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Constantin Simovski1

1Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland, 2Department of Electrical
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Abstract In this paper, we theoretically and experimentally prove the possibility of the passive
electromagnetic decoupling for two parallel resonant dipoles by a split-loop resonator having the resonance
band overlapping with that of the active dipoles. We show that the replacement of the decoupling dipole
suggested in the literature as a tool for decoupling of two closely located dipole antennas by our split-loop
resonator results in the twofold enlargement of the operation band.

1. Introduction

In many radio-frequency applications, antenna arrays consist of closely located dipoles and their decoupling is

required. When the straightforward methods of decoupling (screens or absorbing sheets) are not applicable,

one often uses adaptive technique when the decoupling is achieved involving active circuitry—operational

amplifiers. However, in multi-input multi-output systems and antenna arrays for magnetic resonance imaging

(MRI) the passive decoupling is preferred (Avdievich et al., 2016; Georget et al., 2016; Hurshkainen et al., 2016;

H. Li, 2012; Q. Li, 2012; Wang et al., 2015). The keenest situation corresponds to compact arrays when the

distance d between two parallel dipole antennas is significantly smaller than 𝜆∕10, where 𝜆 is the wavelength

in the operation band (it may be, e.g., in the dipole arrays for MRI; Georget et al., 2016; Hurshkainen et al., 2016;

Padormo et al., 2016). Then, this distance is not sufficient in order to introduce an electromagnetic band-gap

structure or to engineer a defect ground state (H. Li, 2012; Q. Li, 2012; Wang et al., 2015). For passive decoupling

of the loop antennas used in MRI radio-frequency coils, one found specific technical solutions working for

densely packed arrays (see, e.g., in Avdievich et al., 2016). As to dipole arrays, the passive decoupling is realized

either involving the strongly miniaturized (and challenging in its tuning) electromagnetic band-gap structures

(Hurshkainen et al., 2016) or arrays of passive scatterers (Georget et al., 2016). However, in both these cases

the success was achieved when d ≈ 𝜆∕12, whereas in the ultrahigh field MRI there is a need in d ≤ 𝜆∕30

(Padormo et al., 2016).

A passive electromagnetic decoupling of two dipole antennas 1 and 2 separated by an arbitrary gap d has

been proposed in Lau and Andersen (2012). In this work it was analytically shown that the ideal decoupling

(coupling coefficient S12 = 0) can be achieved placing a similar dipole 3 loaded by a lumped impedance Zl in

the middle between the active dipoles. If these active dipoles are resonant, the ideal decoupling is achieved

for d = 0.1𝜆 when Im(Zl) = 0 and Re(Zl) ≈ −2 Ω, that is, the decoupling scatterer must be active (see Figure

3 of Lau & Andersen, 2012). If scatterer 3 is shortcut (Zl = 0) the decoupling condition for resonant dipoles

cannot be satisfied exactly. However, since the absolute value of the needed negative resistance is as small as

2 Ω, the shortcut dipole also decreases S12, though not up to zero. It is important to stress that this approximate

decoupling keeps true, that is, the decrease of S12 in the resonance band holds for arbitrary currents and

voltages in the feeding points of dipoles 1 and 2. In this Letter we prove that a passive split loop placed in

the gap between two active resonant dipoles also results in their true though approximate decoupling within

the resonance band. Moreover, this decoupling is more beneficial than that granted by a passive (shortcut)

resonant dipole—the operation bandwidth enlarges nearly twice due to the replacement of a dipole by a

split loop.
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Figure 1. A resonant split-loop resonator 3 located in the middle between
antennas 1 and 2.

