Castagnoli, E.; Marik, T.; Mikkola, R.; Kredics, L.; Andersson, M. A.; Salonen, H.; Kurnitski, J.
Indoor Trichoderma strains emitting peptaibols in guttation droplets

Published in:
Journal of Applied Microbiology

DOI:
10.1111/jam.13920

Published: 01/11/2018

Document Version
Peer reviewed version

Please cite the original version:
Indoor *Trichoderma* peptaibol exudate

Indoor *Trichoderma* strains emitting peptaibols in guttation droplets

E. Castagnoli¹, T. Marik², R. Mikkola¹, L. Kredics², M.A. Andersson¹,³, H. Salonen¹ and J. Kurnitski¹,⁴

1 Department of Civil Engineering, Aalto University, Espoo, Finland
2 Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
3 Department of Food and Environmental Science, Helsinki University, Helsinki, Finland
4 Tallinn University of Technology, Tallinn, Estonia

Correspondence
Emmanuelle Castagnoli, Aalto University, Department of Civil Engineering, Rakentajanaukio 4, 02150 Espoo, Finland
E-mail: emmanuelle.castagnoli@aalto.fi.

ABSTRACT

Aims
The production of peptaibols, toxic secondary metabolites of *Trichoderma*, in the indoor environment is not well-documented. Here we investigated the toxicity of peptaibols in the guttation droplets and biomass of *Trichoderma* strains isolated from problematic buildings.
Indoor *Trichoderma* peptaibol exudate

Methods and Results

Seven indoor-isolated strains of *T. atroviride*, *T. trixiae*, *T. paraviridescens* and *T. citrinoviride* were cultivated on malt extract agar, gypsum boards and paperboards. Their biomass extracts and guttation droplets were highly cytotoxic in resting and motile boar sperm cell assays and in inhibition of somatic cell proliferation assays. The toxins were identified with HPLC/ESI-MS/MS as trichorzianines, trilongins, trichostrigocins and trichostrigocin-like peptaibols. They exhibited toxicity profiles similar to the reference peptaibols alamethicin, trilongins, and trichorzianine TA IIIc purified from *T. atroviride* H1/226. Particular *Trichoderma* strains emitted the same peptaibols in both their biomasses and exudate droplets. The trilongin-producing *T. citrinoviride* SJ40 strain grew at 37°C.

Conclusions

To our knowledge, this is the first report of indoor-isolated *Trichoderma* strains producing toxic peptaibols in their guttation droplets.

Significance and Impact of the Study

This report proves that indoor isolates of *Trichoderma* release peptaibols in their guttation droplets. The presence of toxins in these type of exudates may serve as a mechanism of aerosol formation for nonvolatile toxins in the indoor air.

KEYWORDS

moulds, mycotoxins, environmental, ecotoxicity, fungi
Indoor *Trichoderma* peptaibol exudate

INTRODUCTION

The excess of moisture resulting from water damage of buildings may change the typical diversity of indoor microbiota where *Penicillium* and *Aspergillus* are the usual dominant fungal genera (Nielsen 2003). Species like *Trichoderma* can grow on wet wooden materials and plywood colonized by other fungi, thus being indicators of high moisture content in buildings (Gravesen *et al.* 1999; Samson 2008; Andersen *et al.* 2011; Druzhinina *et al.* 2011; Kubicek *et al.* 2011; Mikkola *et al.* 2012; Mukherjee *et al.* 2013).

The presence of fungi indoors increases the risk of human infections by inhalation of viable fungal fragments and small conidia (≤ 4 µm) moving from the building structure to the indoor air (Airaksinen *et al.* 2004; Straus *et al.* 2009). Human pathogenic infections caused by *Trichoderma* have been increasingly reported in the literature (Mikkola *et al.* 2012, Hatvani *et al.* 2013). *Trichoderma longibrachiatum* and *T. citrinoviride* are the most frequently reported clinically relevant *Trichoderma* species.

Exudation is a well-known phenomenon of plants and fungi. Fungal exudation may occur during mycelial growth and is suggested to be a mean to expel waste-products or an available water-reservoir (Gareis and Gottschalk 2014; Hutwimmer *et al.* 2009). Fungal exudates contain proteins, mycotoxins (toxic secondary metabolites) and exhibit enzymatic activities (Gareis and Gareis 2007). However, further studies are needed to determine the exact composition of exudates, the specific roles of exudation, and to examine whether exudates are possible carriers of toxins in the indoor air.

Peptaibols form a group of bioactive secondary metabolites, mainly produced by *Trichoderma* species, with antibacterial, antiviral and antifungal activities (Panizel *et al.* 2013). They have a structure composed of peptides of 5 to 20 amino acids including α-amino-isobutyric acid (Aib), an acetylated N-terminus and an amino alcohol at the C-terminus (Bohemen *et al.* 2016; Leitgeb *et al.* 2007). A single *Trichoderma* species may produce up to five different types of peptaibols,
Indoor *Trichoderma* peptaibol exudate

while different *Trichoderma* species may produce the same peptaibols (Hermosa et al. 2014). Even though peptaibols are known for their specific effect in biomembranes, their roles remain unclear (Mukherjee et al. 2010). Trilongins produced by indoor *Trichoderma* strains were shown to form potassium and sodium selective channels in artificial biomembranes (Mikkola et al. 2012).

Boar semen bioassays are capable of detecting toxins which disrupt cation homeostasis by affecting the function of the plasma membrane (Vicente-Carrillo 2018). These bioassays have been used for screening the toxicity of indoor samples and exhibited high sensitivity for screening toxins like peptaibols (Andersson et al. 2010; Peltola et al. 2004). Marik et al. (2016) have shown that boar semen bioassays were more sensitive than lung cells when screening peptaibol toxicity.

