 8 279 3184
Soft32 81 574 1356 3528
Softonic 252.25 722.5 1487 2793
Softpedia 9 18 25 2806
manual 5.5 117 393 3328

frequently updated, and many installers are several years old.
This can be a cause for concern.

The collected data shows that CNET, MajorGeeks and Soft-
pedia serve relatively recent software installers while the rest
of the portals serve considerably older binaries. In addition to
the actual age of the software, the results could be explained

by differences in which software the sites promote and the
type of software that each portal distributes. For instance,
there may be value to archiving popular legacy software that is
no longer updated. But even considering such alternative ex-
planations, we can still assert that the most popular download

site CNET distributes relatively recent software. Its installer
ages aligned closely to those of manually downloaded files,
which can serve as a reference metric.

For more insight into the versions of applications dis-
tributed by different portals, we manually compared the ver-
sion numbers reported in the UI (e.g. in About menu) by those
applications that are served by multiple portals. As shown in

Fig. 6 , Informer and Softonic clearly fail in providing latest
build versions while CNET, FileHippo, Majorgeeks and Soft32
perform generally better. The others have too few samples to
judge.

6.2. Dynamic analysis of installers

This section prents results from the dynamic execution and

monitoring of the installers.

https://virustotal.com/en/about/

220 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5

Fig. 6 – Version comparison between applications provided

by multiple portals.

Table 8 – Breakdown of network traffic (inbound and out-
bound), total for all analyzed installers.

Transport layer Application protocol MB (%)

TCP HTTP 6567.84 95.22
SSL 328.63 4.76
others 1.25 0.02

6897.72 99.25
UDP UPnP 18.03 34.51

SSDP 17.25 33.02
DNS 4.39 8.40
others 2.90 5.55
unknown 9.67 18.52

52.24 0.75
ICMP 0.01 0.00
Total 6949.96 100

6.2.1. Network traffic analysis
The sniffed traffic was analyzed with the Tshark and Bro pro-
tocol analyzers. We also implemented custom Python scripts
for extracting further information.

We begin the discussion by looking at the network proto-
cols (Table 8). Most of the traffic is HTTP and HTTPS over TCP
(99%). The most frequent UDP packets were for UPnP, SSDP and

DNS services. Our script was unable to classify some of the
UDP packets. Manual investigation revealed that such traffic
mainly belongs to the BitTorrent protocol, legitimately used

by torrent-based installers. In three cases we identified JSON

encoded text over UDP, used by content-sharing applications
for advertising the system on the local network. The 360 Total
Security installer used a variant of the GVSP video streaming
protocol. In the end, we were not able to classify 2.91 KB of UDP
traffic generated by PC Manager-Setup , possibly due to custom

binary encoding or encryption.
There are a few possible explanations for why HTTP is

the preferred protocol. First, it usually enjoys best firewall
traversal, even in restricted networks. Second, there are many
stable and free HTTP client libraries available to developers,
which provide one-line file download functionality and thus

Fig. 7 – HTTP downstream traffic breakdown by top

domains. The cyan bars (right) represent downstream

traffic volume, while the red bars (left) indicate the number
of installers that contacted the domain. (For interpretation

of the references to color in this figure legend, the reader is
referred to the web version of this article.)

can speed up the development process of installers. Third, it
is easy to move the HTTP server end to a content distribution

network (CDN) for high availability and elasticity. This purpose
is confirmed by the download site analysis, presented in Fig. 7 ;
more than 80% of the HTTP downstream traffic is downloaded

from well-known CDNs. Akamai and Google are the two most-
contacted ones.

The high number of experiments contacting Google could

indicate that many installer authors benefit from its value-
added services such as user tracking and demographic data. In

fact, 23 installers made least one HTTP request for the Google
Analytics web beacon. Moreover, 29 installers downloaded the
Google Analytics JavaScript library. This typically happens as
the last step of the installation process when the installer
opens a readme page with the user’s default web browser. In

these cases, the shareware author gets Google Analytics data
on the users.

