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Abstract: The principal aim of this study is to devise a combined market operator and a distribution
network operator structure for multiple home-microgrids (MH-MGs) connected to an upstream
grid. Here, there are three distinct types of players with opposite intentions that can participate
as a consumer and/or prosumer (as a buyer or seller) in the market. All players that are price
makers can compete with each other to obtain much more possible profitability while consumers
aim to minimize the market-clearing price. For modeling the interactions among partakers and
implementing this comprehensive structure, a multi-objective function problem is solved by using
a static, non-cooperative game theory. The propounded structure is a hierarchical bi-level controller,
and its accomplishment in the optimal control of MH-MGs with distributed energy resources has
been evaluated. The outcome of this algorithm provides the best and most suitable power allocation
among different players in the market while satisfying each player′s goals. Furthermore, the amount
of profit gained by each player is ascertained. Simulation results demonstrate 169% increase in
the total payoff compared to the imperialist competition algorithm. This percentage proves the
effectiveness, extensibility and flexibility of the presented approach in encouraging participants to
join the market and boost their profits.

Keywords: demand side management; electricity market; game theory; home energy management
system; home microgrid; Nikaido-Isoda function

1. Introduction

A home microgrid (H-MG) consists of locally distributed energy resources (DERs) which comprise
non-dispatchable renewable energy resources, dispatchable resources, energy storage (ES) and
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responsive load demand (RLD). It can either supply its local loads independently or connected to the
upstream grid. For an optimal use of the DERs present in a H-MG, the mismatch of power between
the energy production and consumption must be reduced to the barest minimum [1]. Operating
a H-MG optimally would not only contribute to the electric utility profit [2], but also would improve
the reliability of the system besides the proper load distribution management [3]. Indeed, the optimum
exploitation of H-MGs has become an important topic necessitating further research to achieve better
operation of their hybrid energy resources and also their demand management. Hence, hierarchical
domination structures have been executed to guarantee a dependable performance of the power
flow among DC H-MG groups in a neighborhood system [4] and also connect to an AC bus to
adjust the system stability [5]. However, during implementing the economic dispatch in H-MGs,
decisions of an energy management system (EMS) could be affected by DER, ES and RLD bids [6].
In addition, achieving a dynamic exploitation and control plans for a hybrid H-MG can assist in
providing reactive power and set the voltage [7,8] in order to solve problems of power stability like
oscillations in a hybrid multi-system [9], asymmetrical faults [10] and ground fault [11]. Designing
an efficient EMS at the residential level depends heavily on the electricity price and necessitates the
consideration of households patterns [12]. Furthermore, the remarkable participation of householders
whose houses are equipped with renewable energy resources and ES in demand response programs,
while reducing carbon emissions would make an impact on the market as they are to reduce their
cost [13]. So, for expanding these participators in demand-side management programs, the EMS needs
an interactive and user-friendly interface with secure communication [14]. Moreover, H-MGs should be
armed with a decision support tool for adopting their initial strategies [15] based on local optimization
of DER operation and energy usage by a domestic energy management controller [16] that enable them
to engage in the market eagerly.

Consequently, one of the benefits of operating multiple home-microgrid (MH-MG) systems is the
concurrent operation and the optimum use of DERs existing in each H-MG. This implies strategies for
storing energy in a H-MG during excess generation in other H-MGs and/or supplying the required
demand of the H-MG that cannot meet its power demand. In other words, H-MGs can play the role
of both a generating player and a consuming player during the time period [17]. Hence, a H-MG
could either meet its demand from the energy produced by itself or seek aid from other H-MGs [18].
The H-MG with excess generation (generating player) must supply its power to H-MGs having a power
shortage (consuming player) and/or to the upstream grid.

To attain this goal, tools such as the active response of consumers to the demand [19],
the implementation of a powerful EMS [20], and the adequate power dispatch in smart grids are
required. One of the challenges in this regard is the coordination between energy management
functions, having concentrated control or hierarchical systems inside H-MGs [21]. Another challenge
is the selection of an adequate formula for the optimization problem considering the keen competition
between partakers with contradictory intentions. Although an economic dispatch of DERs in a MH-MG
system through applying the Carnot model has been presented in [18], a multi-objective function
for reaching the collective payoff within competition between diverse players under game theory
procedure has not been studied. Furthermore, reference [22] presented a statical optimization formula
but the distributed storage system was not considered in that study. However, dynamic energy storage
systems models for the overall energy management of H-MGs were proposed in [23].

In the same vein, a parallel exploitation of H-MGs was investigated in [24], just as the technical
frameworks and the economic aspects of this structure was presented in [25]. Results of the
investigations showed that in addition to creating a competitive market, the back-to-back connections
among H-MGs could provide much better separation and load distribution control relative to the
single H-MG structure.

H-MGs receiving power supply and other H-MGs must have the possibility of using an upstream
grid, the non-dispatchable units (NDUs) and their local energy storage systems. In addition,
H-MGs ought to have access to other neighboring H-MGs for swapping excess electricity while all



Energies 2018, 11, 3144 3 of 22

types of players are satisfied with the best possible way they achieve their defined objective functions.
This is the duty of the EMS as it satisfies technical and economic constraints related to each generation
and consumption to establish the best choice for power equilibrium in the network [26]. In a system
of MH-MGs, the distribution networks (market operator (MO) and a distribution network operator
(DNO)), and H-MGs desire the optimum utilization of power generation and consumption resources.
To attain higher reliability, the EMSs must have this capability to store the maximum possible energy
in ESs of each H-MG. From this viewpoint, the optimum design of a system with MH-MG leads to the
coincident optimization of H-MGs and distribution network pay-offs. Such a design has a dynamic
programming nature.