The pathogenic potential, production of toxic metabolites and emission mechanisms of *Trichoderma* peptaibols in the indoor environment are poorly understood. To the best of our knowledge, the secretion of peptaibols in exudated guttation droplets of *Trichoderma* has not yet been reported in the literature. The aim of this study was to investigate the presence and toxicity of peptaibols in the extract of biomass and the exudates of *Trichoderma* strains isolated from buildings where occupants reported indoor air related symptoms.

MATERIALS AND METHODS

Fungal strains. The *Trichoderma* strains were isolated from five buildings located in different Finnish cities where occupants reported indoor air related symptoms and illnesses. Sampling details of the collected material, dust and air samples are shown in Table 1.

Material samples from exhaust air filter, mineral wool, and pieces of cork liner (between inner and outer ceiling) were collected in sterile plastic bags. Pieces of material samples (ca. 1 cm × 1 cm) were spread on malt extract agar (MEA) plates (15 g malt extract from Sharlab, Spain,
Indoor *Trichoderma* peptaibol exudate

and 12 g of agar from Amresco, USA, in 500 ml of H₂O). Dust samples were swept from surfaces (ca. 30 x 30 cm²) above floor level (1 to 2 m) with a sterile paper tissue. Floor dust was collected with a vacuum cleaner (Volta Equipt with Volta Equipt vacuum bags), the dust was removed from the vacuum bag with a sterile disposable spoon and placed into a sterile plastic bag. The dust (ca. 10 mg) was spread with a sterile cotton swab on MEA plates. Air samples were collected with six-stage Andersen Impactor on MEA plates during 10 min at 1 m above the floor level, and with MEA fallout plates kept open 1 hour at 1 to 1.5 m above the floor level (Andersen 1958).

MEA culture plates were inoculated, sealed and cultivated at 22ºC for four weeks. Fungal colonies suspected to belong to the genus *Trichoderma* based on colony morphology and the characteristic conidiophores visible in the light microscope were rapidly screened for toxicity and the toxic colonies were pure cultured on MEA plates.

Extraction of ethanol-soluble compounds from biomasses and collection of guttation droplets from MEA-cultured *Trichoderma* isolates. Fungal biomass (ca. 100 mg wet wt) containing hyphae and conidia (no guttation droplets visible under UV light in stereomicroscope, 160 × magnification) was extracted with ethanol, as described by Andersson *et al.* (2010), after two weeks of incubation at 22ºC of the MEA plates.

Exudate vesicles fluorescent under UV light appeared on MEA plates after one week of incubation, at the beginning of sporulation. Exudates with a volume of 1 to 5 µl were collected under UV light (360 nm), mixed with an equal volume of ethanol (96 %, all the chemicals were purchased from local suppliers) and heated for 10 min at 80ºC in a water bath. The exudates collected from MEA plates into glass ampules, 20 µl to 200 µl per plate, contained no hyphae or conidia when inspected with phase contrast microscope (Olympus CKX41, Tokyo, Japan. 400 × magnification). The ethanol-soluble compounds from biomasses and exudate suspensions were used to expose the test cells in the toxicity assays.
Indoor *Trichoderma* peptaibol exudate

Cultivation and extraction of *Trichoderma atroviride* colonies grown on gypsum board and paperboard. Purchased pieces of gypsum boards and paperboards of 25 cm² were autoclaved, saturated with sterile water and inoculated with conidia of *T. atroviride* strains 14/AM, H1/226 and H3/226 (200 µl of phosphate buffered saline, PBS, containing ca. 10⁶ conidia ml⁻¹). The inoculated paperboards and gypsum boards were incubated at room temperature for four weeks inside Petri dishes sealed with gas-permeable tape. The Petri dishes were inspected weekly under stereomicroscope and sterile water was added to maintain the moisture content of the gypsum boards and paperboards. Twenty to 50 mg (wet wt) of collected fungal material (including conidia, hyphae and guttation droplets) from the *T. atroviride* strains 14/AM, H1/226 and H3/226 cultivated on gypsum boards and paperboards for two to four weeks were extracted with ethanol as described by Andersson *et al.* (2010).

Identification of fungal strains. The suspected *Trichoderma* strains were deposited in the Szeged Microbiology Collection (http://www.szmc.hu). Total DNA was extracted from the strains’ cultures grown on yeast extract - glucose agar medium (0.5 g l⁻¹ yeast extract, 10 g l⁻¹ glucose and 20 g l⁻¹ agar) using the GenElute Plant Genomic DNA Miniprep Kit (Sigma-Aldrich, St. Louis, MO, USA). A nuclear rDNA region containing the internal transcribed spacers 1 and 2 (ITS 1 and 2) and the 5.8S rRNA gene was amplified with primers ITS1 (5’-CCGTAGGTAAACCTGCGG-3’) and ITS4 (5’-TCCTCCGCTTATTGATATGC-3’) (Naeimi *et al.* 2011, White *et al.* 1990), while a fragment of the translation elongation factor 1 alpha (*tef1*) gene was amplified with primers EF1-728F (5’-CATCGAGAAGTTCGAGAAGG-3’) and TEF-LLErev (5’-AACCTGCGCAATGTGG-3’) (Jaklitsch *et al.* 2015). PCR amplifications were carried out in a MJ Mini Personal Thermal Cycler (Bio-Rad, Hercules, CA, USA) with the following temperature profiles: ITS - initial denaturation of two min at 94°C, 35 cycles of 30 sec at 94°C, 40 sec at 48°C, 40 sec at 72°C, and a final extension of two min at 72°C; *tef1* - initial denaturation of one min at 94°C, 30 cycles of one min at 94°C, one min at 59°C, 50 sec
Indoor *Trichoderma* peptaibol exudate

at 74°C, and a final extension at 74°C for seven min. The ITS and *tef1* amplicons were sequenced by Sanger sequencing with the ITS4 and EF1-728F primers, respectively on a 3500 Series Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). Sequence analysis was carried out with the aid of the programs *TrichOkey* 2.0 and *TrichoMARK* available online at http://www.isth.info/ (Druzhinina *et al.* 2005; Kopchinskiy *et al.* 2005).