We reassembled and inspected the HTTP streams for bi-
nary content. Table 9 shows the results. Executable files and

binary payloads constitute most of the traffic. This indicates
that many of the installers (348) behave as install-time down-
loaders. To see if there is a clear distinction, we plotted the in-
staller binary size and the downloaded traffic volume in Fig. 8 .
We have visually classified the installers into three classes:
downloaders, installers that call home but do now download

significant amounts of data, and stand-alone installers. (It
should be noted that even the installers that did themselves
generate any network traffic are shown to send 14 bytes of
traffic. This is because Windows 7 makes a single HTTP re-
quest at the startup, in order to test the Internet connectivity).

6.2.2. Man-in-the-middle vulnerability
As seen in Section 6.2 , installers tend to download binary
files over insecure HTTP connections. These files are either

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5 221

Table 9 – HTTP downloads by MIME type.

MIME type Downloaded # Installers
data (MB)

application/x-dosexec 1879.17 96
application/octet-stream 1808.99 227
application/vnd.ms-cab-
compressed

475,02 25

application/gzip 462.82 11
application/zip 267.32 32
application/vnd.ms-office 257.15 8
application/x-7z-compressed 228.09 4
application/x-bzip2 29.51 4
text/plain 16.90 787
text/html 12.33 138
others 18.13 155
Total 5455,42 788 (Distinct)

Fig. 8 – Scatter plot of installer size vs downstream traffic
volume. The points were divided to the three classes based

on visually observed grouping.

installed on the user’s computer or executed within the instal-
lation process, possibly with high system privileges. In such

a context, it is essential that the installers authenticate the
downloaded files, e.g. with digital signature. To check if they
do that, we implemented an automated MitM attack against
the installers. This was done with a transparent HTTP proxy in

the sniffer component of the analysis system, which replaced

executable files in HTTP responses with its own. The malicious
response was sent in the following cases:

1. Request URL ended with .EXE or .MSI
2. Response MIME type matched executable or MSI
3. First bytes of the HTTP response body matched magic

numbers for EXE or MSI.

Upon successful MitM attack, a special EXE or MSI file
is served to the client. When executed, that binary simply
takes note of its running privileges and origin URL and ter-
minates. Table 10 shows how installers treated the executable
file served by the MitM attacker.

Among the 792 analyzed installers, the MitM attack was
triggered 100 times. Amazingly, more than half of the at-
tempted attacks (55%) led to immediate execution of the

Table 10 – Outcome of the MitM attacks. Executed files are
successful attacks. Saved files remained on the disk but
were not executed automatically by the installer.

Download Executed Saved Saved Removed Total
portal in temp

Brothersoft 2 0 0 0 26
CNET 11 7 0 3 146
FileHippo 5 3 2 1 64
Informer 12 3 7 1 117
MajorGeeks 4 0 1 0 37
manual 1 3 1 0 15
Soft32 10 2 3 1 113
Softonic 9 0 3 1 126
Softpedia 1 2 0 1 148
Total 55 20 17 8 792

attacker’s binary file, meaning that no authentication or in-
tegrity check was done for the downloaded binaries. Only 8
installers refused to execute the tampered file and removed it
right away. In the remaining 37 cases, the attacker’s file was
not executed, yet it was found on the disk after the instal-
lation. 17 of these were saved in temporary system folders
(subject to later removal upon system cleanup) while 20 were
in persistent file system locations, such as under the Program

Files directory. The latter cases leave the system open to a de-
layed attack when the application is used.

The MitM attack is especially dangerous because the at-
tacker’s file was always executed with the same privilege level
of the installer application. In 75 out of the 100 successful at-
tacks, the vulnerable installers require elevated privileges to
work properly.

The MitM vulnerability occurs equally in all download por-
tals. Softpedia seems to be less vulnerable because it servers
more stand-alone installers that do not download executable
files. Moreover, the highest attacker success ratio of 33% is
for the manually downloaded binaries. This suggests that the
MitM vulnerability is created by the original software authors
rather than by the portals.

There are straightforward ways of mitigating the MitM vul-
nerability. One approach would be to use HTTPS for the down-
load. Another possibility is to use asymmetric signature veri-
fied by the installer application with a static publisher public
key. Clearly, there is no good technical excuse to be vulnerable.