2. Theory of Decoupling by a Split-Loop Resonator

Now let us prove that decoupling of resonant dipoles 1 and 2 located
in free space is possible with a split-loop resonator (SLR) symmetrically
located between them. Since the loop contour C comprises the gap g we
may consider the SLR as a wire scatterer. The method of induced Electro-
motive forces (EMFs) is applicable to our SLR, as well as it was applicable to
the dipole of Lau and Andersen (2012). Repeating the steps of the deriva-
tion presented in Lau and Andersen (2012) it is easy to show that the
condition of the ideal decoupling expressed by formula (6) of Lau and
Andersen (2012) for the special case when the active dipoles 1 and 3 are
decoupled by the similar dipole 2: Zl = Z13

2 − Z0Z12 (where Z0 = Z11 =
Z22 = Z33 is the self-impedance of all three dipoles) keeps the same form
in the case when the decoupling scatterer with the impedance Z0 is dif-
ferent from these dipoles. Neglecting in this equation Zl whose absolute
value is much smaller than |Z13| and |Z12|, we come to the condition of the
approximate (but true) decoupling:

Z13
2 = ZZM, (1)

that should be implemented for the structure depicted in Figure 1. Here ZM = Z12 is mutual impedance
between dipoles 1 and 2, Z is the self-impedance of our SLR, and Z13 = Z23 is its mutual impedance with
antenna 1 or antenna 2. Both Z and ZM are referred to the scatterer center—reference section located on the
solid (top) side of the loop as shown in Figure 2.

In Figure 2 we depict the side view of our structure. A primary source V1 in the center of dipole 1 induces in our
SLR 3 two current modes—an electric one Ie symmetric and an antisymmetric magnetic one Im with respect to
the plane y = 0. If the current in the reference section of the SLR, that is, at point (y = +h∕2, z = 0) is denoted
as I0, both modes have the same amplitude I0∕2 at this point, whereas they mutually cancel each other at the
gap that can be approximated by point (z = 0, y = −h∕2). The distribution of the electric dipole mode along
the SLR is similar to that in a straight wire and, therefore, can be approximated as (see, e.g., in Balanis, 2016)

fe(z) ≡ Ie(z)
I0∕2

=
sin k

(
Ll

2
− |z|)

sin kLl

2

. (2)

Contrary to the electric mode, the magnetic one is maximal at the vertical sides of the loop. This is so because
these sides are shortcuts if our SLR is considered as a two-wire line. This model of the loop results in the
following approximation:

fm(z) ≡ Im(z)
I0∕2

= ±
cos k

(
Ll

2
− |z|)

cos kLl

2

. (3)

Sign plus corresponds to the top side of the loop (y = +h∕2), sign minus corresponds to the bottom side
(y = −h∕2).

Let us calculate the mutual impedance Z13 between dipole 1 and SLR 3 applying the general formula of the
induced EMF method:

Z13 = 1
I1 ∫C

E13(l)f3(l) dl, (4)

Figure 2. The side view of the structure comprising an active dipole 1 driven by an external voltage V1 and the passive
split-loop resonator 3. Current I3 induced in the split-loop resonator is the sum of the electric Ie and magnetic Im modes.
At (y = +h∕2, z = 0) Im = Ie = I0∕2, at (y = −h∕2, z = 0) Im = −Ie = −I0∕2.
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where I1 is the current at the center of dipole 1, E13(l) is the tangential component of the electric field produced
by this primary current at a point l of the wire contour C of scatterer 3, and f3(l) = fe(l) + fm(l) is the current
distribution in scatterer 3. Decomposition of the current induced in 3 onto the electric and magnetic modes
allows us to split the right-hand side of (4) into electric and magnetic mutual impedances formed by the
coupling of the primary current I1 with the electric and magnetic modes, respectively. The antisymmetry of the
magnetic mode results in two mutually canceling EMFs induced in the top (y = +h∕2) and bottom (y = −h∕2)
sides. In the vertical sides E13 = 0. Meanwhile, the equivalent EMFs corresponding to the electric mode sum
up and (4) is simplified to

Z13 = 2
I1

Ll∕2

∫
−Ll∕2

E13

(
z, y = h

2

)
fe(z) dz. (5)