Toxicity assays with resting and motile boar spermatozoa.

Motility of boar sperm can be reversibly induced by warming to 37 °C with oxygen availability (mimicking the short-lasting behavior of sperm cells during physiological condition inside the female) - or switched off by anoxia and cooling to room temperature (not induced to swim and rest, mimicking the long-lasting behaviour of sperm cells inside the male) (Kamp *et al.* 2003). Both resting (indicated with the subscript capital R) and motile (indicated with the subscript capital M) sperm cells were used in the toxicity assays.

Boar sperm motility inhibition assay with resting spermatozoa (BSMIr). The BSMIr assay measuring motility inhibition, i.e. inability to respond to induction of motility in resting sperm cells exposed for one day at room temperature, is described in Andersson *et al.* (1998). For testing the motility inhibition of the sperm cells, the test compounds were dissolved in ethanol. The ethanol solutions (0.5 – 10 µl) were dispensed in 2000 µl of extended boar semen (Figen Ltd., Tuomikylä, Finland, density of 27×10^6 sperms ml$^{-1}$) and motility of the sperms was inspected using the phase-contrast microscope (400 × magnification) with a heated stage as described by Andersson *et al.* (2004). The EC$_{50}$ concentration for motility inhibition was concluded as the toxin concentration closest to that provoking a > 50% decrease in the number of sperm cells exhibiting rapid tail beating, visible in microscope by the human eye as sperm cells with two tails, compared with the sperm cells in the solvent control as described in Bencsik *et al.* (2014). The EC$_{50}$ was calculated from the equation of the straight line between EC$_{50-40}$ and EC$_{80-90}$: $Y = -\Delta Y/\Delta X \times X + C$ where Y is the motility closest to 50% of the motility of the
Indoor *Trichoderma* peptaibol exudate

solvent control, X is the EC$_{50}$ concentration and C is a constant between 100 and 60%. All tests were run in triplicates and differences between replicate tests were within one dilution step (2-fold). The sperm assays were calibrated with triclosan and valinomycin.

Sperm membrane integrity disruption assay with resting spermatozoa (SMID$_R$). The SMID$_R$ assay, measuring intactness of the plasma membrane integrity in resting sperm cells, applies double staining with the DNA labelling stains PI and Hoechst 33342. PI cannot penetrate the intact plasma membrane of viable sperm cells, but binds to dsDNA emitting red fluorescence in sperm cells with disrupted plasma membrane integrity. Hoechst 33342 penetrates living cells with intact plasma membrane integrity, binds to intact dsDNA and emits blue fluorescence. The staining protocol was as follows: 200 µl of extended boar semen containing 27 x 106 sperm cells ml$^{-1}$ was mixed with 200 µl PBS containing 10 µg ml$^{-1}$ PI and 10 µg ml$^{-1}$ Hoechst 33342.

Mitochondrial membrane potential assay with resting spermatozoa (Ψ$_{mR}$). The ΔΨ$_{mR}$ assay monitored the mitochondrial membrane potential changes (ΔΨ$_m$) by staining with the lipophilic potentiometric dye JC-1 as described by Mikkola *et al.* (2015).

For the staining with PI plus Hoechst 33342 or JC-1, the sperm cells were incubated at 37°C for 15 min and five min, respectively, and inspected with fluorescence microscope using 400 × magnification (Nikon Eclipse E600, Nikon Corporation, Tokyo Japan) with filters BP330-380nm/LP400 nm and BP 450-490nm/ LP 520. The EC$_{50}$ concentration in these microscopic assays was defined as the lowest concentration where the ratio of cells similar to those in the solvent control was less than 50%. This EC$_{50}$ fitted between EC$_{90}$ and EC$_{10}$ observed in the microscope calculating ca. 100-120 sperm cells from three microscopic fields. The maximal difference between four parallel tests in each of the two methods was one dilution step. The assays were calibrated with triclosan.
Indoor *Trichoderma* peptaibol exudate

Boar sperm motility inhibition assay with motile spermatozoa (BSMI_M). Boar sperm motility inhibition assay exposing motile sperm cells to dilutions of the biomass extracts and exudates at 37°C for 20 min was performed as follow: aliquots of 200 µl of extended boar semen were exposed to 0.5 µl, one µl and two µl of ethanol-soluble compounds from ten-fold dilutions of biomass extracts or exudates. Estimation of the ratio of motile spermatozoa compared to the control and calculation of EC₅₀ was done as in the BSMIR assay described above.

Sperm membrane integrity disruption assay with motile spermatozoa (SMID_M). Disruption of sperm cells membrane integrity in motile sperm cells exposed at 37°C for two hours was assessed by staining with PI as described by Bencsik *et al.* (2014) with modifications. Aliquots of 50 µl PBS were pipetted into a microtiter plate. Ethanol-soluble compounds from biomasses or guttation droplets (50 µl) of *Trichoderma* strains were added to the first column of the microtiter plate, serially diluted to 2⁹, and extended boar cell aliquots (150 µl) were added to the wells. The possible autofluorescence of the toxins was excluded by measuring no fluorescence emission of the crude extracts (50 µl of the crude extracts solved in 150 µl of PBS). PBS was used as a blank reagent. Three parallel dilutions were performed for each sample. Frozen-thawed semen only exposed to ethanol was used as a positive control (100 % mortality) representing the maximal fluorescence emitted by the cells permeable to PI. Sperm cells only exposed to ethanol were used as a negative control (viable cells). The microtiter plate was pre-incubated for two hours at 37 °C on an orbital shaker (Innova 5000 New Brunswick Scientific, Enfield, CT, USA) at 160 rpm. A volume of 100 µl PI solution (10 µg ml⁻¹) was added to each well of the microtiter plate. The plate was incubated for 15 minutes at 37°C in the dark. Fluorescence was measured with a microplate reader (Fluoroskan Ascent, Thermo Scientific, Vantaa, Finland) at excitation and emission wavelengths of 544 nm and 590 nm, respectively.
Indoor *Trichoderma* peptaibol exudate

