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Abstract
Recent advances in magnetic sensing has made on-scalp magnetoencephalography (MEG) possible. In particular, optically-
pumped magnetometers (OPMs) have reached sensitivity levels that enable their use in MEG. In contrast to the SQUID 
sensors used in current MEG systems, OPMs do not require cryogenic cooling and can thus be placed within millimetres 
from the head, enabling the construction of sensor arrays that conform to the shape of an individual’s head. To properly 
estimate the location of neural sources within the brain, one must accurately know the position and orientation of sensors 
in relation to the head. With the adaptable on-scalp MEG sensor arrays, this coregistration becomes more challenging than 
in current SQUID-based MEG systems that use rigid sensor arrays. Here, we used simulations to quantify how accurately 
one needs to know the position and orientation of sensors in an on-scalp MEG system. The effects that different types of 
localisation errors have on forward modelling and source estimates obtained by minimum-norm estimation, dipole fitting, and 
beamforming are detailed. We found that sensor position errors generally have a larger effect than orientation errors and that 
these errors affect the localisation accuracy of superficial sources the most. To obtain similar or higher accuracy than with 
current SQUID-based MEG systems, RMS sensor position and orientation errors should be < 4mm and < 10

◦ , respectively.

Keywords  Magnetoencephalography · Optically-pumped magnetometer · Coregistration

Introduction

Magnetoencephalography (MEG) is a non-invasive func-
tional neuroimaging method for investigating electric neu-
ronal activity inside the living human brain (Hämäläinen 
et al. 1993; Hansen et al. 2010). MEG functions by measur-
ing the magnetic field produced by neural currents in the 
brain using sensors positioned around the head. The MEG 
signal is complementary to that of electroencephalography 
(EEG), in which the potential distribution caused by neural 
activity is measured using electrodes placed on the scalp.

So far, the magnetometer employed for MEG has almost 
exclusively been the low-Tc superconducting quantum inter-
ference device (SQUID). These sensors require a cryogenic 
temperature that is typically attained by immersing SQUIDs 

in liquid helium ( T ≈ 4.2 K ≈ −269 ◦C ). The necessary ther-
mal insulation keeps SQUIDs at least 2 cm away from the 
scalp in most commercial systems and makes the construc-
tion of adaptable sensor arrays extremely challenging. Since 
sensitivity and spatial resolution are related to the distance 
between the sources and the sensors, the need of cryogenics 
eventually results in a considerable loss of signal amplitude 
and spatial resolution (Boto et al. 2016; Iivanainen et al. 
2017). Since the sensor positions cannot be adapted to the 
head shape of individual subjects, the sensor-scalp-distance 
is further increased especially when measuring children and 
infants.

New sensor technologies with sensitivity high enough for 
MEG have emerged recently; optically-pumped magnetom-
eters (OPMs) (Budker and Romalis 2007; Budker and Kim-
ball 2013) and high-Tc SQUIDs (Öisjöen et al. 2012) hold 
promise as alternatives to low-Tc SQUIDs. These new sensor 
types do not require the same degree of thermal insulation 
and can thus be placed much closer to the scalp, consider-
ably boosting the sensitivity to neural sources. Especially 
the so-called zero-field OPMs that operate within the spin 
exchange relaxation-free (SERF) regime (Allred et al. 2002) 
appear promising as they offer high sensitivity while not 
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requiring any cryogenics. Additionally, SERF OPMs can be 
miniaturised (Shah et al. 2007; Knappe et al. 2011), enabling 
the construction of high-density sensor arrays. SERF OPMs 
with sensitivities better than 5 fT∕

√
Hz have been demon-

strated (Kominis et al. 2003; Griffith et al. 2010; Colombo 
et al. 2016; Knappe et al. 2016).

One could envision EEG-cap-like MEG sensor arrays 
utilising OPMs, in which the shape of the array conforms to 
the shape of the head. Recent simulation studies (Boto et al. 
2016; Iivanainen et al. 2017) have shown these on-scalp 
MEG systems to have significantly higher sensitivity to neu-
ral sources compared to SQUID-based systems.

To be able to determine where in the brain the meas-
ured neuromagnetic signal originates (i.e. to perform source 
estimation), one needs to accurately know the position of 
sensors in relation to the head. In practice, source estima-
tion is performed in conjunction with structural magnetic 
resonance images (MRI), enabling modelling of the head 
geometry at an individual level. For such modelling to be 
possible, the MEG data have to be coregistered with the 
MRI, i.e. the data from both modalities have to be trans-
formed into a common coordinate system.