In this paper, a retail market optimization structure for multi-ownership systems with MH-MG
including players with opposite goals is recommended. Using a non-cooperative game theory approach
based on the supply function model assists in analyzing the electricity buyers and sellers’ individual
behaviors in the market by enabling a competition in energy trading between H-MGs. Therefore,
an active distributed system through the presented method will be provided. The proposed structure
can handle the interconnection of MH-MGs with various DER resources capacities and the independent
and communal performance of each H-MG. Indeed, this structure is comprehensive in its capability of
accepting any DER technology and the participation of distribution companies (retailers) in the market
structure. The proposed structure is advantageous as it can improve the economic productivity of the
participating H-MGs.

The significant contributions of this study can be described as follows:

• Persuading further residential users to be equiped with DERs and ES in order to be involved in
energy trading and RLD management program;

• Proposing a retail competition market model to trade distributed energy by ensuring fairness
among non-cooperative players through a stochastic, and autonomous decision-making structure;

• Enhancing the economic operation and profitably of all members (about 169% boost in the
collective payoff compared with the imperialist competition algorithm (ICA) results [18]).

The remainder of the paper is organized as follows: The overview of the MH-MG concept is
provided in Section 2. The general outline of the network under study is presented in Section 3.
The proposed market structure is described in Section 4. The market optimization problem formulation
is explained in Section 5. The procedure of implementing the Nikaido-Isoda/relaxation algorithm
(NIRA) is stated in Section 6. Simulation results and discussion of the proposed case study is validated
in Section 7. The conclusion is given in Section 8.

2. MH-MG Concept

The MH-MG system in this paper, shown in Figure 1, refers to a network of H-MGs that swap
electricity with each other to supply their neighbors’ shortage whereas trying to maximize their
own payoffs. Indeed, each individual H-MG is like a green building that consists of local generation
resources, ES devices and loads. Similar to conventional MGs, green buildings are able to autonomously
support their demand to some extent [27]. These kinds of buildings possess the ability to act as
a generation, storage, and demand response unit, in a similar manner to a MG. Also, green buildings
can take part in a retail market to trade energy with other green buildings [18]. Since the main focus of
this study is on managing local energy networks of a residential district, the concept of MH-MG has
been used in this paper as in other research at the residential level [3,28–30].

In fact, similar to interoperability of multiple MGs in an integrated system, H-MGs with excess
generation are able to supply other H-MGs’ needs that a face power shortage. Thus, some H-MGs act
as generators for maximizing their profits resulting from selling energy to the market and others act
as consumers for reducing electricity price through demand-side management. On the other hand,
like multiple MG network, an EMS for monitoring players’ strategies and therefore adopting fair
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decisions in energy trading is necessary. Therefore, a central energy management system (CEMS) is
an essential element in the MH-MG network.

For participating in electricity deals in the market, each H-MG in this paper is formed of two
players including a generator and a consumer. This characteristic is considered here in order to
contribute to implementing the market structure related to every ownership condition. For instance,
at a time when a H-MG’s tenants are not the possessor of the building, DERs or ES devices, the owner
of building is the generating player and the tenant is the consuming player. In this case, the formulation
of players’ tactics in a competitive situation is conveniently possible.

H-MG #1 H-MG #2 H-MG #n

Electrical line

NDU

DGU

ES

RLD

Figure 1. A multiple home-microgrid (MH-MG) system. Non-dispatchable unit (NDU), dispatchable
generation unit (DGU), energy storage (ES), responsive load demand (RLD).

3. General Outline of the Network under Study

A network structure with MH-MG, retailers, a MO and a DNO is proposed as shown in Figure 2.
The MH-MGs interact with each other and with retailers for the exchange of power and the optimal
utilization of power generation resources. The MO proposes the optimum price upon receiving price
suggestions from buyers and sellers and the execution of power dispatch by the DNO. Although the
DNO is the owner and exploiter of the equipment and distribution network cables, it is not involved
in the act of selling of electricity.

Each H-MG includes non-responsive loads (NRL) and DERs that comprise RLD, ES resources,
controllable generation resources and non-controllable generation resources. DERs are grouped into
generating players while the consumed resources (i.e., RLD) in each H-MG are grouped as consuming
players. Each group is to target an objective function. The power producing (generating) players are to
maximize their profit. In comparison, the consuming players are to minimize their cost.

According to the priority included based on the price suggestions of H-MGs, each MH-MG has the
duty at the beginning to supply local loads through generation resources. During each time interval,
H-MGs may encounter a power generation shortage and/or an excess power generation depending
on the amount of power produced by each MH-MG and/or the amount of their local load demand.
On the other hand, when each H-MG encounters an excess generation, it tends to sell its power at
a higher price to distribution companies or other H-MGs. In other words, if a H-MG encounters
a power shortage, it compensates for that by setting a price lower than other alternatives. Therefore,
each player must perform a comparison analysis between the proposed prices by other H-MGs and
distribution companies for the selection of the optimal price.