This formula describes the mutual impedance of two effective dipoles, one of which is dipole 1 length Lw , and
the other one is one half of the SLR, for example, its top side L1. The problem of Z13 yields to the symmetric
mutual coupling of two parallel dipoles of different lengths. We use the integral formula of King et al. (2002)
which allows us to rewrite (5) as

Z13 = 𝜂

2𝜋

Ll∕2

∫
−Ll∕2

fe(z)
sin k

(
Ll

2
− |z|)

sin kLl

2

F(z, 𝛿) dz. (6)

Here 𝜂 = 120𝜋 Ω is free space impedance and it is denoted

F(z, 𝛿) = e−jkr+

r+
+ e−jkr−

r−
− 2 cos

kLw

2
e−jkr

r
,

r =
√

z2 + 𝛿2, 𝛿 =
√
(h∕2)2 + (d∕2)2, and values r+ and r− are distances from two ends of dipole 1 to the

integration point:

r− =

√(
Lw

2
− z

)2

+ 𝛿2, r+ =

√(
Lw

2
+ z

)2

+ 𝛿2.

The result of the integration in (6) can be presented in the closed form even in the present case Ll ≠ Lw (see,
e.g., in Elliot, 1981). However, we will obtain a simpler expression for Z13 suitable for our purpose.

Namely, let us assume that both dipole 1 and SLR 3 resonate at the same frequency and the decoupling holds
in their resonance band. The resonance of dipole 1 holds when Lw ≈ 0.496𝜆 and in our SLR the loop induc-
tance resonates with its capacitance. Assuming the capacitance of the gap g to be negligibly small (i.e., correct
if r0 ≪ g ≪ Ll), we may calculate the inductance of our rectangular loop using formulas of Kalantarov and
Tseitlin (1986) and its capacitance using formulas of Yossel et al. (1981). Choosing as an example Lw = 500
mm and r0 = 1 mm (then the resonance band of dipoles 1 and 2 centered by the resonance frequency can be
specified as 290–310 MHz), we fit the resonance band of the SLR to that of the dipoles when h = 10 mm and
Ll = 290 mm.

Since in this case Ll is noticeably smaller than 𝜆∕2, the sinusoidal current distribution (2) can be replaced by its
quadratic approximation fe(z) = 1−

(
2z∕Ll

)2
. This formula seems to be rough, but it is even more accurate (at

least when Ll < 𝜆∕3) than the commonly adopted sinusoidal approximation (2) which is not smooth at z = 0.
Substitution of the quadratic approximation into (6) and variable exchanges Ll∕2±z → 𝜉 yield the right-hand
side of this relation to a linear combination of following integrals:

J1 =

Ll
2

∫
−Ll

2

e−jk
√
𝜉2+a2√

𝜉2 + a2
d𝜉,

J2 =

Ll
2

∫
−Ll

2

𝜉
e−jk

√
𝜉2+a2√

𝜉2 + a2
d𝜉,
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and

J3 =

Ll
2

∫
−Ll

2

𝜉2 e−jk
√
𝜉2+a2√

𝜉2 + a2
d𝜉,

where a is a constant independent on 𝜉. Integrals of types J1−3 were calculated using the simplest variant of
the stationary phase formula (see, e.g., in Bleistein & Handelsman, 1975). In all these integrals the stationary
phase point centers the integration interval, whereas the contributions of the ends of this interval (points
𝜉 = ±Ll∕2) cancel out in the final expression. This is not surprising because the dipole mode current nullifies
at the edges of the SLR.