In current SQUID-based MEG systems, the sensors are 
rigidly mounted to the insert inside the cryogenic vessel, 
dewar. Thus, for coregistration, only the position and orien-
tation of the subject’s head in relation to the dewar need to 
be determined. In an on-scalp MEG system with non-rigid 
array geometry, coregistration becomes more challenging as 
each sensor needs to be individually localised with respect 
to the head. The nature of coregistration error also changes: 
in SQUID-based MEG systems, the coregistration error is 
mainly a systematic shift of the whole array, while in on-
scalp MEG systems the dominant type of coregistration error 
may be sensor-wise.

Coregistration for on-scalp MEG systems is similar to 
that for EEG, but in contrast to EEG, one needs to know 
the sensor orientation in addition to position. While the 
coregistration accuracy required for useful source estima-
tion in EEG is agreed to be roughly < 5mm (Brinkmann 
et al. 1998; Wang and Gotman 2001; Koessler et al. 2007), 
the requirements for on-scalp MEG have so far been mostly 
unexplored. Recently, Andersen et al. (2017) empirically 
showed the importance of not only determining both the 
position but also orientation of on-scalp MEG sensors using 
a single high-Tc SQUID.

In this work, we systematically determine how accurately 
one needs to know the sensor positions and orientations in on-
scalp MEG systems for uncompromised forward and inverse 
modelling. We simulate a hypothetical EEG-cap-like OPM 
sensor array and investigate the effect of sensor-wise position 
and orientation error. We quantify the effect of these errors 
on the forward models as well as the performance of three 
common source estimation procedures—minimum-norm 

estimation, dipole modelling and beamforming—in the pres-
ence of sensor localisation error.

Materials and Methods

Anatomical Models

Existing T1-weighted magnetic resonance images obtained 
from ten healthy adults (7 males, 3 females) using a 3T MRI 
scanner were used. The FreeSurfer software package (Dale 
et al. 1999; Fischl et al. 1999a; Fischl 2012) was used for 
pre-processing the MRIs and for segmentation of the cortical 
surfaces.

For each subject, the surfaces of the skull and scalp were 
segmented using the watershed approach (Ségonne et al. 2004) 
implemented in FreeSurfer and MNE software (Gramfort et al. 
2014). These surfaces were thereafter decimated to obtain 
three boundary element meshes (2562 vertices per mesh). 
The neural activity was modelled as a primary current distri-
bution constrained to the surface separating the cortical gray 
and white matter and discretised into a set of 10,242 current 
dipoles per hemisphere. For dipole modelling simulations, 
a sparser non-overlapping discretisation with 20-mm inter-
source spacing was constructed. For minimum-norm estima-
tion, sources were assumed to be normal to the local cortical 
surface, while for dipole modelling their orientation was not 
constrained. For visualisation and group-level statistics, indi-
vidual brains were mapped to the average brain of the subjects 
using the spherical morphing procedure in FreeSurfer (Fischl 
et al. 1999b).

Forward Models

The measured magnetic field � at the Nc sensors ( � ∈ ℝ
Nc×1 ) 

is related to the source space � ∈ ℝ
Ns×1 by

where � is the gain matrix ( � ∈ ℝ
Nc×Ns ) describing the sen-

sitivity of each sensor to a unit source at each location in 
the source space. Each column i of � =

[
�1, �2, ...�Ns

]
 repre-

sents the topography �i of source i (how the sensors see that 
source), while each row j represents the sensitivity of sen-
sor j to all sources. Gain matrices were computed for each 
subject and sensor array using the linear Galerkin boundary 
element method (BEM) with an isolated source approach 
(ISA) as described by Stenroos and Sarvas (2012). The con-
ductivities of the brain, skull and scalp compartments were 
set to [1, 1∕25, 1] ⋅ 0.33 S/m, respectively.

Sensor Models

The response of each OPM sensor was modelled by a set 
of eight discrete integration points. These were uniformly 

(1)� = ��,
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distributed within a cube-shaped sensitive volume with a 
side-length of 3 mm (see Table 1), representing the actual 
sensitive volume of the sensor. The output of each sensor 
was computed as the weighted sum of a single magnetic 
field component over the integration points. SQUID sensors 
comprised magnetometers (a square pick-up loop with 25.8-
mm side length) and planar gradiometers (26.4-mm longer 
side length, 16.8-mm baseline) as in the Elekta Neuromag® 
MEG systems (Elekta Oy, Helsinki, Finland); these sensors 
were modelled as in the MNE software (Table 1). SQUID 
and OPM magnetometers measured the z-component of the 
magnetic field in the local coordinates specified in Table 1, 
while the SQUID gradiometers measured a tangential deriv-
ative of the z-component.