It is worth noticing that most of the download portals dis-
tribute installers via HTTP in the first place, and the installer
itself could be fake. The user, however, has the opportunity to
check that the installer binary is signed by the correct pub-
lisher. In comparison, the MitM attack succeeds even if the
user takes care to only execute legitimate, signed installer bi-
naries from the correct publisher.

6.2.3. File system analysis for malware drops
As explained in Section 3.5 , we collect the hashes of all files
that are temporarily or permanently stored on the guest ma-
chine as well as hashes of files reconstructed from network
traces. We looked up all the collected file hashes in VirusTo-
tal, which aggregates results from various virus scanners. This

222 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5

Table 11 – Threats ranked by VirusTotal detection rate. Some file names of the detected PUP files have been truncated.

Installer name PUP file #Positive Source

or file name name PUP MD5 hash scanner(s) #Inst Description portal

Wondershare MobileGo
for Android

rootf.apk b2ae43bd8058e31915e721154d91d306 30 1 Android rootkit Soft32

Free Video To Audio
Converter 2016

fusion.dll 731af19d29ebb9f89cbbd619d1b5d50a 17 1 PUP InstallCore CNET

videora-ipod-600-

setup.exe

videora.exe 45d66d0a292aecc2a5be955a19be699b 15 1 PUP OpenCandy Softonic

Mobogenie Installer ...Setup.exe 2d18c828217d8d48ba8d6e0753b77936 14 1 Adware Mobogenie CNET
FreeYouTubeDownloader
Setup

fusion.dll 5d2f9778dad625ca4a63e363719101e6 14 1 PUP InstallCore CNET

Free Studio fusion.dll c983e01e337523f46a80d9a25ed955f7 12 1 PUP InstallCore Soft32
Check Point Install Utility ...0061e.exe 0f6b98dd6517c69ff60630b58f521f00 12 1 PUP Montiera

toolbar
Softonic

bs_FormatFactory.exe ...B2C6B.dll 6fa248c7eff5519fb18d99d423c43978 8 1 PUP Conduit Brothersoft
PDFlite ...126C1.exe 9c08b95823479b2b5a098a854d41c77a 6 1 PUP Zugo Toolbar Softonic

Table 12 – Most representative false positive detections from VirusTotal.

File name Positive scanner(s) #Inst Description

∗.zip Tencent 76 Empty zip archive.
System.dll Bkav 11 Legitimate DLL part of NSIS framework.
vlc-2.2.4-win32.exe Baidu 3 Legitimate file belonging to Videolan player.
bass_mpc.dll Bkav, Baidu 2 Legitimate DLL part of MusePack Audio Codec.

was done two months after running the installers to leave
time for new malware variants to be detected.

The number of positive results was high (235 files) but most
of these were reported by only one scanner and, most likely,
were false positives. Only 1.3% of the installers contained files
detected as malware by six or more scanners. More impor-
tantly, majority of such the positives were labeled as PUP.
There was only one detected critical threat, and it was an An-
droid rootkit that does not infect Win32 systems.

The files with highest detection rates are listed in Table 11 .
These include three versions of fusion.dll , which belongs to the
InstallCore , an installer development kit that is considered to
bundle unwanted programs.9 Among the detected PUPs, Open-
Candy, Conduit, Mobogenie and Zugo are known to be associated

with PPI networks (Caballero et al., 2011).
The analysis shows that download portals are not used for

blatant malware distribution. The portals probably perform

scans of the binaries before publishing them. On the other
hand, the presence of PUP related to a well-known PPI net-
work supports the claims that download portals cloud have
stricter countermeasures against grayware and bundled un-
wanted applications.

We include Table 12 because it may be of interest to others
conducting similar experiments. It shows some typical false
positives from the scanners. The most interesting case is an

empty zip archive, which one scanner detected as malicious.

9 Scan report available at https://www.sophos.com/en-us/
threat-center/threat-analyses/adware-and-puas/Install&20Core/
detailed-analysis.aspx .

Table 13 – Installers bundling unrelated third party

browsers. Those marked as ∗ mentioned third party soft-
ware installation capabilities in EULA.