Each MH-MG participates with its suggested price in this proposed market which may fail in its
excess power transactions due to their higher bids. To encourage further participation of H-MGs in
this process, the distribution companies buy the amount of excess generation of each H-MG that has
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not succeeded in selling to other H-MGs. In addition, power equilibrium is also established in each
H-MG and the power network.

DGU 
#1

NDU 
#1

ES
#1

RLD 
#1

NRL 
#1

H-MG #1

DGU 
#q

NDU 
#q

ES 
#q

RLD 
#q' 

NRL 
#n

H-MG #n

n H-MG

Central energy 
management 

system (CEMS)

Retailer #1

-Market operator (MO):
 

-Distributed network operator (DNO):
Energy Data Energy Data

Retailer#q"

Energy Data Energy Data

 q" Retailer

H-MG,j ,i"GRλ (t), λ (t)

 

H-MG+,j H-MG-,j

H-MG+,j H-MG-,jii

P (t), P (t)

P (t), P (t)

MCP & Optimal 
Set Point power

MCP & Optimal 
Set Point power

MCP & Optimal 
Set Point power

MCP & Optimal 
Set Point power

Figure 2. Interaction of distributed network operator (DNO), market operator (MO) and MH-MGs.
Central energy management system (CEMS), non-responsive load (NRL), market clearing price (MCP).

4. The Proposed Market Structure

The proposed retail electricity market structure presents a solution for providing distribution
generators with large portions of their capacities to participate in the market. It reduces the electricity
price thereby increasing profit alongside their effective and efficient interaction with consumers.

The framework considered in this work provides the exploiters of distribution system and domestic
customers with this possibility of properly selecting their energy supply source considering various
options such as choosing a comprehensive range of renewable energy resources based on the market
clearing price. The recommended market structure is presented in Figure 3. The following stages describe
the market operation.

Stage 1 In the first stage, the prediction data of NDU and the consumed load of MH-MG are entered
into the scenario generation phase.

Stage 2 Next, stage 2 is focused on generating uncertainty scenarios considering the prediction data
of stage 1 with the corresponding occurrence probability. Also in this stage, the participation
of generating units and consumers is planned proportionally to the generated scenarios in
each MH-MG. Moreover, the optimum programming is handled in this stage based on the
units’ participation price (price-based unit commitment) in order to determine the maximum
available capacities of players for engaging in the market.

Stage 3 The third stage is to calculate the expected value (EV) of random quantities related to
uncertainty scenarios of players for participating in game theory and determining the
Nash equilibrium (participation optimum capacity) in market clearing price with random
optimization approach based on calculating the value of Nikaido-Isoda function and
relaxation algorithm.

Stage 4 The final stage is for determining the optimum capacity of the players for participating in
the market and calculating the payoff function of each one of them.
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NRLNDU Stage 1:
Forecasting

Stage 2:
Scenario 
generation

Stage 3:
Proposed 
problem 
formulation

Stage 4:
Get results

Generating NDU and NRL scenarios

Definite programming of units participation for uncertainty scenarios 
of MH-MGs

Programming based on the units participation price for the network 
uncertainty scenarios

Selecting the EV of random quantities of  players’ power  for 
participating in game theory based on the values of different 
scenarios and the probability of occurrence in each scenario

Optimizing the proposed electricity market clearing plan by using the 
game theory concept for finding x* through the NIRA algorithm

Determining the optimum capacity of the players participation in the 
market and calculating the optimum profit of each one of them

Figure 3. The process of implementing the proposed market structure. Expected value (EV),
Nikaido-Isoda/relaxation algorithm (NIRA).

5. The Market Optimization Problem Formulation

The major elements of the proposed market structure include distribution companies and H-MGs
of two players (prosumers and consumers). The mathematical model including the objective function
and constraints for each category will be explored in this section.

Objective Functions and Problem Constraints

The main elements of the proposed market structure include distribution companies and H-MGs
consisting of two players which includes generation and consumption. The objective functions for
each one of them can be defined as follows:

• Power Generation Unit

The power generation resources in the studied MH-MGs are dispatchable generation units (DGUs),
NDU and ES. The objective function is to maximize the profit obtained from a generator #i at time t as
defined by (Ji(t)) in Equation (1)

max Ji(t) = Ri(t)−Ci(t), t ∈ {1, 2, · · · , 24}, i ∈ {1, 2, · · · , q} (1)

Ri(t) = λH-MG,j(t)× [PDGU,j(t) + PNDU,j(t) + PES−,j(t)− PNRL,j(t)], j ∈ {1, 2, · · · , n} (2)

For comprehensibility, the retail electricity price for all players in an H-MG is presumed the same.
Therefore, following relations apply.