Sensor Arrays

OPM sensor arrays were constructed using a subdivision 
approach in which a spherical surface was divided into hori-
zontal levels. Each level was populated with sensors using 
equal angular spacing, except in the most anterior part of 
the head, for which smaller angular spacing was used to 
compensate for the non-spherical shape of the head. For the 
lowest levels, a gap was left for the face. This generalised 
sensor array was then projected onto the scalp surfaces of 
individual subjects.

The number of sensors per level and the inter-level dis-
tance was determined empirically so that the sensor array 
was maximally dense while still physically feasible for all 
10 subjects. The feasibility was determined on the basis of 
a hypothetical sensor housing with a footprint of 20 mm × 
20 mm on the scalp. This criterion resulted in a sensor array 
consisting of 184 OPMs (Fig. 1).

The distance from the closest edge of the sensitive vol-
ume of the sensors to the scalp was set to 4.5 mm to accom-
modate a thermal shield and the sensor housing. The sensors 
were oriented to measure the normal component of the mag-
netic field with respect to the scalp, as this field component 
provides most information (Iivanainen et al. 2017).

From the original sensor array for each subject, mis-
coregistered sensor arrays with sensor-wise random posi-
tion and orientation errors were constructed. The position 

of each sensor in a mis-coregistered array was sampled from 
a uniform distribution within a sphere centred at the true 
sensor position. The radius of the sphere represented the 
uncertainty in the measured position of the sensors. Radii 
were chosen so that the RMS position error was 2, 4 or 6 mm 
(sphere radii of 2.6, 5.2 and 7.7 mm).

Furthermore, arrays with sensor-wise random orientation 
error were also constructed. In these arrays, each sensor was 
tilted from its true axis in a random direction. Error angles 
were sampled from a uniform distribution such that the RMS 
orientation error was 5◦ , 10◦ and 15◦ (corresponding to maxi-
mum orientation errors of 8.7◦ , 17.3◦ and 26.0◦ ). Finally, 
to approximate more realistic scenarios, sensor arrays with 
both position and orientation error were constructed; these 
included arrays with 2-mm and 5◦ , 4-mm and 10◦ as well as 
6-mm and 15◦ RMS errors.

To maintain the accuracy of the forward computation, 
samples were rejected if any of the integration points were 
less than 2 mm from the scalp surface or below it.

For each simulated error level, 50 different mis-coregis-
tered sensor arrays were constructed per subject, resulting 
in a grand total of 500 mis-coregistered sensor arrays per 
scenario.

In addition to the OPM-based sensor arrays, a 306-chan-
nel (102 magnetometers, 204 planar gradiometers) SQUID-
based Elekta Neuromag® MEG sensor array with the sensor-
array position based on experimental MEG measurements 
was obtained for all subjects. These arrays, which did not 
include any coregistration errors, were used as the baseline 
in the comparisons.

Table 1   Sensor models

N is the number of integration points, � are their positions in a local 
coordinate system, and w are their respective weights

Sensor type N �(x, y, z) [mm] w

OPM 8 (± 0.75, ± 0.75, 0.75), 
(± 0.75, ± 0.75, 2.25)

1/8

SQUID magnetometer 4 (± 6.45, ± 6.45, 0.3) 1/4
SQUID gradiometer 2 (± 8.4, 0, 0.3) ± 1/16.8 mm

Fig. 1   OPM (left) and SQUID (right) sensor arrays for one subject, 
showing the OPM sensitive volumes and SQUID pick-up loops both 
from the side and top–down. The arrows represent the OPM sensitive 
axes
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We also conducted an additional experiment in which 
we investigated how the number of sensors in an array 
affects the robustness to coregistration errors. To this end, 
we constructed a whole-scalp OPM array consisting of 102 
magnetometers by projecting the positions of the SQUID 
magnetometers in the Elekta Neuromag® MEG system onto 
the scalp. The same 4.5-mm stand-off distance and OPM 
models as for the 184-OPM array were used. We then con-
structed erroneous arrays with 6-mm and 15◦ RMS sensor 
position and orientation error in the same manner as for the 
184-OPM array.