Product name Publisher Bundled browser

Adobe Shockwave Player ∗ Adobe Systems Inc. Google Chrome
CCleaner Piriform Ltd Google Chrome
Defraggler Piriform Ltd Google Chrome
PhotoScape ∗ Mooii Google Chrome
Recuva Piriform Ltd Google Chrome
Speccy Piriform Ltd Google Chrome
SUPERAntiSpyware Free SUPERAntiSpyware Google Chrome

6.2.4. Registry modifications
We tracked the registry modifications made by the installers
and analyzed changes to the following:

– Automatic program startup

– Default browser
– Browser plugins

There are many ways for a program to start automatically
in Windows including registry keys and specific file system

folders (Microsoft, 2006). We found that 88 installers (12%) con-
figured the installed software to automatically run at system

startup.
Similar analysis was done on default browser changes:

26 installers replaced the default browser. Interestingly, 11
of these are not browser installers. Table 13 reports the de-
tails. Google Chrome turned to be the only third-party browser
installed by non-browser installers. Manual investigation of

https://www.sophos.com/en-us/threat-center/threat-analyses/adware-and-puas/Install&20Core/detailed-analysis.aspx

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5 223

Table 14 – Third-party plugins dropped on IE.

Portal #Installers Toolbar Menu BHO Total %

extension

Brothersoft 26 2 0 4 6 23.1
CNET 146 4 7 7 18 12.3
FileHippo 64 7 0 9 16 25.0
Informer 117 4 1 7 12 10.3
MajorGeeks 37 0 0 0 0 0.0
Soft32 113 2 0 4 6 5.3
Softonic 126 1 1 2 4 3.2
Softpedia 148 1 0 3 4 2.7
manual 15 1 0 2 3 20.0
Total 792 22 9 38 69

the recorded screenshots revealed that, in all cases, Google
Chrome installation is optional but pre-selected by default. We
also looked at the EULAs proposed by such installers. At the
time, EULAs for Piriform (Piriform, 2016) and SuperAntiSpyware
(Support.com, 2014) failed to mention bundled software; nei-
ther is there an obvious technical reason that justifies browser
installation. Some other installers did mention the presence
of third party software offers. This suggests that there is a
monetization scheme between Google and the software ven-
dors which bundle Google Chrome (or earlier Google Toolbar)
in their applications. Such scheme shares common character-
istics with the PPI business model.

Our analysis continued with the inspection of installed

third party browser modules. We focused on Internet Explorer
(IE), which was the only browser installed by default on the
fresh Windows 7 guest machine. There were 69 registry mod-
ifications regarding browser extensions by 38 installers. As
shown in Table 14 , the predominant type of installed exten-
sion is the Browser Helper Object (BHO), which is the most pow-
erful and potentially most dangerous IE component type be-
cause it runs in the same memory context as the browser and

has access to the user’s browsing data (Esposito, 1999).
In the case of browser extensions, there were differences

between the portals. MajorGeeks installers did not bundle any
browser plugins, and Softpedia registered a total of just 4
dropped items over 148 installers (2.7%). Softonic and Soft32
had also relatively low rates. CNET and Informer, on the other
hand, dropped considerably more browser plugins, and File-
Hippo topped the league with 25% drop rate. Interestingly,
even manual downloaded installers bundled browser plugins.
This could indicate that the plugins are bundled by the origi-
nal software vendors and not by the portals. Some portals may
actually be selective against such bundling.

6.2.5. Installer best-practices compliance
Microsoft advises vendors to follow certain best practices
for installers (Microsoft, d). Firstly, each installed application

should provide a consistent uninstall feature. For this, the in-
staller should populate two registry keys on the system, one
with the program’s human-readable name and the other with

a path to the uninstaller binary. If one of these two values is
missing, removal of the application becomes cumbersome. Of
the analyzed installers, 82 failed to specify both the program

name and uninstaller path. Another 5 only stored the product
name without specifying an uninstaller binary.

Microsoft also requires installers to specify valid Product-
Name property in their metadata, which is usually placed

within the resource section of the executable file. It is exposed

to the user in a properties dialog (Microsoft, b). 174 of the an-
alyzed installers failed to provide this information.