λH-MG,j(t) = (−θ × PNRL,j(t)) + β, θ > 0 (3)

Ci(t) = CDGU,j(t) +CNDU,j(t) +CES−,j(t) +CES+,j(t) +CH-MG+,j(t) (4)

CDGU,j(t) = aj · (PDGU,j(t))2 + bj · PDGU,j(t) + cj, aj > 0 (5)

CES−,j(t) = πES− × PES−,j(t), CES+,j(t) = πES+ × PES+,j(t) (6)

Should any H-MG face a shortage in satisfying the needs of RLD and NRL loads of its MH-MG,
it must compensate the power shortage by buying power from other H-MGs and/or the network by
selecting the least cost offer. Thus, CH-MG+,j(t) can be computed as follows:
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CH-MG+,j(t) = CH-MG+,jm(t)|m 6=j +CH-MG+,ji′′(t) (7)

CH-MG+,ji′′(t) = (1− XH-MG+,j(t))× ((PH-MG+,j(t)−
n
∑

m=1
(1− XH-MG,m(t))× PH-MG−,m(t))× λGR,i′′(t))

(8)

The above expressions are such that its shortage is compensated by comparing the prices and
power exchange capacity of other H-MGs. In case the power required by the H-MG #j is not satisfied
through the power exchange with other H-MGs (see (9)), the H-MG will compensate the power deficit
by buying power from distribution networks. The intention of H-MGs is to minimize the buying cost
while satisfying their load demand. Such a goal is made possible by comparing the offer of other
H-MGs to that of the distribution grid (i.e., λGR,i′′(t))

XH−MG,j(t) = [XH-MG,1(t), XH-MG,2(t), · · · , XH-MG,n(t)] (9)

The surplus and scarcity of power related to each H-MG is stored in a variable as follows:

PH-MG,j(t) = [PH-MG,1(t), PH-MG,2(t), · · · , PH-MG,n(t)] (10)

The offer by each H-MG can also be stored in the following variable:

λH-MG,j(t) = [λH-MG,1(t), λH-MG,2(t), · · · , λH-MG,n(t)] (11)

The information related to a tertiary block during each time interval in a matrix is stored as follows:

ΩH-MG,j(t) =

λH-MG,1(t) λH-MG,2(t) · · · λH-MG,n(t)
PH-MG,1(t) PH-MG,2(t) · · · PH-MG,n(t)
XH-MG,1(t) XH-MG,2(t) · · · XH-MG,n(t)

 (12)

The ΩH-MG,j(t) variable proportional to the offer of each H-MG arranged in ascending order,
is defined as follows:

Ω′H-MG,j(t) =

λ′H-MG,1(t) λ′H-MG,2(t) · · · λ′H-MG,n(t)
P′H-MG,1(t) P′H-MG,2(t) · · · P′H-MG,n(t)
X′H-MG,1(t) X′H-MG,2(t) · · · X′H-MG,n(t)

 (13)

where λ′H-MG,1(t) < λ′H-MG,2(t) < · · · < λ′H-MG,n(t). The amount of power shortage of H-MG #j can
be compensated by other H-MGs proportional to the order of their offer. So, this power shortage
must be compared with the excess power generated by other resources and compensated accordingly.
The possibility of supplying H-MG #j power shortage through the excess power generated by other
H-MGs causes the binary variable matrix condition change. This is indicated by X′′H-MG(t) in (14).
The component proportional to this matrix becomes one for a total or a partial supply.

X′′H-MG,j(t) = [X′′H-MG,1(t), X′′H-MG,2(t), · · · , X′′H-MG,n(t)]n 6=j (14)

The least buying cost that H-MG #j bears if encountering a power shortage is computed by (15, 16).

CH-MG+,jm(t) = X′′H-MG,j(t)× λH-MG,j(t)× ∆P (15)

∆P = (PH-MG,j(t)− PH-MG,m(t))j 6=m (16)

• Consumers
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Consumers are a sort of players with RLD loads in each MH-MG. The aim of this group is to
minimize the exploitation cost by managing their distributable loads as represented by the objective
function in (17).

min J′i′(t) = λH-MG,j(t)× PRLD,j(t), i′ ∈ {1, 2, · · · , q′} (17)

• Upstream Grid

This collection includes the amount of participation of distribution networks in buying the surplus
power from H-MGs and also vending power to H-MGs in the case of a lack of power. J′′GR,i′′(t) is
defined as the earnings obtained from swapping the distribution network power at time t. The objective
is to maximize it as shown below:

max J′′GR,i′′(t) = RGR,i′′(t)−CGR,i′′(t), i′′ ∈ {1, 2, · · · , q′′} (18)

RGR,i′′ (t) = λGR,i′′ (t)×
n

∑
j=1

PH-MG+,ji′′ (t),CGR,i′′ (t) =
n

∑
j=1

λH-MG,j(t)× PH-MG−,ji′′ (t) (19)

• Operational Constraints

The operation of players and the system is subject to a variety of constraints. These constraints
include power balance constraint (20), the power generation limits on the DGU (Equation (21)) and
NDU (Equations (22) and (23)), the ES charging/discharging constraints (Equations (24)–(26)) [3,31],
RLD limits (Equation (27)) [3], and the power exchange between H-MGs constraint (Equations (28)–(30)).
It is important to emphasize that ξ in (Equation (27)) shows that the value of RLD is considered as a part
of NRL.

n
∑

j=1
PDGU,j(t) + PNDU,j(t) + PES−,j(t) + PH-MG+,ji′′(t)

=
n
∑

j=1
PNRL,j(t) + PES+,j(t) + PRLD,j(t) + PH-MG−,ji′′(t)

(20)

PDGU,j ≤ PDGU,j(t) ≤ PDGU,j, ∀t (21)

0 ≤ PNDU,j(t) ≤ EVNDU,j(t), ∀t (22)

EVNDU,j(t) =
Ns

∑
s=1

ρ
NDU,j
s (t)× PNDU,j

s (t) (23)