Metrics and Computation

Several measures were used to quantify the effect that mis-
coregistration has both on the gain matrices (i.e. the for-
ward models) and on the source estimates calculated using 
these gain matrices (i.e. the inverse models). All metrics 
were calculated individually for each subject and each sen-
sor array of that subject. Metrics were thereafter morphed to 
the average brain of the subjects and averaged. To keep the 
results informative and to avoid bias due to sources that are 
practically invisible in MEG, sources were split into deep 
and shallow ones (Fig. 2). Sources closer than 30 mm from 
the inner surface of the skull were considered shallow while 
all others deep, from which MEG signal is less likely to 
originate.

Forward Metrics

Relative error (RE) is a general difference measure that 
is sensitive to changes in both amplitude and shape in the 
topographies. The relative error for the topography of a 
source is

where �ref and �test are the reference and test topographies of 
the source, and | ⋅ | is the l2-norm. �ref comes from the gain 
matrix of the original unperturbed sensor array, while �test 
is from the gain matrix of a mis-coregistered sensor array.

To further investigate the errors in the shape of topog-
raphies due to mis-coregistration, the correlation coeffi-
cient (CC; Haueisen et al. 1997; Stenroos and Sarvas 2012) 
between the topographies in reference and erroneous sen-
sor arrays were calculated for all individual sources. Unlike 
RE, this metric is insensitive to amplitude differences. CC 
is expressed as

where ⋅ is the dot product, and � denotes the mean of � across 
all sources.

Inverse Metrics

Minimum‑Norm Estimation

Minimum-l2-norm estimation (MNE) is a commonly 
used source estimation procedure (Dale and Sereno 1993; 
Hämäläinen and Ilmoniemi 1994) in which the minimisa-
tion of the l2-norm of the source estimate and the fidelity of 
the reconstruction of the measured signal are balanced. The 
source estimate �̃ that satisfies the regularised minimum-
l2-norm criterion is given by

in which �2 is the regularisation parameter, � is the noise 
covariance matrix, and � is the resulting inverse operator. 
We used a diagonal noise covariance matrix � , whose diago-
nal elements were proportional to the noise variances of the 
sensors. The numeric ratio between SQUID magnetometer 
and planar gradiometer noise variances was (1∕100)2 (corre-
sponding to 3 fT∕

√
Hz and 3 fT∕(

√
Hz ⋅ cm) , respectively).

We set the regularisation parameter as suggested by Lin 
et al. (2006):

where SNR is the assumed mean (amplitude) signal-to-noise 
ratio, Nc is the number of sensors, tr(⋅) is the trace operator, 
and �̃ ≡ �−1∕2� is the whitened gain matrix. We set SNR

2
 

to 9, the default value in MNE software.
We used the minimum-l2-norm estimates as the basis 

for several source localisation metrics. The measures used 

(2)RE =
|�test − �ref|

|�ref|
,

(3)CC =
�ref − �ref

|�ref − �ref|
⋅

�test − � test

|�test − � test|
,

(4)�̃ = �T(��T + 𝜆2�)−1� ≡ ��

(5)𝜆2 =
tr
(
�̃�̃T

)

Nc SNR
2
,

Fig. 2   The depth of the cortical sources as measured from the inner 
surface of the skull (data pooled across subjects): Distribution as a 
density plot (left). The white dotted line represents the 30-mm thresh-
old at which sources were split into shallow and deep. Mean source 
depth (right) thresholded to show which areas are classified as deep 
(light gray) and shallow (dark gray)
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to investigate the effect of sensor localisation error on the 
minimum-l2-norm source estimates are based on the concept 
of resolution analysis as applied in earlier literature (Peralta 
et al. 1997; Molins et al. 2008; Hauk et al. 2011; Stenroos 
and Hauk 2013; Iivanainen et al. 2017). In resolution analy-
sis, metrics are derived from the resolution matrix

where � is the inverse operator, here the MNE operator of 
Eq. (4). The columns of the resolution matrix � consist of 
point-spread functions (PSFs) � ∈ ℝ

Ns×1 , which describe 
how the activation of each source is distorted by the imag-
ing system, i.e. how the activation of each source is seen 
in the source estimate. We computed the resolution matrix 
using the inverse operator based on each mis-coregistered 
sensor array together with the gain matrix of the original 
sensor array, thus simulating the effect of mis-coregistration.

We assessed the localisation performance of each sensor 
array by computing the peak position error (PPE) for all 
sources, which describes the displacement of the centre-of-
mass of the PSF from the actual source position �ref (Lin 
et al. 2006; Stenroos and Hauk 2013; Iivanainen et al. 2017):

When calculating the PPEs, we thresholded the PSFs by only 
including the source points at which |�i| ≥ 0.5 ⋅ �max , as was 
done by Stenroos and Hauk (2013).