7. Discussion

We have presented an analysis system for application in-
stallers. The system is fully automated and emulates user
input based on image processing and heuristic rules on the
UI screenshots. It supports virtualized environments, Open-
Stack data centers, and analysis on bare-metal hosts. We have
demonstrated the performance of the system by analyzing 792
freeware installers in less than 24 h on an eight-core server.
The execution time can be arbitrarily reduced by adding more
hosts or processor cores.

The most immediate limitations of the current implemen-
tation are still in the UI automation. The rules for detecting
the success and failure of the installation could be more reli-
able. Inspection of installation screenshots confirmed that the
UI engine was able to correctly automate 67% of the installers.
However, most of the analysis failures were due to incorrect
UI interactions. There clearly is still scope for improvement.

Another limitation in our system relates to detecting
whether an installation has been finished. This problem is
not trivial. We tackled this with a rather simple approach that
prefers data quality over analysis speed. That is, the system

will continue the analysis until all monitored processes (i.e.
processes spawned by the installer) have exited, or a timeout
is hit. Because of this, a number of installers did not finish be-
fore the timeout. This was caused by the fact that it is very
common for an installer either to start the application, or to
open some webpage, at the end of the installation. We are con-
fident that future improvements on this matter might drasti-
cally reduce the analysis time.

Third main limitation in the system is that it cannot accu-
rately detect whether installers’ behavior is actually wanted

or not. That is, while the system monitors the changes that
an installer does on the system, it cannot deduce whether
these changes are actually unwanted. It might be possible to
use natural language processing in order to reason what kinds
of changes the user might expect an installer to perform. This
kind of approach has earlier been demonstrated with mobile
applications (Pandita et al., 2013; Qu et al., 2014).

Like many free automated malware analysis tools, the cur-
rent system currently only supports 32-bit Windows 7 on the
guest machines. This is because of the free version of the API
hooking library we initially chose to use only supports 32-bit
Windows. We have already started to implement support for
64-bit guest machines.

In this paper, we have focused on grayware PUP and ex-
plicit changes to the system. It is possible for evasive malware
to detect the API hooking and change its behavior accord-
ingly in order to hide itself. Using bare-metal guest-machines
may enable the analysis of more evasive malware at least to
some extent. However, it should be noted that because we rely

224 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5

on well known API hooking libraries, our system is not com-
pletely stealthy even when using bare-metal guest-machines.

This research was motivated, in part, by the suspicion that
download portals might distribute malware or bundle exces-
sive amounts of unwanted programs to freeware downloads.
The analysis that we did on the 792 installers does not support
these suspicious. We did not find serious malware infections,
and the bundled PUPs seems to come mostly from the original
freeware authors.

From the security viewpoint, the most important analysis
results were:

• The median age of installers varies notably among por-
tals, and the distribute freeware versions are often not the
latest.

• Some portals host installers that bundle known PUP.
• The most common types of PUP bundled with freeware

are third-party browser plugins and the Google Chrome
browser.

• Many installers that download executable files are vulner-
able to MitM attacks that enable code injection to the client
machine.

While we make some comparisons between the portals
throughout the paper, it would not be possible to make fair
ranking of the portals regarding security or PUP. The portals
differ in the types and quantity of software available. While
Softpedia does well on all the metrics, it promotes a different
set of software than the other portals (based on recent down-
loads rather than popularity), and thus the results may not be
comparable.

8. Conclusion

The contributions of this paper are twofold. On one hand,
we have designed and implemented an automated analysis
system for software installers and applied it to a large num-
ber of freeware from download portals. On the other hand,
we demonstrate it by analyzing 792 installers with it. This
shows that the analysis system is capable for fully auto-
mated installer analysis, which includes emulating the user-
interactions required to finish installation procedure. We have
published the analysis system as well as its documentation as
open source.