0 ≤ PES−,j(t)(PES+,j(t)) ≤ PES−,j
(PES+,j

), ∀t (24)

SOCES,j ≤ SOCES,j(t) ≤ SOCES,j (25)

SOCES,j(t + 1)− SOCES,j(t) =
(PES+,j(t)− PES−,j(t))× ∆t

ESES,j
Tot

(26)

0 ≤ PRLD,j(t) ≤ ξ × PNRL,j(t) (27)

0 ≤
n

∑
j=1

PH-MG+,ji′′ (t)(
n

∑
j=1

PH-MG−,ji′′ (t)) ≤ EVH-MG+,ji′′ (t)(EVH-MG−,ji′′ (t)) (28)

EVH-MG+,ji′′(t) =
Ns

∑
s=1

ρ
H-MG+,ji′′
s (t)× PH-MG+,ji′′

s (t) (29)

EVH-MG−,ji′′(t) =
Ns

∑
s=1

ρ
H-MG−,ji′′
s (t)× PH-MG−,ji′′

s (t) (30)

6. Implementing the NIRA Algorithm

A random early retail energy market-based on the Nikaido-Isoda/relaxation (REM-NIRA)
algorithm is presented to provide a comprehensive and scalable solution where any number of
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players can take part in trading energy [32]. The Algorithm will be applied to find an electricity
market equilibrium in order to clear the retail electricity market price through analyzing the players’
behavior by using the concept of Nash equilibrium as a solution in the multi-agent interaction problems.
A flowchart explaining the algorithm is presented in Figure 4. The flowchart consists of primary and
secondary levels. A description of each level is provided in this section.
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Figure 4. Flowchart of the proposed algorithm for implementing the retail energy market based
on Nikaido-Isoda/relaxation algorithm (REM-NIRA). Taguchi’s orthogonal array testing (TOAT)
unit, modified conventional energy management system (MCEMS) unit, and price-based unit
commitment (PBUC).



Energies 2018, 11, 3144 10 of 22

6.1. Primary Level of REM-NIRA Algorithm

The primary level of REM-NIRA algorithm is composed of three main units: the Taguchi’s
orthogonal array testing (TOAT) unit, the modified conventional energy management system (MCEMS)
unit, and the price-based unit commitment (PBUC) unit. The primary level is to achieve the
following tasks:

1. Determining the amount of power generated by all generation sources along with the
corresponding probabilities of each power generation scenario;

2. Determining the power consumed by all RLD and NRL along with their corresponding
probabilities of each demand scenario;

3. Estimating the amount of the deficiency and surplus of power related to each H-MG;
4. Defining the grid capacity in terms of power purchase and power sale.

TOAT is an approach which has been applied to choose minimum optimal representative scenarios.
Moreover, for local scheduling of initial powers of H-MGs in the proposed structure, the MCEMS
algorithm has been used. Since the operation of the TOAT unit and the MCEMS unit is explained in
detail in [3,32], only a description of the PBUC unit will be discussed here.

The purpose of the PBUC unit is to establish the grid power set-point with generation resources
and consumption of H-MGs. This unit encourages H-MGs to participate in a retail market while
satisfying their needs. Taking into consideration the offer price of each H-MG and the grid, the capacity
of the distribution network in terms of power purchase and sale uncertainty scenarios are to be
determined. The structure of this unit is implemented according to Figure 5. The initial values of
participation of grid variables for selling to and buying from H-MGs are determined based on players’
accessible capacities and their bids for the NIRA unit.

6.2. Secondary Level of REM-NIRA Algorithm

The second level of the REM-NIRA algorithm structure consists of a main unit called the NIRA
unit (the NIRA algorithm is explained in detail in [32]). The initial guess for the unit is chosen based on
the data acquired from the primary level scenarios. In this regard, it is assumed that the nature of the
discussed electricity market is proportionate to the game theory with n entrants in a non-cooperative
game. In the unit, each player maximizes their benefit through a centralized decision making procedure.
The objective of this level is to determine players’ Nash equilibrium by utilizing the game theory
specially designed means (NIRA algorithm). Having known the balanced response through continuous
iterative loops, the electricity market price can be cleared for a MH-MG having several customers.

Through the NIRA unit, two coupled sub-problems are solved including: (1) Maximizing the
Nikaido-Isoda function and (2) employing the relaxation algorithm and improving the optimal
response function [32]. Both objectives are followed interactively by the NIRA unit until the contrast
in the optimal response function between the two consecutive iterations becomes smaller than
a predefined threshold. After the initial value definition and forming a pay-off function for each player
based on such values, as well as forming a Nikaido-Isoda function at this level, the Nikaido-Isoda
function must be maximized first. Then, gradually, the obtained solution from this function in the first
sub-problem meets a new stable state showing the proper results.

After obtaining the intermediate solution in the first sub-problem, It is the second sub-problem’s
turn to run. In the second sub-problem, the relaxation algorithm is applied to improve the solution
space and update it. If values of the Nikaido-Isoda function reach zero, no players can unilaterally
improve their payoff function. Therefore, a balanced (approximate) response is found for the electricity
market clearing by following the general and local constraints (Equations (20)–(30). With the repeated
improvement of the optimal response function, the values of the payoff function of all the players
gradually converge to an equilibrium (approximate) point. The aim of implementing the secondary
level is to attain the following:



Energies 2018, 11, 3144 11 of 22

All H-MG have a shortage?