The spatial spread of the source estimate was character-
ised by calculating the spatial deviation (SD) of the PSFs 
(Stenroos and Hauk 2013):

When calculating the SD, we thresholded the PSFs in the 
same manner as when calculating the PPE.

Finally, as PPE only quantifies the localisation perfor-
mance of the source estimator, we also computed the corre-
lation between the PSFs of the original and mis-coregistered 
sensor arrays:

which quantifies the effect of mis-coregistration on the shape 
of the point-spread functions.

Dipole Modelling

We implemented a least-squares single-dipole localisation 
using a simple grid search procedure. The same source space 

(6)� = ��,

(7)PPE =
�����
��ref −

∑
i ��i��i∑
i ��i�

�����
.

(8)SD =

�∑
i ��i�(�i − �ref)

2

∑
i ��i�

.

(9)CC =
�ref − �ref
||�ref − �ref

||
⋅

�test − �test
||�test − �test

||
,

as in the MNE resolution analysis was used as the search 
space for dipole modelling, but the data were generated 
using a different source space with non-overlapping discre-
tisation, each source of which was activated separately. To 
keep the computation time reasonable, the data generation 
source space was sparser, with an inter-source spacing of 20 
mm. The simulated sources were oriented normally to the 
local cortical surface, but the source orientation was a free 
parameter in the dipole modelling procedure.

White Gaussian noise was added to the simulated mag-
netic field to approximate sensor noise. For the SQUID 
arrays, the noise characteristics of the Elekta Neuromag® 
MEG system were used: the spectral noise densities for 
SQUID magnetometers and planar gradiometers were set 
to 3 fT∕

√
Hz and 3 fT∕(

√
Hz ⋅ cm) , respectively. For the 

OPMs, three different noise levels were used:

1.	 3.0 fT∕
√
Hz , which is equal to that of current SQUID 

magnetometers.
2.	 7.4 ± 0.6 fT∕

√
Hz , which is the subject-specific break-

even noise density at which the SQUID magnetometers 
and OPMs would have equal SNR ( mean ± SD across 
subjects, mean over all cortical sources in the simulation 
source space).

3.	 15 fT∕
√
Hz , which is demonstrated with current com-

mercial SERF OPMs.

The source amplitude for a given SNR and noise level was 
determined using the definition of the local SNR for source 
i given by Goldenholz et al. (2009):

where a2 is the source variance, Nc is the number of sensors, 
and �2

j
 is the noise variance of sensor j. In the case of white 

noise, the noise variance can be expressed in terms of the 
spectral noise density n and bandwidth BW , �2

j
= n2

j
BW . 

The source variance that produced a mean SNR2 of 10 over 
all sources for the SQUID magnetometer array was used in 
all simulations, and the bandwidth was set to 40 Hz. This 
resulted in source amplitudes of 22.1 ± 1.7 nAm across the 
subjects. To treat both sensor types of the 306-channel 
SQUID array equally, the gain matrix and data were 
whitened.

To simulate the effect of mis-coregistration, the simu-
lated magnetic field was computed using the gain matrix 
of the original sensor array while the gain matrix of a mis-
coregistered sensor array was used for the dipole modelling 
procedure.

We quantified the impact of mis-coregistration using 
dipole position error (DPE), i.e. the three-dimensional 

(10)SNR2
i
=

a2

Nc

Nc∑

j=1

�2
j,i

�2
j

,
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Euclidean distance between the fitted and actual dipoles. 
In a similar manner, we defined dipole orientation error 
(DOE) as the difference in orientation between the actual 
and fitted dipoles. Finally, we compared the goodness-of-fit 
(GOF), i.e. how well the fitted dipoles explain the original 
data:

where �meas is the measured magnetic field and �fit is the 
magnetic field produced by the fitted dipole.

LCMV Beamforming

We implemented a linearly constrained minimum-variance 
(LCMV) beamformer (Van Veen et al. 1997; Sekihara et al. 
2004; Sekihara and Nagarajan 2008). As with the dipole 
modelling, separate source spaces were used for data gen-
eration and source estimation. As the localiser, we used 
the unit-noise-gain power estimate �opt with optimum 
orientation:

where �max is the maximum eigenvalue of the matrix

In the above expression, � is the data covariance matrix 
and �(�) contains the topographies of orthogonal sources 
at position � . The eigenvector corresponding to �max is the 
source orientation that produces the maximum power output.

(11)GOF = 1 −
|�fit − �meas|2

|�meas|2
,

(12)�opt(�) = �max,

(13)
�T(�)�−1�(�)

�T(�)�−2�(�)
.