The results from the 792 analyzed installers indicate that
download portals do not actively distribute known malware.
Many freeware installers, however, come bundled with un-
wanted programs and have links to PPI networks. Our most
dangerous finding related to the way how application in-
stallers download application binaries during the installa-
tion process. The integrity (or the authenticity) of the down-
loaded binaries are often not verified and, as a consequence,
several of the analyzed installers are vulnerable to man-in-
the-middle attacks that enable code injection to the client
machines.

Acknowledgments

This work was supported by Tekes as part of the DIMECC Cy-
ber Trust program and by Academy of Finland (Grant number
296693).

R E F E R E N C E S

Blanchette J , Summerfield M . C++ GUI programming with Qt4.
Pearson Education; 2008 .

Böhme R, Köpsell S. Trained to accept? A field experiment on

consent dialogs. Proceedings of the SIGCHI conference on

human factors in computing systems. New York, NY, USA:
ACM; CHI ’10; 2010. p. 2403–6 . doi: 10.1145/1753326.1753689 .

Boldt M, Carlsson B. Privacy-invasive software and preventive
mechanisms. Proceedings of international conference on

systems and networks communications, 2006. ICSNC ’06;
2006. p. 21 . doi: 10.1109/ICSNC.2006.62 .

Boldt M, Jacobsson A, Lavesson N, Davidsson P. Automated

spyware detection using end user license agreements.
Proceedings of international conference on information

security and assurance, 2008. ISA 2008.; 2008. p. 445–52 . doi:
10.1109/ISA.2008.91 .

Brenner P. Spy++ internals. Available at https:
//blogs.msdn.microsoft.com/vcblog/2007/01/16/spy-internals/ ;
2007. [Accessed on 19 July 2016].

Bruce J . Defining rules for acceptable adware. Proceedings of the
fifteenth virus bulletin conference, 2005 .

Caballero J , Grier C , Kreibich C , Paxson V . Measuring
pay-per-install: the commoditization of malware distribution.
Proceedings of the 20th USENIX conference on security.
Berkeley, CA, USA: USENIX Association; SEC’11; 2011. p. 13 .

Emm D, Unuchek R, Garnaeva M, Ivanov A, Makrushin D,
Sinitsyn F. Technical Report. IT threat evolution in Q2 2016;
2016 . Available at https://securelist.com/files/2016/08/
Kaspersky _ Q2 _ malware _ report _ ENG.pdf.

Esposito D. Browser helper objects: the browser the way you want
it. https://msdn.microsoft.com/en-us/library/bb250436
(v=vs.85).aspx ; 1999. [Accessed on 29 December 2016]

Faircloth J , Beale J , Temmingh R , Meer H , van der Walt C , Moore H .
Penetration tester’s open source toolkit. Elsevier Science; 2006 .

Geniola A, Antikainen M, Aura T. A large-scale analysis of
download portals and freeware installers, in: Lipmaa H,
Mitrokotsa A, Matulevicius R (Eds.), Secure IT Systems,
NordSec. Lecture Notes in Computer Science, vol. 10674.
Cham: Springer; 2017. doi: 10.1007/978- 3- 319- 70290- 2 _ 13 .

Good N, Dhamija R, Grossklags J, Thaw D, Aronowitz S,
Mulligan D, Konstan J. Stopping spyware at the gate: a user
study of privacy, notice and spyware. Proceedings of the 2005
symposium on usable privacy and security. New York, NY,
USA: ACM; SOUPS ’05; 2005. p. 43–52 . doi:
10.1145/1073001.1073006 .

Goretsky A . Technical Report. Problematic, unloved and

argumentative: what is a potentially unwanted application

(PUA)?; 2011 . [Accessed on 03 June 2016].
Guarnieri C, Tanasi A, Bremer J, Schloesser M. The Cuckoo

sandbox. 2012. Available at: https://cuckoosandbox.org/
Heddings L. Stop testing software on your PC: use virtual

machine snapshots instead. Available at:
http://www.howtogeek.com/206286/stop- testing- software-
on- your- pc- use- virtual- machine- snapshots- instead/ ; 2014.