Receive  

All H-MGs have an excess?

Some of H-MGs have an excess or 
shortage?

Is the lowest offer price  less than 
              ? 

No

No

Yes

Comparing                  and                   that have the excess 
generation and ascending classification of prices

Classification of                     based on  the classification of

Determine                                              after satisfying the needs of  
H-MGs having the shortage by noting the classification of 

No

Determine                       by noting 
excess power of H-MGs that have 

the excess generation

Determine                          by 
considering  H-MGs that have the 

shortage

Determine                         by noting the 
excess power of all H-MGs

Determine                         by noting  the 
needs of all H-MGs

Yes

Yes

Yes

No

To the NIRA unit

H-MG+,ji
sP (t)

H-MG-,ji
sP (t)

H-MG+,ji
sP (t)

H-MG-,ji
sP (t)

 GR,i
s (t)

 GR,i
s (t) H-MG,js (t)

 H-MG+,ji H-MG-,ji
s sP (t)&P (t)

H-MG-,j
sP (t)

H-MG,js (t)

H-MG-,j
sP (t)

( ) ( ) ( ) ( )H-MG+,j H-MG-,j H-MG+,j GR,i"
s s s st t t tP , P , λ , λ

Figure 5. PBUC unit.

1. Initial guess based on players’ EVs;
2. x? vector (the optimum capacity of players’ participation in the network) based on the Nash

equilibrium of players;
3. The optimum amount of profit for players.

7. Simulation Results and Discussion

In order to test the capability of the proposed method for running the market, a case study has
been developed in a MATLAB software simulation environment. The details of the entire system and
the principles of the control plan for each of the DERs are presented in Appendix A. The predicted
data of NRL, NDU (here, wind turbine and photo-voltaic panel) are taken from [18]. Figure 6 shows
the configuration of the system under study which consists of MH-MGs and the network.

Each H-MG is an energy district consisting of a set of generation resources, which include NDU,
DGU, ES, NRL, and RLD. The number of MH-MGs and the connected distribution networks are
expanded to n and q′′ values. For the system under study, three H-MGs and a distribution network
are considered. To investigate the performance of the proposed REM-NIRA algorithm, the following
scenarios are considered on the network case study:

Scenario #1: Normal operation.
Scenario #2: Sudden NDU generation increase (by 10%).
Scenario #3: Sudden NDU generation decrease (by 10%).
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Figure 6. The network under study.

For all scenarios, the amount of produced power by NDUs of each H-MG, and also the amount
of consumed NRL (after applying the uncertainty) during a day is shown in Figure 7. The peak
power consumption of H-MGs is mainly in the early hours of the morning and night as seen in
Figure 7. Although, during these hours, the load demand in all H-MGs is far greater than the amount
of power that is generated by the NDUs, remaining demand can be met by other options such as the
generated power by DGUs, controlling demand by the RLD program, or purchasing power from the
upstream grid.
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Figure 7. NDU and NRL power profiles of each H-MG.
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In Figure 8, the generated power by DGUs of each H-MG is illustrated. Despite the higher load in
H-MG #2 and #3 compared to H-MG #1, the amount of DGU’s generation by H-MG #1 is much higher
than other H-MGs during the early hours of the morning. As can be seen in Figure 7, in these hours,
the amount of generated power by NDUs of H-MG #1 is much less than other H-MGs. Therefore,
the shortage of H-MG #2 and H-MG #3 is supplied through DGU of H-MG #1. A comparison of
the results of DGUs in Scenarios #2 and #3 indicates that according to the increase in the generated
power from renewable resources in Scenario #2, the DGUs’ production capacity in this scenario
should be less than scenario #3. However, in a few time intervals, the algorithm has decided that the
amount of generated power by DGUs in Scenario #2 could be higher than its amount in Scenario #3.
This difference is very noticeable at 10 AM. In addition, owing to the fact that the amount of RLD
has increased by 71% in Scenario #2, ES of H-MG #1 in Scenario #2 has discharged twice as much as
Scenario #3. Indeed, the algorithm has striven to feed it. For the rest of the day, there is no noticeable
change in the amount of generated power by DGUs in all H-MGs.
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Figure 8. DGU power profile of each H-MG.

The power of ES in charging/discharging mode during 24-h system operation is shown in
Figure 9. At some intervals, due to the sudden decline in the power generation from renewable
resources, the algorithm has preferred to use the ES in order to meet the demand of H-MGs. On the
other hand, if there is excess power in the system, this surplus power usually is used by the algorithm
to charge the ESs in the network in order to maintain the state of charge (SOC) of the batteries at their
maximum values. This approach will significantly boost the reliability of the system in response to
power shortages or encountered unwanted events at other times. Based on this strategy, all ESs in the
system will be set at their maximum value for their operation in the next day.
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Figure 9. ES power of each H-MG in charging/discharging mode.

One of the main advantages of the proposed algorithm is its ability to control the RLD. The amount
of RLD at different time intervals of a day is shown in Figure 10. As can be seen, at the early hours of
the morning, when the NRL is very high, the algorithm has almost used the produced power by DGUs
(Figure 8) and also the purchasing power from the upstream grid (as shown in Figure 11) to cover the
NRL. Hence, the algorithm has allocated a small amount of power to feed the RLD.
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Figure 10. RLD power profile of each H-MG.
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Figure 11. Upstream grid’s power profile for selling.