The stationary phase method is adequate because Lw is large enough and function F(z) is oscillating. Skipping
all involved but very simple algebra, the result takes form:

Z13 ≈
𝜂Ll

3𝜋

[
kLwe−jk𝛿

4
√

2𝜋𝛿
− cos

kLw

2

kLwe−jkΔ

2
√

2𝜋Δ

]
. (7)

Here it is denoted Δ =
√
(Lw∕2)2 + 𝛿2. Further simplification results from the resonant length of our dipoles

kLw = 𝜋. The term with Δ in (7) vanishes and we obtain

Z13 ≈
𝜂Lle

−jk𝛿

24
√

2𝜋𝛿
. (8)

Now let us calculate the input impedance Z of an individual SLR entering (1). At frequencies near the reso-
nance where the reactance is negligibly small, the input impedance is equal (neglecting the Ohmic losses) to
the radiation resistance RSLR. This radiation resistance is a simple sum of Rel —that of a Hertzian dipole with
effective length Leff (see, e.g., in Balanis, 2016)

Rel =
𝜂

6𝜋
(kLeff)2 (9)

and Rmag —that of a magnetic dipole with effective area Seff (see, e.g., in Balanis, 2016)

Rmag = 8𝜋𝜂
3

(k2Seff)2. (10)

Parameter Leff characterizes the distribution of the electric mode and Seff (magnetic mode) are easily found
via simple integration of fe and fm that gives in our example case Leff ≈ Ll and Seff ≈ Llh. Then, (9) and (10) for
our example case give the radiation resistance of the resonant SLR RSLR = Rel + Rmag =≈ 70Ω. The resonant
impedance of a half-wave dipole is also nearly equal R0 =70 Ω (Balanis, 2016). Therefore, it is reasonable
to assume that the input impedance Z of an individual SLR at frequencies near its resonance is practically
equal to that of the resonant dipole and can be approximated as Z ≈ R0(1 + 𝛽𝛾), where 𝛽 ≈ 59 and 𝛾 =
(𝜔 − 𝜔0)∕𝜔0 is relative detuning (Kazempour & Begaud, 2001). Substituting this approximation for Z, (8) for
Z13 and ZM ≈ (𝜂∕24𝜋kd) exp (−jkd) for two resonant half-lambda dipoles (McConnell, 1989) into (1), we obtain
the decoupling condition as

R0𝜂

24𝜋kd
e−jkd(1 + 𝛽𝛾) =

(
𝜂Ll

24

)2
e−2jk𝛿

2𝜋𝛿2
. (11)

In the case h ≪ d 𝛿 ≈ d∕2 and complex exponentials cancel out that reduces (11) to the simplest equation
from which we find the detuning 𝛾 corresponding to the decoupling

𝛽𝛾 =
(
𝜂kL2

l ∕dR0

)
− 1. (12)

For d = 30 mm (in this case h = d∕3) and Ll = 290 mm, (12) yields 𝛾 ≈ 0.0423 that implies the decoupling at
the upper edge of the resonance band—at 312.8 MHz. Meanwhile, using a passive resonant dipole we have
obtained 𝛾 ≈ 0.007, that is, the decoupling holds at 302.8 MHz. In both cases the decoupling holds in the
resonance band of the active dipoles.
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Table 1
Values of Parameters Used in Simulation and Experiment

Parameter r0 L1 Lw h g

Value (mm) 1 290.2 500 7 30

3. Validation of the Theory and Discussion

Numerical investigations of S12 parameter are calculated using CST Studio for dipoles 1 and 2 performed of
a copper strip printed on FR4 substrate (with the width of 5 mm and the length of 500 mm). Each dipole is
split in its center and a lumped port is inserted in the gap and simulated in the absence and presence of ideal
matching circuits tuned at the frequency of decoupling. Simulations were done in the absence of our SLR
(reference structure) and in its presence. For the reference case, simulation shows that the resonance holds
at exactly 300 MHz and S12 for the mismatched and matched cases is equal −6 and −4 dB, respectively. In
our simulations for the matched case we used the virtual matching circuitry with schematic toolbox of CST
Microwave Studio. Namely, for d = 30 mm the decoupling at frequency 312.8 MHz is achieved with the values
tabulated in Table 1 for the antennas and SLR:

Also, in these simulations we took g = 30 mm that is not specified by the theory but satisfies its assumption
r0 ≪ g ≪ Ll .