Heddings L. Technical Report. Yes, every freeware download site
is serving Crapware (Here’s the proof); 2015 . Available at
http://www.howtogeek.com/207692/yes-every-freeware-
download- site- is- serving- crapware-heres-the-proof/ .

https://doi.org/10.13039/501100002341
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0001
https://doi.org/10.1145/1753326.1753689
https://doi.org/10.1109/ICSNC.2006.62
https://doi.org/10.1109/ISA.2008.91
https://blogs.msdn.microsoft.com/vcblog/2007/01/16/spy-internals/
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0006
https://securelist.com/files/2016/08/Kaspersky_Q2_malware_report_ENG.pdf
https://msdn.microsoft.com/en-us/library/bb250436(v=vs.85).aspx
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0008
https://doi.org/10.1007/978-3-319-70290-2_13
https://doi.org/10.1145/1073001.1073006
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0011
https://cuckoosandbox.org/
http://www.howtogeek.com/206286/stop-testing-software-on-your-pc-use-virtual-machine-snapshots-instead/
http://www.howtogeek.com/207692/yes-every-freeware-download-site-is-serving-crapware-heres-the-proof/

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5 225

Hunt G, Brubacher D. Detours: binary interception of win32
functions. Proceedings of the 3rd conference on USENIX

Windows NT symposium - volume 3. Berkeley, CA, USA:
USENIX Association; WINSYM’99; 1999. p. 14 . url:
http://dl.acm.org/citation.cfm?id=1268427.1268441 .

Kirat D , Vigna G , Kruegel C . Barecloud: bare-metal analysis-based

evasive malware detection. Proceedings of the 23rd USENIX

security symposium (USENIX Security 14); 2014. p. 287–301 .
Kotzias P , Bilge L , Caballero J . Measuring PUP prevalence and PUP

distribution through Pay-Per-Install services. Proceedings of
the USENIX security symposium, 2016 .

Kotzias P , Matic S , Rivera R , Caballero J . Certified PUP: abuse in

authenticode code signing. Proceedings of the 22nd ACM

SIGSAC conference on computer and communications
security. ACM; 2015. p. 465–78 .

Lengyel TK , Maresca S , Payne BD , Webster GD , Vogl S , Kiayias A .
Scalability, fidelity and stealth in the Drakvuf dynamic
malware analysis system. Proceedings of the 30th annual
computer security applications conference. ACM; 2014.
p. 386–95 .

McFedries P. Technically speaking: the spyware nightmare. IEEE
Spectr 2005;42(8):72 . doi: 10.1109/MSPEC.2005.1491233 .

Microsoft. Introduction to code signing. https:
//msdn.microsoft.com/en-us/library/ms537361(v=vs.85).aspx ;
a. [Accessed on 31 December 2017].

Microsoft. VERSIONINFO resource.
https://msdn.microsoft.com/en-us/library/aa381058.aspx ; b.
[Accessed on 05 January 2017].

Microsoft. Windows forms. Available at https://msdn.microsoft.
com/en-us/library/dd30h2yb(v=vs.110).aspx ; c. [Accessed on

23 July 2016].
Microsoft. Windows installer and logo requirements. Available at

https://msdn.microsoft.com/en-us/library/windows/desktop/
aa372825(v=vs.85).aspx ; d. [Accessed on 30 December 2016].

Microsoft. Run, RunOnce, RunServices, RunServicesOnce and

Startup. Available at
https://support.microsoft.com/en-us/help/179365/
info- run- runonce- runservices- runservicesonce- and- startup ;
2006. [Accessed on 08 December 2016].

Motiee S , Hawkey K , Beznosov K . Do windows users follow the
principle of least privilege? investigating user account control
practices. Proceedings of the sixth symposium on usable
privacy and security. ACM; 2010. p. 1 .

Pandita R , Xiao X , Yang W , Enck W , Xie T . Whyper: towards
automating risk assessment of mobile applications.
Proceedings of USENIX security symposium, 2013 .

Piriform. Software license agreement for users of CCleaner free
software. Available at
http://www.piriform.com/legal/software-license/ccleaner ;
2016. [Accessed on 28 December 2016].