Figure 12 shows values of the converged pay-off function for the consuming players, generating
players and distribution companies under the implemented scenarios. As observed from Figure 12a,
during the time interval of 7:00–8:00 am, all H-MGs experience power shortage and accept a cost
for compensating the value of power demand from the upstream grid. As a result, they cannot gain
revenue by selling power to their consumers and/or other H-MGs as observed in Figure 12b.

(a) Generating players

Figure 12. Cont.
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Figure 12. Pay-off function vs. time.

However, the amount of revenue of the upstream grid has increased significantly during this
time interval as observed in Figure 12c. Also, during some time intervals, some of the H-MGs are
observed to gain revenue but other H-MGs are charged for supplying their load demand. During
these time intervals, H-MGs having excess power gain revenue by selling the required power to the
H-MG encountering a power shortage. Furthermore, the upstream grid also compensates for the
remaining power required by H-MGs having a power shortage. Thus, the revenue resulting from
selling electricity is obtained.

In Scenario #1 and #2, H-MG #1 gained profit by selling power during 87.5% of the time intervals
in a day. However, just during 25% of this time period, its revenue has been obtained from other
H-MGs. This is why during this scenario, H-MG #2 gained profit from 62.5% of the time period.
This value has reached about 54% for H-MG #3. With the reduction of power generated by renewable
resources (in Scenario #3), the amount of H-MG #1 revenue has decreased by about 10%. This reduction
in H-MGs #2 and #3 is about 7%. As it is observed from Figure 12b since the payoff function related to
the consuming players is based on the reduction of electricity cost (during time intervals which the
algorithm has increased the value of RLD demand for all H-MGs), the payoff function of the consumers
has also increased.

To evaluate the performance and capability of the proposed algorithm in improving H-MGs
pay-off in MH-MGs, its hourly value in the single H-MG system connected to the upstream grid and in
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the MH-MG network, shown in Figure 13, is evaluated. For this reason, values of the payoff function
of H-MG #1 investigated in two case studies (single H-MG and MH-MG network) are evaluated.
Although in the range of some intervals, the value of the pay-off in the single H-MG network is more
than or equal to its value in the MH-MG network; however, a 78% increase in its value is observed in
MH-MG during the 24 h period. It is imperative to state this point because the cost accepted by H-MG
#1 during the time intervals for buying power is much less than its value in the single H-MG network.

H-MG
H-MG

H
-

Figure 13. Pay-off function related to H-MG #1 in the single H-MG and MH-MG under Scenario #1.

In addition, to assess the effectiveness of the proposed algorithm, an independent simulation test
in comparison to the ICA [18] under the normal operation has been conducted. The total payoff of all
players under uncertainties in the network that consists of two H-MGs connected to the upstream grid
is reported in Table 1. As the numeric results demonstrate that the REM-NIRA has been successful
to achieve approximately a 169% boost in the total payoff related to the ICA. This outcome asserts
that the REM-NIRA is able to improve the performance of the market with different ownership and
contradictory objectives as well as power distribution in the network. Hence, more stakeholders
are persuaded to engage in energy trading and as a consequence, the competition would increase
significantly. Furthermore, this structure can assist in reducing electricity cost.

Table 1. Total payoff values of all players related to REM-NIRA and imperialist competition algorithm
(ICA) under Scenario #1.

Objective REM-NIRA ICA

Total payoff value 18.52 6.89

8. Conclusions

A centralized economic structure was proposed for MH-MG systems in this study. The proposed
structure connected to the upstream grid was evaluated considering different objective functions
including generating and consuming players separately. For each H-MG, the proposed structure
provided an optimum scheduling for exchanging power among H-MGs while satisfying the defined
objective functions and technical constraints. Presenting a fair non-cooperative structure like this,
encourages a wide range of players with different ownership to take part actively in a competition of
energy trading that could form the basis for creating an interactive and a powerful structure in the
future power networks.

The discussed problem was formulated as a general multi-objective optimization problem and
an algorithm based on the NIRA method was presented for solving the problem searching for a way to
understand the electricity buyers and sellers’ individual behaviors and discover the optimal strategies
which lead to maximizing the pay-off of all these players with contradicting goals in the competitive
market. Interestingly, the formulated problem has very simplified formulas with smaller problems and
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less computational complexities relative to its dimensions. The proposed algorithm has the capability
to exchange the optimum power in the H-MG distribution system where power management and extra
load sharing functions were at no extra cost. The proposed algorithm increased the H-MGs’ interaction
with one another and with the upstream grid by increasing the profit, reducing power mismatch,
and reducing the electricity market clearing price. It was argued that the proposed structure can easily
be applied to other scenarios with alternative aims and constraints rather than cases discussed in
this paper.

The obtained numerical results showed that the presented structure will result in the minimum
cost and consequently the maximum profit for players during their performance as consuming
and generating players. Moreover, various flexibility resources and numerous players can be
accommodated conveniently in order to address the concept of maintaining equilibrium state of
a system between the local power supply and load demand, ergo, the proposed algorithm could
offer technical advantages for a real-time power management of H-MGs to assure safe exploitation,
distribution optimization and demand side management. Additionally, it could be used as an assured
and effective programming tool for managing risk and investment studies since it could estimate the
power dispatch profile of the generating resources which are either dependent or independent of loads,
stochastic power and renewable resources.