Loss of viability i.e. mortality (permeability to PI) in the samples was calculated as described by Alm *et al.* (2001) using the following equation:

\[
\text{Loss of viability of sample (\%)} = \frac{\text{fluorescence of sample} - \text{background fluorescence of dead control} - \text{background}}{\text{fluorescence of dead control} - \text{background}} \times 100
\]

The toxicity reported as EC$_{50}$ (the half maximal effective concentration) corresponded to the concentration causing a 50 % decrease in mortality compared to the positive control (= 100 % mortality). The lower is the EC$_{50}$ value the more toxic is the substance. The assay was calibrated with triclosan in five parallel tests, the EC$_{50}$ was two \(\mu\text{g ml}^{-1}\) (SD ± 0.6).

Toxicity assay with somatic cell lines. The inhibition of cell proliferation (ICP) assay with kidney tubular epithelial cells (PK-15) and feline fetus lung cells (FL) (FL and PK-15, Finnish Food Safety Authority, EVIRA, Finland) and the determination of EC$_{50}$ concentrations followed the methods described by Bencsik *et al.* (2014).

Rapid toxicity screening of single colonies with boar sperm and somatic cell lines. For initial toxicity screening, 10 – 20 mg of biomass (wet wt) from each colony on the original culture plates was looped into 0.2 ml of ethanol and heated in a water bath for 10 min at 80 °C (Andersson *et al.* 2004). Porcine spermatozoa (BSMIM) and kidney tubular epithelial cells (ICP, PK-15) were exposed to the obtained ethanolic lysates, which were considered toxic when 2.5 vol% inhibited boar sperm motility or five vol% inhibited proliferation of PK-15 cells.

Identification and purification of peptaibols. The ethanol-soluble toxic compounds from biomasses and guttation droplets of the *Trichoderma* isolates were identified with high-performance liquid chromatography/electrospray ionization - tandem mass spectrometry (HPLC/ESI-MS/MS) performed with an Esquire ion trap mass spectrometer (Bruker Daltonik, Bremen, Germany) equipped with ESI source and Agilent 1100 series liquid chromatography (Agilent Technologies, Wilmington, Del., USA). The liquid chromatography column was
Indoor *Trichoderma* peptaibol exudate

SunFire C18, 2.5 μm × 2.1 mm × 50 mm (Waters, Milford, MA, USA). Separation of the toxins was performed with gradient elution using eluents A (0.1% formic acid) and B (methanol). Gradient elution was from 60% A to 100% B in 30 min at a flow rate of 0.2 ml min⁻¹. Positive mode mass analyses were performed in the mass range of m/z 50-2000. Alamethicin was used as a reference compound. HPLC fractions of the ethanol extract of *T. atroviride* H1/226 were collected as described in Mikkola et al. (2012). The toxicity of the fractions were tested using boar sperm assays.

RESULTS

Species diversity of *Trichoderma* in the sampled buildings. *Trichoderma atroviride* was the most frequently isolated *Trichoderma* species (six out of 11 strains) in the five buildings sampled in Finland (Table 1). The other isolated *Trichoderma* species were *T. trixiae*, *T. paraviridescens* and *T. citrinoviride*. Strain *T. citrinoviride* SJ40 (and the reference strain *T. longibrachiatum*) grew at 37°C which suggests possible pathogenic potential.

Exudates and biomass extracts of MEA-cultured *Trichoderma* contained toxic metabolites. The presence of toxic metabolites in the biomass and exudate of selected MEA-cultured *Trichoderma* strains representing each species (Table 1) was tested by motility inhibition (BSMIₘ assay), disruption of sperm plasma membrane integrity (SMIDₘ assay) of motile boar sperm and inhibition of cell proliferation (ICP) with feline fetus lung cells (FL) and porcine kidney cells (PK-15).

The ethanol-soluble compounds from biomasses (Table 2) and the exudates (Table 3) were over 50 times more toxic than the exudates and extracts from the non-toxic reference strains representing the upper limits of nonspecific response in the assays. The lowest EC₅₀ values recorded in the BSMIₘ and the SMIDₘ assays were two to 10 times smaller, respectively, than in ICP (FL, PK-15) assays. Thus, the toxic metabolites were more toxic to sperm cells than...
Indoor *Trichoderma* peptaibol exudate

somatic cells, inducing visible motility inhibition after 20 min (BSMM assay) and rapid necrotic cell death in sperm cells exposed for two hours (SMIDM assay). The different *Trichoderma* isolates exhibited uniform toxicity profiles in the three toxicity assays and similar responses were provoked by the ethanol-soluble compounds from biomasses and by the exudates. The toxicity profiles were comparable to the biomass extract of the trilongin-producing reference strain of *T. longibrachiatum*.

Toxigenic colonies of *T. atroviride* cultured on paperboards and gypsum boards emitted airborne exudate vesicles and conidia. Colonies of *T. atroviride* H1/226, H3/226 and 14/AM cultivated on building material substrates were visible after two to four weeks of incubation (e.g. *T. atroviride* 14/AM, Fig. 1). When cultured on paperboards and gypsum boards, the colonies of strain 14/AM contained big exudate vesicles compared to cellular biomass (Fig. 1B and C). The colonies emitted exudate vesicles and conidia capable to attach to the inner surface of the lid of the plastic Petri dish (Fig. 1 D, E and F). Figure 1 shows that the potentially mycoparasitic *T. atroviride* 14/AM colonized paperboard without underlying fungal growth and colonies on paperboard were capable of airborne emission of exudate vesicles and conidia.