Individual dipolar sources consisting of white Gauss-
ian noise were simulated, and white Gaussian sensor noise 
was added to the measured magnetic field. The same source 
amplitudes as in the dipole modelling simulations were used, 
as well as the noise values corresponding to 15 fT∕

√
Hz for 

the OPMs, 3 fT∕
√
Hz for the SQUID magnetometers and 

3 fT∕(
√
Hz ⋅ cm) for the SQUID gradiometers. The dataset 

had a length of 500 samples, and the data covariance matrix 
� was regularized using �reg = � + � ⋅ tr(�)∕Ns� with 
� = 3 . As the simulated sensor noise was white and uncor-
related, this is equivalent to increasing the dataset length 
while being much cheaper computationally. To treat both 
sensor types of the 306-channel SQUID array equally, the 
gain and covariance matrices were whitened before comput-
ing the localiser.

Source localisation performance for the LCMV beam-
former was quantified by computing the distance between 
the peak of the �-estimate and the true source location.

Results

Forward Metrics

The relative error of OPM array topographies due to mis-
coregistration is shown in Table 2 and Fig. 3. This error 
is largest in superficial areas, which is to be expected as 
these areas are closer to the sensors. Similarly, the shapes 
of the topographies are most affected in superficial areas 
(Table 2). Unlike the sensor-wise position error, random ori-
entation error is manifested throughout the cortex regardless 
of source location and depth (Fig. 3, Table 2). Similar effects 
can be seen in the shapes of the topographies, although the 

a b

Fig. 3   Relative error (RE) of OPM array topographies over all subjects at different levels of sensor position and orientation error. a Error distri-
butions shown as density plots. b The mean RE over all subjects
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CCs are not affected to the same degree as the REs. When 
sensor position and orientation errors are present simulta-
neously, the effects of these errors add up in a sub-linear 
manner (Fig. 3).

Inverse Metrics

Minimum‑Norm Estimation

Peak position errors (PPEs) and correlation coefficients 
(CCs) of PSFs are summarised in Table 3. The average 
PPE over all subjects (Fig. 4, Table 3) is very large for deep 
sources, of the order of several centimetres, regardless of 
the amount of sensor position error. The PPEs for shallow 

sources are much smaller, but are considerable also when no 
sensor position error is present. The increase in PPE due to 
sensor position error is seen both in shallow and deep areas 
of the cortex, although it is proportionally much larger in 
shallow areas.

Without mis-coregistration, the PPEs of the OPM array 
are smaller than those of the reference SQUID arrays, i.e., 
the 306-channel “All-SQUID” array and the 102-channel 
magnetometer-only “Mag-SQUID” array (Table 3). The 
difference diminishes when a small amount of mis-coreg-
istration is present. When the OPM array had both 6-mm 
and 15◦ RMS position and orientation errors, the PPEs 
were larger than those for either (correctly co-registered) 
SQUID array.

The PSF spread is increased due to mis-coregistration, 
as quantified by the SD metric (Table. 3). This spreading 
is most pronounced in areas of high sensitivity. For deep 
sources, sensor orientation vs. position error causes a 
proportionately larger SD increase. The SD values of the 
102-channel SQUID magnetometer array are much larger 
than those of the 306-channel SQUID array, which in turn 
has larger SD values than the OPM array.

Dipole Modelling

When using the same noise density of 3 fT∕
√
Hz for both 

SQUID magnetometers and OPMs, the SNR2 for the OPMs 
was 61.6 ± 10.4 (mean ± standard deviation across the sub-
jects). Metrics for this scenario are shown in Table 4. The 
increased SNR resulted in much larger GOF values and 
moderately smaller DPEs and DOEs. Even with substan-
tial mis-coregistration, the DPEs for the OPM array remain 
smaller than those for either SQUID array.