Qu Z, Rastogi V, Zhang X, Chen Y, Zhu T, Chen Z. Autocog:
measuring the description-to-permission fidelity in android

applications. Proceedings of the 2014 ACM SIGSAC conference
on computer and communications security. New York, NY,
USA: ACM; CCS ’14; 2014. p. 1354–65 . url:
http://doi.acm.org/10.1145/2660267.2660287 , doi:
10.1145/2660267.2660287 .

Sciter. Embedding principles. Available at
http://sciter.com/developers/embedding-principles/ .
[Accessed on 19 July 2016].

Slade. Technical Report. Mind the PUP: top download portals to
avoid; 2015 . Available at http://blog.emsisoft.com/2015/03/11/
mind- the- pup- top- download- portals- to- avoid/ .

Statcounter. Desktop operating system market share worldwide.
Available at: http://gs.statcounter.com/os- market- share/
desktop/worldwide/#monthly- 201706- 201706- bar ; 2017.

Support.com I. Superantispyware product license terms.
Available at https://www.superantispyware.com/eula.html ;
2014. [Accessed on 28 December 2016].

Thomas K, Crespo JAE, Rasti R, Picod JM, Phillips C, Decoste MA,
Sharp C, Tirelo F, Tofigh A, Courteau MA, Ballard L, Shield R,
Jagpal N, Rajab MA, Mavrommatis P, Provos N, Bursztein E,
McCoy D. Investigating commercial pay-per-install and the
distribution of unwanted software. Proceedings of the 25th

USENIX security symposium (USENIX security 16). Austin, TX:
USENIX Association; 2016. p. 721–39 . url:
https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/thomas .

Willems C , Holz T , Freiling F . Cwsandbox: towards automated

dynamic binary analysis. IEEE Secur Priv 2007;5(2):32–9 .
Wood P , Nahorney B , Chandrasekar K , Wallace S , Haley K , et al .

Technical Report. Symantec internet security threat report
trends for 2016. Symantec Corporation; 2016 .

Alberto Geniola received the B.Sc. degree in computer engineer-
ing from University of Bologna in 2013. He spent 4 months as an

intern in the Security Lab, at UCSB, United States. He received the
M.Sc. degree in computer engineering from Polytechnic of Turin,
Turin, Italy, in 2017. During his master studies, he made a research

visit to Aalto University in 2017, where he wrote his thesis about
unattended analysis of freeware binaries. He currently works as a
cloud engineer at Revevol SARL, Milan (Italy).

Markku Antikainen received the M.Sc. degrees in security and

mobile computing from Aalto University, Espoo, Finland, and the
Royal Institute of Technology, Stockholm, Sweden, in 2011. In

2017, he received a Ph.D. degree from Aalto University, Espoo, Fin-
land. His doctoral thesis was on the security of Internet-of-things
and software-defined networking. He currently works as a post-
doctoral researcher at Helsinki Institute for Information Technol-
ogy, Finland.

Tuomas Aura received the M.Sc. and Ph.D. degrees from Helsinki
University of Technology, Espoo, Finland, in 1996 and 2000, respec-
tively. His doctoral thesis was on authorization and availability in

distributed systems. He is a Professor of computer science and

engineering with Aalto University, Espoo, Finland. Before joining
Aalto University, he worked with Microsoft Research, Cambridge,
U.K. He is interested in network and computer security and the
security analysis of new technologies.

http://dl.acm.org/citation.cfm?id=1268427.1268441
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0017
https://doi.org/10.1109/MSPEC.2005.1491233
https://msdn.microsoft.com/en-us/library/ms537361(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa381058.aspx
https://msdn.microsoft.com/en-us/library/dd30h2yb(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa372825(v=vs.85).aspx
https://support.microsoft.com/en-us/help/179365/info-run-runonce-runservices-runservicesonce-and-startup
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0020
http://www.piriform.com/legal/software-license/ccleaner
http://dl.acm.org/citation.cfm?id=1268427.1268441
https://doi.org/10.1145/2660267.2660287
http://sciter.com/developers/embedding-principles/
http://blog.emsisoft.com/2015/03/11/mind-the-pup-top-download-portals-to-avoid/
http://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-201706-201706-bar
https://www.superantispyware.com/eula.html
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/thomas
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30279-7/sbref0025