Biomass extracts of *Trichoderma* cultured on building materials and MEA revealed similar toxicity profiles. Toxicity of the ethanol extracts (from hyphae, conidia and guttation droplets) of H1/226, H3/226 and 14/AM cultured on building materials was tested towards somatic cells (ICP, PK-15) and resting boar spermatozoa (motility induction: BSMIR, mitochondrial depolarization: ΔΨmR and sperm plasma membrane integrity disruption: SMIDR assays). The same protocol was applied for the MEA-cultured strains, the difference being that the extracts contained hyphae and conidia only (no exudate visible under stereomicroscope; Leica M25, Leica Microsystems, Mannheim Germany; from 50 to 120 × magnification).

Fluorescence micrographs of Figure 2 illustrate the sperm cells exposed to ethanol control (Fig. 2 A and B) and extracted compounds from *T. atroviride* 14/AM grown on gypsum board (Fig.
Indoor *Trichoderma* peptaibol exudate

2 C and D) in the resting boar sperm assays. The ethanol-exposed sperm cells capable of mutility induction after one day of exposure in non-motile resting conditions exhibited a high mitochondrial membrane potential (ΔΨm) indicated by the orange fluorescence of the mitochondrial sheath in the midpiece of the sperm tail (Fig. 2 A) and intact plasma membrane emitting blue fluorescence (impermeable to propidium iodide (PI) in the SMID_R assay, Fig. 2 B). At four µg ml⁻¹ the ethanol extract from biomass of *T. atroviride* 14/AM grown on paperboard inhibited motility induction and the immobilized sperm cells exhibited depolarized mitochondria as indicated by the green fluorescing mitochondrial sheath (Fig. 2 C) and disrupted plasma membrane integrity permeable to PI (red fluorescence, Fig. 2 D).

The toxicity endpoints obtained in the ICP assay (PK-15) and the three resting sperm assays (BSMI_R, SMID_R and Ψm_R) are summarized in Table 4. Sperm cells were still capable of motility induction, i.e. exhibited motility and showed high mitochondrial membrane potential (ΔΨm) and intact plasma membrane integrity after exposure to 50 µg ml⁻¹ ethanol-extracted substances from biomass of the reference strain *Penicillium* sp. TR grown on gypsum board, representing the upper limits of non-toxic responses.

The EC₅₀ values of the *Trichoderma* crude extracts from colonies grown on building materials and MEA were 10 times lower in the three resting sperm assays (BSMI_R, SMID_R and Ψm_R) than in the ICP assay and 10 times lower than for the reference strain TR. Thus, boar sperm cells were 10 times more sensitive to the toxins present in the extracted biomasses of *T. atroviride* H1/226, H3/226 and 14/AM than the somatic cell lines (ICP, PK-15) (Table 4).

The compounds extracted from biomasses grown on MEA and building materials exhibited similar toxicity profiles in the ICP (PK-15) and resting boar sperm assays (BSMI_R, SMID_R and Ψm_R) as the reference toxins trilongin and alamethicin, concentrations inhibiting sperm motility also depolarized mitochondria and disrupted the integrity barrier of the plasma membrane (Table 4).
Indoor *Trichoderma* peptaibol exudate

The toxic metabolites were identified as peptaibols. The toxic metabolites produced by the indoor-isolated *Trichoderma* strains were identified as peptaibols with HPLC/ESI-MS/MS analysis (Fig. 3). The peptaibols of strains H1/226, H3/226, 14/AM and Tri335 present in the ethanol-soluble compounds from biomasses and exuded guttation droplets were identified as trichorzianines (Tables 2, 3 and 4). Strains SJ40 produced trilongins in the ethanol-soluble compounds from biomasses and guttation droplets (Tables 2 and 3). Ethanol-soluble compounds from biomass and exudate of strain LB1 contained trichostrigocin-like peptaibols which resembled trichostrigocins of strain Sip335 except that the C-terminus of the trichostrigocin-like peptaibols contained phenylalaninol, whereas the C-terminus of trichostrigocins contained leucinol (Table 2 and 3).

HPLC/ESI-MS/MS analyses showed that peptaibols were present in the ethanol-soluble compounds from biomasses and exudates of the indoor-isolated *Trichoderma* strains. Moreover, the *Trichoderma* isolates produced the same peptaibols in the ethanol-soluble compounds from biomass, as in the corresponding exudate. Results in Tables 2 and 3 show that the crude extracts and the exudates, containing trilongins, trichorzianines and trichostrigocins were more toxic in the boar sperm assays BSMIM and SMIDM than in the ICP assays, exhibiting the same toxicity profile as the commercial peptaibol alamethicin.

Trichorzianine TA IIIc purified from biomass extract of *T. atroviride* H1/226 exhibited similar toxicity profile as purified trilongin and alamethicin. Over 10 sperm-toxic HPLC fractions, identified as trichorzianine peptaibols, were found in the ethanol-soluble compounds from the biomass of *T. atroviride* H1/226. The trichorzianines identified with MS/MS analysis were TA IIIb (MW=1948), TA IIIc (MW=1948), TA VII (MW=1923), TA IVb (MW=1962), TA VIb (MW=1909) and TA VIa (MW=1937), similar to the ones described earlier for *T. atroviride* by Stoppacher et al. (2007). The fraction containing the known voltage-dependent
Indoor *Trichoderma* peptaibol exudate