Table 2   Mean relative errors (RE) and correlation coefficients (CC) 
of source topographies with different levels of sensor-wise position 
and orientation error

RMS sensor-wise error Shallow sources Deep sources

Position 
[mm]

Orientation [ ◦] RE [%] CC [%] RE [%] CC [%]

2 0 7.5 99.7 5.6 99.8
4 0 14.1 99.0 10.4 99.4
6 0 20.0 98.0 14.8 98.9

0 5 4.8 99.9 4.7 99.9
0 10 9.7 99.5 9.4 99.6
0 15 14.7 98.9 14.3 99.0

2 5 13.4 99.6 10.3 99.7
4 10 24.5 98.5 19.3 99.0
6 15 34.9 96.9 28.2 97.9

a b

Fig. 4   Effects of mis-coregistration on minimum-norm estimation as quantified by the peak position error (PPE) of point-spread functions over 
all subjects. a Error distributions as density plots. b The mean difference in PPE between erroneous and reference sensor arrays
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When the noise density of the OPMs was set so that the 
SNR2 were equal to that of the SQUID magnetometers, 
GOF values were roughly equal for OPM and SQUID mag-
netometer arrays (Table 7 in Appendix). GOF values of the 
306-channel SQUID array were substantially higher. In spite 
of this, for the shallow sources, the DPEs and DOEs for the 
OPM array were smaller than those for either SQUID array 
at all tested levels of mis-coregistration.

Figure 5 and Table 5 show the dipole modelling results 
for the simulation scenario where the OPM noise den-
sity was set to 15 fT∕

√
Hz , resulting in the OPM SNR2 

of 2.47 ± 0.42 (Eq. 10, mean ± standard deviation across 
the subjects). The large difference in the SNRs between 
the SQUID and OPM sensor arrays is clearly seen in the 
GOF values. In spite of this large difference in SNRs, the 
dipole localisation accuracy of the OPM sensor array is 
approximately on par with the 306-channel SQUID array 
when no mis-coregistration is present. Furthermore, the 
OPM array has superior localisation accuracy compared 
to the 102-channel SQUID magnetometer array, even with 
substantial mis-coregistration.

Table 3   Metrics derived from 
the point-spread functions 
computed from the MNE 
resolution matrix. Mean values 
of peak position error (PPE), 
spatial deviation (SD) and 
correlation coefficients (CC) 
are listed

Sensor type RMS sensor-wise error Shallow sources Deep sources

Posi-
tion 
[mm]

Orientation [ ◦] PPE [mm] SD [mm] CC [%] PPE [mm] SD [mm] CC [%]

Mag-SQUID 0 0 9.7 21.3 – 27.0 39.8 –
All-SQUID 0 0 9.2 19.2 – 26.3 38.9 –

OPM 0 0 8.7 15.9 – 26.0 37.7 –

2 0 8.9 16.2 99.4 26.3 38.1 99.8
4 0 9.3 17.0 97.7 26.6 39.2 99.4
6 0 9.8 18.0 95.6 27.0 40.3 98.8

0 5 8.8 16.0 99.7 26.2 38.0 99.9
0 10 9.0 16.4 98.8 26.5 38.9 99.7
0 15 9.4 17.0 97.5 26.8 40.4 99.2

2 5 9.2 16.9 99.2 26.6 39.2 99.2
4 10 10.2 18.7 97.6 27.3 41.4 97.2
6 15 11.4 20.8 94.7 27.9 43.5 94.7

a b

Fig. 5   Effects of mis-coregistration on dipole modelling as quantified by the dipole position error (DPE), when OPMs had a noise density of 
15 fT∕

√
Hz. a Distributions shown as density plots. b The mean difference in DPE between erroneous and reference sensor arrays
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Dipole position errors of < 10mm are attainable for 
superficial sources at all sensor position error levels 
included in the simulations and at all simulated noise 
levels. The sensor position error has a larger effect on 
the localisation performance than the orientation error, 

although the cumulative effect of both error types is even 
higher. The GOF values are highly affected by source 
depth and SNR, while mis-coregistration only has a small 
effect on them.

Table 4   Metrics related to the accuracy of the dipole fitting procedure at different levels of sensor position and orientation error when both 
OPMs and SQUID magnetometers had a noise density of 3 fT∕

√
Hz and SQUID gradiometers had a noise density of 3 fT∕(

√
Hz ⋅ cm)

Mean values of position error (DPE), orientation error (DOE) and goodness of fit (GOF) are listed

Sensor type RMS sensor-wise error Shallow sources Deep sources

Position 
[mm]

Orientation [ ◦] DPE [mm] DOE [ ◦] GOF [%] DPE [mm] DOE [ ◦] GOF [%]

Mag-SQUID 0 0 12.4 50.9 81.9 26.2 56.2 56.8
All-SQUID 0 0 10.3 45.7 90.1 19.0 44.2 79.8

OPM 0 0 7.3 36.1 87.3 15.8 34.6 66.1

2 0 7.6 37.0 86.9 15.8 34.6 65.9
4 0 8.0 39.2 85.9 16.0 34.9 65.4
6 0 8.5 41.7 84.5 16.3 35.4 64.8