Numerical result of transmission/reception of the antennas in the mismatched and matched cases are shown
in Figures 3 and 4, respectively. After adding the SLR, the decoupling frequency was taken exactly equal to
that predicted by our theory (312.8 MHz) and the geometric parameters offering the decoupling at these
frequency turned out to be surprisingly close to those predicted by our theory.

Alongside with the transmission/reception response of the structure, we calculated the radiation efficiency
and the system radiation pattern in the reference case and in the case when the decoupling SLR is present.
In these calculations, one dipole antenna is active and the second one is loaded by 50 Ω resistance (any
impedance connected to the centers of two antennas keeps their decoupling condition satisfied). The radi-
ation efficiencies of the active dipole in the reference and decoupled structures are equal (−0.26) and
(−2.29) dB, respectively. The difference (−2) dB is expected because the mutual resistance of two parallel
dipoles is negative and in the decoupled structure one more scatterer with a dipole mode induced in it by
the active dipole is located at the smaller distance from the latter. Figure 5 shows the radiation patterns of
the reference and the decoupled structures. Here we follow to the similar calculations in the work of Lau and
Andersen (2012) and our dipole array is located in the XZ plane, dipoles are oriented along Z, and the coordi-
nate frame on the insets corresponds to the polarΘ and azimuthalΦ angles. As shown in Figure 5a, there is no
radiation along Z in the reference case, the pattern is symmetric in the YZ plane, and the pattern is asymmetric

Figure 3. Frequency dependencies of S11 and S12 for the system of our
dipoles 1 and 2 decoupled by our split-loop resonator 3 for the mismatched
case.

in XY and XZ planes with dominating radiation in the direction from the
passive to the active dipole. The same features were noticed in Lau and
Andersen (2012), though in this work the dipoles were shorter than 𝜆∕2.
However, for the decoupled structure, the difference from Lau and Ander-
sen (2012) is drastic. In our case, the radiation becomes nonzero in any
direction and asymmetric in all these planes. There are two important
points in this pattern. First, the radiation structure is minimal in the direc-
tion from the active dipole to the passive one (see the pattern forΦ = 90∘).
This is the indication of the low excitation of the passive dipole, in the
decoupled structure it is excited only by the passive scatterer. Second, the
radiation is nonzero along Z because the induced magnetic Im and elec-
tric Ie modes in the SLR are equal, that is, the strong magnetic moment in
it is induced that is oriented along X . However, because the width of the
SLR is small (h = 7 mm), the magnetic moment in spite of large Im is rather
small, and the radiation along Z direction is comparatively low. In general,
the radiation of the decoupled system becomes more isotropic that can
be considered as an advantage for some applications.

For further validation of the theory, we built an experimental setup as
pictured in Figure 6. In our experiment, a vector network analyzer was

SHARIFIAN MAZRAEH MOLLAEI ET AL. 5
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Figure 4. Frequency dependencies of S11 and S12 for the system of our dipoles 1 and 2 decoupled by our split-loop
resonator 3 for the matched case.