channel producer trichorzianine TA IIIc (MW=1948) reported by Molle *et al.* (1987) was selected for further toxicity assays (Table 4). In the ICP (PK-15) and resting boar sperm assays (BSMI_R, SMID_R and Ψm_R) the toxicities of the purified trichorzianine TA IIIc were 20-fold and 100-fold, respectively, of the toxicity of ochratoxin A (upper limit of non-specific response), thus resting boar sperm assays were the most sensitive to detect the toxic trichorzianine TA IIIc. Concentrations of 0.2 µg ml\(^{-1}\), 0.4 µg ml\(^{-1}\) and 0.5 µg ml\(^{-1}\) of alamethicin, trilongin and trichorzianine TA IIIC, respectively, inhibited sperm motility, depolarized mitochondria and depleted the plasma membrane integrity. These toxic responses differ from those provoked by the mitochondrial toxins enniatin and acrebol which had no effect on plasma membrane at motility-inhibiting concentrations. The toxic response of TA IIIc also differed from that exhibited by sterigmatocystin which was 1000 times more toxic in the ICP (PK-15) assay than in the resting sperm assays (BSMI_R, SMID_R and Ψm_R). The toxicity actions of the purified trichorzianine TA IIIc were similar and comparable to the potassium channel-forming peptaibols trilongins and alamethicin, indicating that trichorzianine TA IIIc induces the same toxicity mechanism.

DISCUSSION

According to our information, this is the first report of indoor-isolated *Trichoderma* strains producing peptaibols in their exudates. They were identified by HPLC/ESI-MS/MS as trichorzianines, trilongins, trichostrigocins and trichostrigocin-like peptaibols. Moreover, the same peptaibol was present in the biomass extract (hyphae and conidia) and the exudate of the corresponding *Trichoderma* isolates (MEA-cultivated).

The trichorzianines produced by *T. atroviride* strains were previously described from *T. atroviride* and *T. harzianum* (Stoppacher *et al.* 2007; Panizel *et al.* 2013). From a forest soil isolate of *T. strigosum*, Degenkolb *et al.* (2008) isolated and identified trichostrigocins similar
Indoor *Trichoderma* peptaibol exudate
to the ones detected in this study from *T. paraviridescens* and *T. trixiae*. Mikkola *et al.* (2012) showed that trilongins were also produced by clinical and indoor isolates of *T. longibrachiatum*. Only a few studies have reported the presence of toxins in fungal exudates. Gareis *et al.* (2007) described that *Penicillium* species (obtained from culture collection) secreted a high concentration of mycotoxins in their exudates. Toxic trichothecenes were detected in the exudates of indoor *Stachybotrys chartarum* isolates, and it was suggested that these toxins might be easily released into the environment by the aerosolization of toxic guttation droplets, which could be favoured by ventilation or air-conditioning systems (Gareis and Gottschalk 2014). Recently, Salo *et al.* (2015) showed that indoor-isolated *Penicillium expansum* produced exudates containing toxic chaetoglobins and communesins.

Exudates and biomass extracts (hyphae + conidia) of *Trichoderma* isolates cultivated on MEA substrates were highly cytotoxic (Table 2 and 3). They exhibited a toxicity pattern similar to the biomass extract of *T. longibrachiatum* SzMC Thg producing channel-forming trilongins and to alamethicin produced by *T. arundinaceum* (Degenkolb *et al.* 2008; Mikkola *et al.* 2012). Moreover, the biomass extract (hyphae + conidia + exudate) of *Trichoderma* cultivated on building materials contained substances exhibiting the same toxicity profile as *Trichoderma* cultivated on laboratory medium MEA (hyphae + conidia) and as the purified peptaibol trichorzianine TA IIIc (Table 4). As expected, the peptaibol trichorzianine TA IIIc purified from strain H1/226 exhibited the same toxicity pattern as its peptaibols relative’s alamethicin and trilongins and new peptaibols recently detected in forest-derived *Trichoderma* isolates from section *Longibrachiatum* (Mikkola *et al.* 2012; Marik *et al.* 2017). Resting and motile boar sperm assays were more sensitive for the screening of *Trichoderma* peptaibols than inhibition of cell proliferation (ICP) assay with somatic cells. Disruption of sperm cell membrane integrity (SMIDM) is very sensitive for the detection and assessment of the risk of exposure of mammalian cells to *Trichoderma* peptaibols (Peltola *et al.* 2004; Marik *et al.* 2017; Mikkola *et al.* 2012).
Indoor *Trichoderma* peptaibol exudate

McMullin *et al.* (2017) also reported membrane disruption of *Fusarium sambucinum* spores by trichorzianine-like peptaibols isolated from indoor *T. atroviride*. In Nordic countries, negative-pressure is commonly used to prevent moisture damage of buildings. Airaksinen *et al.* (2004) reported that a negative-pressure of 5-20 Pa in buildings enables fungal spores below four µm to penetrate structures. Thus the small-sized conidia of *Trichoderma* may become more easily distributed in the indoor air. In this study we observed that *T. atroviride* grown on building materials was capable of airborne emission of conidia and exudate vesicles.

Immunocompromised patients exposed to these fungal pathogens via – e.g. their conidia, can develop peritonitis or systemic infections (Kuhls *et al.* 1999; Druzhinina *et al.* 2011; Kredics *et al.* 2004; Kubicke *et al.* 2008; Naeimi *et al.* 2011). Thus, humans may experience pulmonary mycoses or pathogenic infections triggered when exposed to potentially pathogenic strains like *T. citrinoviride* SJ40, isolated from an indoor settled dust sample (Hoog 1996).

If *Trichoderma* grows inside building structures, the risks of respiratory exposure due to the leaks caused by negative pressure are larger. Although most of the *Trichoderma* isolates identified in this study were either *T. atroviride* or *T. trixiae*, the total number of isolates was not sufficient to conclude on species predominance in problematic buildings in Finland. Isolates identified as *T. atroviride* and *T. citrinoviride* have earlier been reported also from water-damaged buildings in Denmark and Canada (Lübeck *et al.* 2000; McMullin *et al.* 2017). The species *T. paraviridescens* and *T. trixiae* were described during the recent revision of the *T. viridescens* species complex (Jaklitsch *et al.* 2013), thus, even though these species are widely distributed, they have rarely been reported under their new names and only from outdoor samples (Błaszczyk *et al.* 2016; Braithwaite *et al.* 2017).