In future research, authors are going to make advances on the REM-NIRA performance by
providing cooperation opportunities between diverse partakers to join coalitions in the market through
a dynamic binding strategy. Furthermore, the optimal power flow restrictions like voltage at different
locations and also carbon emission constraints will be considered in the mathematical model.

Author Contributions: All authors jointly contributed to the research model and implementation, results analysis
and writing of the paper.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Acronyms
CEMS central energy management system
DER distributed energy resources
DGU dispatchable generation unit
DNO distribution network operator
EMS energy management system
ES energy storage
ES+, ES− ES during charging/discharging mode
EV expected value
GR upstream grid
H-MG home microgrid
H-MG+, H-MG− surplus/shortage power of H-MG
ICA imperialist competition algorithm
MCEMS modified conventional energy management system
MCP market clearing price
MH-MG multiple home microgrid
MO market operator
MT micro-turbine
NDU non-dispatchable unit
NRL non-responsive load
PBUC price-based unit commitment
PV Photo-voltaic
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SOC state of charge
REM retail energy market
REM-NIRA REM based on Nikaido-Isoda/relaxation algorithm
RLD responsive load demand
TOAT Taguchi’s orthogonal array testing
WT Wind turbine

Sets and Indices
θ, β load demand curve coefficients
aj, bj, cj coefficients of cost function of DGU in H-MG #j
q, q′, q′′ number of generating/consuming/distribution companies players
Ns the number of the uncertainty
s the scenario of A
n number of H-MGs
πES−, πES+ the supply bids by ES−/ES+ ($/kWh)
∆t time interval

Constants

PA,j, PA,j the maximum /minimum output power of A in H-MG #j (kW)
A ∈ {ES−, ES+, DGU, NDU, H-MG−, H-MG+, NRL, RLD}

SOCES,j, SOCES,j limit of SOC of ES in H-MG #j (%)
Parameters

λGR,i′′ (t) offer price of distribution grid #i′′ at time t ($/kWh)
PA,j

s (t) output power of resource A under scenario #s in the H-MG #j (kW)
ρ

A,j
s (t) probability of scenario #s of resource A in the H-MG #j

Functions
Ci(t), Ri(t), Ji(t) cost/revenue/profit functions of generating player #i at time t ($) (i∈ {1, 2, · · · , q})
CA,j(t) cost of producing/buying power in H-MG #j ($)
CGR,i′′ (t), RGR,i′′ (t), JGR,i′′ (t) cost/revenue/profit functions of distribution grid #i′′ ($) (i∈ {1, 2, · · · , q})
CH-MG+,jm(t)|m 6=j,
CH-MG+,ji′′ (t)

cost of buying power by H-MG #j from H-MG #m/distribution grid #i′′ ($)

(i′′ ∈ {1, 2, · · · , q′′})
Ji′ (t) profit functions of consuming player #i′ at time t ($)
λH-MG,j(t) offer price of H-MG #j at time t ($/kWh)
EVA,j(t) expected value of A in H-MG #j at time t
∆P amount of shortage power of H-MG #j is supplied partly or totally by the excess

power of H-MG #m
Decision Variables

PA,j(t) output power of A in H-MG #j during the time period t (kWh)
XH-MG+,j(t) decision making variable of H-MG #j (i.e., 0 if H-MG #j is not satisfied through power

exchange with other H-MGs and 1 if otherwise)
PH-MG+,ji′′ (t), PH-MG−,ji′′ (t) amount of power which distribution grid #i′′ sells /buys to/from H-MG #j at time t (kW)
x? Nash equilibrium
SOCES,j(t) ES SOC of H-MG #j at time t (%)

Appendix A

The details of the test system are presented in Table A1. Also, Table A2 provides the features of
the devices of every H-MG and the coefficients related to the load demand prices.

Table A1. The input data of the proposed game structure.

Input Data Value in the Test System

Number of H-MGs 3
Number of players 7
Type of game static
Players’ dimensions vector [4, 1, 4, 1, 4, 1, 2]
Upper bound level of players ∞
Lower bound level of players 0
Termination tolerance 1 ×10−5

Maximum number of iterations allowed by the relaxation algorithm 100
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Table A2. Rated profile of distributed energy resources (DERs).

Parameter Value Symbol

ES System

Maximum ES power during dis/charging modes (kW) PES+/PES− 0.816/3.816
Initial state of charge (SOC) at T (%) SOCI 50
Maximum/minimum SOC (%) SOC/SOC 80/20
Initial stored energy in ES (kWh) EES

I 1
Total capacity of ES (kWh) EES

Tot 2
Consumer bid by ES+ ($/kWh) πES+

t 0.145

Photo-Voltaic (PV)

Maximum/minimum instantaneous power for PV (kW) PPV/PPV 6/0

Wind Turbine (WT)

Maximum/minimum instantaneous power for WT (kW) PWT/PWT 8/0.45

Micro-Turbine (MT)

Maximum/minimum instantaneous power for MT (kW) PMT/PMT 12/3.6

Coefficients of cost function of DGU
a($/kW2h) [6 ×10−6,7 ×10−6, 8 ×10−6]
b($/kWh) [0.01, 0.015, 0.013]
c($/h) 0

Load Coefficients

Load demand curve coefficients θ 0.001
β 3.4

Maximum coefficient of RLD related to NRL ζ 15
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