connected to our dipole antennas. After calibration, the SLR was inserted between dipole antennas and the
S-parameters of the pair of antennas were measured. All parameters of the dipoles and SLR are the same as in
the simulations. Our experimental results are presented in Figures 3 and 4. We have avoided building a phys-
ical matching circuit for the experimental setup. Instead, we uploaded the measured data into the schematic
box of CST Microwave Studio and used the same virtual matching circuitry as we have used in the simula-
tions. In both mismatched and matched regimes, minimum of S12 was obtained at 312.8 MHz. Since in the
matched and mismatched regimes the ratios of currents (and voltages) in antennas 1 and 2 are different, the
coincidence of the frequencies of decoupling for these two regimes is a convincing indication of the true
decoupling. As it is seen in Figures 3 and 4, our measurements agree very well with simulations and can be
considered as a confirmation of the theory. Decoupling bandwidth of the fabricated structure is enhanced
compared to the simulated model most probably due to the influence of the support. We employed a foam
desk encapsulated into the paper to fix the experimental setup as shown in Figure 6. Moreover, this support
was placed over the wooden table desk. The effective permittivity of such the substrate at ultrashort waves is
definitely larger than unity. It should result in higher radiation resistance and distortion of the pattern to the
side of the substrate. Higher radiation resistance obviously broadens the resonance band and consequently
the band of decoupling broadens, too. In addition, this substrate permittivity manifests in a slight red-shift of
the resonance frequency compared to that obtained in simulations.

Our simulations and measurements for the matched case show that the insertion of SLR 3 decreases S12 at
312.8 MHz from −4 dB corresponding to the reference structure to −14 dB. The operational band of the

Figure 5. (a) Radiation pattern of the reference case, (b) radiation pattern of the decoupled structure by adding the
split-loop resonator.

SHARIFIAN MAZRAEH MOLLAEI ET AL. 6
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Figure 6. Picture of the fabricated prototype for measurement verification.
SLR = split-loop resonator.

decoupled system can be defined as the minimal one of two bands—that
of the matching (the band where S11 ≤ −15 dB using a lossless match-
ing circuit) and that of the decoupling (the band where S12 ≤ −10 dB).
In these definitions both bands of the matching and decoupling turned
out to be equal to 1.42 MHz. This band is twice wider than that offered
by a decoupling dipole in the resonant case and this broadening is our
main practical result. Having skipped details (to be published elsewhere),
a similar numerical and experimental study was done replacing the SLR
by a shortcut dipole (as it was suggested but not done in Lau & Andersen,
2012, where the authors concentrated on the decoupling of nonresonant
dipoles). In this case the decrease of S12 by 10 dB and matching of dipoles
1 and 2 on the level S11 ≤ −15 dB hold in the band of absolute width
0.6 MHz. The gain granted by the SLR is related with the broader band of
the dipole mode compared to the case of the decoupling dipole. Really,
the SLR consists of two rather long parallel wires (connected to each other

by two short wires of length h). The electric dipole mode (responsible for the decoupling) corresponds to two
equal currents in these long wires. Therefore, the dipole mode in the SLR is nearly equivalent to that in a strip
of width h. However, our SLR is not fully equivalent to such a strip. Due to the coupling between the elec-
tric and magnetic dipole modes it resonates at a frequency where its length is smaller than 𝜆∕2. It is similar
to the loading of a rather wide (h ≫ r0) metal strip by an inductive load. The resonance band of the loaded
strip dipole is wider than that of the half-wave dipole performed of the wire with radius r0. As a result, the
operational bandwidth of the system decoupled by the SLR is wider than that of the system decoupled by a
passive dipole.

4. Conclusion

We have theoretically and experimentally proved that the approximate (but true) decoupling of two very
closely located resonant dipoles can be granted by a passive scatterer whose geometry is strongly different
from the similar dipole suggested in the work of Lau and Andersen (2012). The usefulness of the replacement
of the dipole scatterer is the enlarged operation bandwith (from 0.2% to 0.47%). This operation band is suffi-
cient for several practical applications such as transceiver dipole arrays for ultrahigh field MRI (Georget et al.,
2016; Hurshkainen et al., 2016; Padormo et al., 2016). Moreover, with this work we have shown that the decou-
pling of two dipole antennas is possible using a passive scatterer of different type. Earlier, it was proved only
for the dipole of the same length. Therefore, our study opens the door to the search of decoupling passive
scatterers which could be even better than our SLR.

Acronyms
MRI Magnetic resonance imaging
SLR Split-loop resonator

EMF Electromotive force
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