This is the first report of indoor *Trichoderma* isolates emitting toxic metabolites (peptaibols) in their exudated guttation droplets when growing on building materials or laboratory medium.
Indoor *Trichoderma* peptaibol exudate

Moreover, the same peptaibols were detected in the ethanol-soluble compounds from biomass and the exudate of the same cytotoxic *Trichoderma* strain. Based on the results of this study we speculate that the toxin productions of indoor fungi in guttation droplets may serve as a mechanism of aerosol formation from nonvolatile toxins in the indoor air. Further studies are needed to determine the chemical composition and structure of the exudates, to examine their behaviour and to determine the possible indoor transport mechanisms.

ACKNOWLEDGEMENTS

The authors warmly thank Riikka Holopainen at the Finnish Food Safety Authority (EVIRA) for providing the feline fetus lung and porcine kidney cells. Henri Gustavson, Liisa Hakamies-Blomqvist, Lauri Sipilä and Johanna Salo are thanked for providing some of the indoor samples. The authors warmly thank the Academy of Finland (TOXICPM 289161), Tekes – the Finnish Funding Agency for Innovation (grant 4098/31/2015) and the National Research, Development and Innovation Office, Hungary (grant NKFI K-105972) for funding this research. LK is grantee of the János Bolyai Research Scholarship (Hungarian Academy of Sciences).

CONFLICT OF INTEREST

No conflict of interest declared.

REFERENCES

Indoor *Trichoderma* peptaibol exudate

Braithwaite, M., Johnston, P. R., Ball, S. L., Nourozi, F., Hay, A. J., Shoukouhi, P., Chomic, A., Lange, C., Ohkura, M., Nieto-Jacobo, M.F., Cummings, N.J., Bienkowski, D., Mendoza-
Indoor *Trichoderma* peptaibol exudate

Indoor *Trichoderma* peptaibol exudate

http://dx.doi.org/10.1038/nrmicro2637

Gareis, M. and Gareis, E-M. (2007) Guttation droplets of *Penicillium nordicum* and *Penicillium verrucosum* contain high concentrations of the mycotoxins ochratoxin A and B.

Indoor *Trichoderma* peptaibol exudate

http://dx.doi.org/10.3767/003158513X672234

http://dx.doi.org/10.1530/rep.0.1260517

http://dx.doi.org/10.1556/AMicr.51.2004.3.6

http://dx.doi.org/10.1631/jzus.B0860015

Indoor Trichoderma peptaibol exudate

the ancestral life style of Trichoderma. *Genome Biol* 12, R40. http://dx.doi.org/10.1186/gb-2011-12-4-r40

Indoor *Trichoderma* peptaibol exudate

http://dx.doi.org/10.1111/febs.12010

Indoor *Trichoderma* peptaibol exudate

589 http://dx.doi.org/10.3390/md11124937

593 http://dx.doi.org/10.3920/978-90-8686-722-6_5

596 http://dx.doi.org/10.1002/rcm.3301

598 http://dx.doi.org/10.1177/0748233709348287

600 http://dx.doi.org/10.1111/bcpt.12994

Indoor *Trichoderma* peptaibol exudate

http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1
Indoor *Trichoderma* peptaibol exudate

Table 1 Characterization of the *Trichoderma* strains isolated from five buildings in Finland.

<table>
<thead>
<tr>
<th>Species</th>
<th>Code</th>
<th>Location</th>
<th>Sampling description</th>
<th>Potentially pathogenic?*</th>
<th>ITS (GenBank)</th>
<th>tef1α (GenBank)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. atroviride</td>
<td>KIV10</td>
<td>School (Lahti)</td>
<td>Fallout plate</td>
<td>2 m above the floor</td>
<td>-</td>
<td>Awaiting acc. No.</td>
</tr>
<tr>
<td>T. paraviridescens</td>
<td>Sip335</td>
<td>Office (Espoo)</td>
<td>Settled dust</td>
<td>Vacuum cleaned floor</td>
<td>-</td>
<td>Awaiting acc. No.</td>
</tr>
<tr>
<td>T. trixiae</td>
<td>LB1</td>
<td>Apartment (Helsinki)</td>
<td>Settled dust</td>
<td>Bookshelf 1.5 m above floor</td>
<td>-</td>
<td>Awaiting acc. No.</td>
</tr>
<tr>
<td>T. trixiae</td>
<td>NJ14</td>
<td>Ice rink (Nivala)</td>
<td>Settled dust</td>
<td>1.5 m above floor</td>
<td>-</td>
<td>Awaiting acc. No.</td>
</tr>
<tr>
<td>T. trixiae</td>
<td>NJ22</td>
<td>Ice rink (Nivala)</td>
<td>Settled dust</td>
<td>1.5 m above floor level</td>
<td>-</td>
<td>Awaiting acc. No.</td>
</tr>
<tr>
<td>T. citrinoviride</td>
<td>SJ40</td>
<td>Office (Espoo)</td>
<td>Settled dust</td>
<td>Bookshelf 1 m above floor</td>
<td>+</td>
<td>Awaiting acc. No.</td>
</tr>
<tr>
<td>Reference strain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>EU401573</td>
</tr>
<tr>
<td>T. longibrachiatum</td>
<td>SzMC</td>
<td>Apartment (Oulu)</td>
<td>Insulation material</td>
<td>Bathroom floor</td>
<td>+</td>
<td>EU401624</td>
</tr>
</tbody>
</table>

 † Reference strain; ‡ Additional location; ‡‡ Unavailable location.
Indoor *Trichoderma* peptaibol exudate

* pathogenic potential was tested at 37°C. + : potentially pathogenic. - : not potentially pathogenic; † the reference strain was identified in Druzhinina *et al.* (2008). ‡ Mikkola *et al.* (2012)
Indoor *Trichoderma* peptaibol exudate

Table 2 Toxicity of the ethanol-soluble compounds from the biomasses of *Trichoderma* strains cultured on MEA.

<table>
<thead>
<tr>
<th>Species</th>
<th>Code</th>
<th>EC$_{50}$ (µg ml$^{-1}$)</th>
<th>Exposure time</th>
<th>Somatic cell lines (ICP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EC$_{50}$ (µg ml$^{-1}$)</td>
<td>2 h</td>
<td>20 min</td>
</tr>
<tr>
<td>T. atroviride</td>
<td>H3/226</td>
<td>2</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>T. atroviride</td>
<td>14/AM</td>
<td>2</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>T. atroviride</td>
<td>Tri335</td>
<td>2</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>T. paraviridescens</td>
<td>Sip335</td>
<td>1</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>T. trixiae</td>
<td>LB1</td>
<td>2</td>
<td>2.5</td>
<td>60</td>
</tr>
<tr>
<td>T. citrinoviride</td>
<td>SJ40</td>
<td>1</td>
<td>5</td>
<td>15</td>
</tr>
</tbody>
</table>

Reference strain

T. longibrachiatum | SzMC Thg | 2 | 25 | 120 | 60 | Trilongins |

Reference toxin

Alamethicin * | 0.6 | 5 | 8 | 8 |

Non-toxic reference strain

Penicillium sp. | TR | 600 | >100 | 500 | nd. |

Aspergillus sp. | Hk2 | 600 | >100 | 500 | nd. |

nd. - no data available. * forming potassium channel
Indoor *Trichoderma* peptaibol exudate

Table 3 Toxicity of the exudates of *Trichoderma* strains cultured on MEA.

<table>
<thead>
<tr>
<th>Species</th>
<th>Code</th>
<th>SMID₅₀</th>
<th>BSMI₅₀</th>
<th>FL</th>
<th>PK-15</th>
<th>Identified peptaibol</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. atroviride</td>
<td>H3/226</td>
<td>nd.</td>
<td>10</td>
<td>>50</td>
<td>>50</td>
<td>Trichorzianines</td>
</tr>
<tr>
<td>T. atroviride</td>
<td>14/AM</td>
<td>1</td>
<td>2.5</td>
<td>>25</td>
<td>>50</td>
<td>Trichorzianines</td>
</tr>
<tr>
<td>T. atroviride</td>
<td>Tri335</td>
<td>2.5</td>
<td><10</td>
<td>>25</td>
<td>>50</td>
<td>Trichorzianines</td>
</tr>
<tr>
<td>T. paraviridescens</td>
<td>Sip335</td>
<td>nd.</td>
<td>nd.</td>
<td>nd.</td>
<td>>25</td>
<td>Trichostrigocins</td>
</tr>
<tr>
<td>T. trixiae</td>
<td>LB1</td>
<td>8</td>
<td>10</td>
<td>>25</td>
<td>nd.</td>
<td>Trichostrigocin-like</td>
</tr>
<tr>
<td>T. citrinoviride</td>
<td>SJ40</td>
<td>0.5</td>
<td>2.5</td>
<td>>25</td>
<td>>50</td>
<td>Trilongins</td>
</tr>
</tbody>
</table>

Reference strain

T. longibrachiatum
SzMC Thg
nd.
nd.
nd.
nd.
Trilongins

Non-toxic reference exudate

Aspergillus calidoustus
MH34
>50
>50
>50
>50

Aspergillus westerdijkiae
PP2
>50
>50
>50
>50

Aspergillus versicolor
SL3
>50
>50
>100
>100

nd. - no data available
Indoor *Trichoderma* peptaibol exudate

Table 4 Toxicity of the ethanol extracts from biomasses (including hyphae, conidia and exudate) of *Trichoderma* strains cultured on building material substrates, and of the purified trichorzianines TA IIIc.

<table>
<thead>
<tr>
<th>Exposure time</th>
<th>EC₅₀ (µg ml⁻¹)</th>
<th>Resting boar sperm cells exposed at RT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICP (PK-15)</td>
<td>BSMIR</td>
</tr>
<tr>
<td>Biomass grown on MEA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. atroviride H1/226</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>T. atroviride H3/226</td>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td>T. atroviride 14/AM</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Purified trichorzianine (TA IIIc) from T. atroviride H1/226</td>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>Biomass grown on paperboard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. atroviride H1/226</td>
<td>>30</td>
<td>5</td>
</tr>
<tr>
<td>T. atroviride 14/AM</td>
<td>>20</td>
<td>5</td>
</tr>
<tr>
<td>Biomass grown on gypsum board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. atroviride H3/226</td>
<td>>30</td>
<td>4</td>
</tr>
<tr>
<td>Reference strain grown on gypsum board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillium sp. TR</td>
<td>500</td>
<td>>50</td>
</tr>
<tr>
<td>Reference toxins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trilongins BI-BIV *, †</td>
<td>5</td>
<td>0.4</td>
</tr>
<tr>
<td>Alamethicin *, †</td>
<td>8</td>
<td>0.2</td>
</tr>
<tr>
<td>Enniatins B *, ‡</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>Acrebol *, §</td>
<td>≥10</td>
<td>0.1</td>
</tr>
<tr>
<td>Sterigmatocystin ¶</td>
<td>0.1</td>
<td>>20</td>
</tr>
<tr>
<td>Ochratoxin A **</td>
<td>>100</td>
<td>50</td>
</tr>
</tbody>
</table>

*Bencsik et al. 2014. † forming potassium channel; ‡ potassium carrier ionophore and mitochondrial toxins; § blocking respiratory chain in mitochondria; ¶ inhibitor of protein synthesis; ** upper limit of nonspecific response.