0 5 7.4 36.4 87.1 15.8 34.6 65.9
0 10 7.5 37.1 86.7 15.8 34.7 65.5
0 15 7.7 38.2 85.8 15.9 34.8 64.8

2 5 7.6 37.2 86.7 15.8 34.6 65.7
4 10 8.1 39.8 85.2 16.0 35.0 64.9
6 15 8.7 42.7 83.0 16.4 35.8 63.5

Table 5   Metrics related to the accuracy of the dipole fitting procedure 
at different levels of sensor position and orientation error when OPMs 
had a noise density of 15 fT∕

√
Hz , SQUID magnetometers had a 

noise density of 3 fT∕
√
Hz and SQUID gradiometers had a noise 

density of 3 fT∕(
√
Hz ⋅ cm)

Mean values of position error (DPE), orientation error (DOE) and goodness of fit (GOF) are listed

Sensor type RMS sensor-wise error Shallow sources Deep sources

Position 
[mm]

Orientation [ ◦] DPE [mm] DOE [ ◦] GOF [%] DPE [mm] DOE [ ◦] GOF [%]

Mag-SQUID 0 0 12.4 50.9 81.9 26.2 56.2 56.8
All-SQUID 0 0 10.3 45.7 90.1 19.0 44.2 79.8

OPM 0 0 9.7 44.0 58.9 30.9 56.5 23.3

2 0 9.9 44.5 58.7 31.0 56.6 23.3
4 0 10.3 46.0 58.0 31.2 57.0 23.1
6 0 10.8 48.0 57.0 31.6 57.5 23.0

0 5 9.7 46.2 59.6 30.9 59.6 23.3
0 10 9.9 46.7 59.3 31.0 59.7 23.0
0 15 10.1 47.7 58.8 31.2 60.0 22.6

2 5 9.9 44.6 58.6 31.0 56.7 23.5
4 10 10.3 46.7 57.6 31.2 57.1 23.0
6 15 11.0 48.7 56.0 31.8 58.0 22.6
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Beamforming

The results for the LCMV beamforming simulations are 
summarised in Table 6 and Fig. 6. As for dipole model-
ling, errors of < 10mm are attainable for shallow sources 
at all sensor position error levels included in the simu-
lations. Sensor position error has a larger effect on the 
localisation performance than the orientation error, 
although the cumulative effect of both error types is even 

higher. Furthermore, the OPM array has superior localisa-
tion accuracy compared to either SQUID array, even with 
substantial mis-coregistration. The SQUID array including 
the gradiometers performed slightly worse than the array 
consisting only of magnetometers, regardless of source 
depth.

Effects of Sensor Array Density

We ran an additional simulation for a 102-sensor OPM 
array, both without any mis-coregistration and with the 
maximum level of mis-coregistration used in this study 
(6-mm RMS position error, 15◦ RMS orientation error). 
The amount of forward-model error of the mis-coregis-
tered 102-sensor array was smaller than that of the more 
dense array (RE for 102- and 184-sensor array: 24.5% 
and 34.9% for shallow sources, 20.8% and 28.2% for deep 
sources). However, CCs were similar for both arrays (CC 
for 102- and 184-sensor array: 97.0% and 96.9% for shal-
low sources, 97.9% and 97.9% for deep sources). Source 
estimation results were affected in different ways. For MNE 
simulations without mis-coregistration, the denser array 
had slightly better localisation performance than the sparse 
array (mean PPE for 102- and 184-sensor array: 9.3 and 
8.7 mm for shallow sources, 26.7 and 26.0 mm for deep 
sources). For dipole modelling, the dense array had higher 
sensor localisation performance without mis-coregistration 
(mean DPE for 102- and 184-sensor arrays: 7.7 and 7.3 mm 
for shallow sources, 16.1 and 15.8 mm for deep sources). 
However, when mis-coregistration was present, the MNE 
results from the sparser array were affected less, to the point 

Table 6   Mean error between true source locations and the maxima of 
the beamformer �-estimate

Sensor type RMS sensor-wise error Shallow 
sources
error 
[mm]

Deep sources
error [mm]

Position 
[mm]

Orientation [ ◦]

Mag-SQUID 0 0 10.7 19.6
All-SQUID 0 0 11.4 21.5

OPM 0 0 7.9 16.2

2 0 8.0 16.2
4 0 8.5 16.4
6 0 9.1 16.8

0 5 7.9 16.2
0 10 8.1 16.4
0 15 8.3 16.5

2 5 8.1 16.3
4 10 8.7 16.5
6 15 9.4 17.0

a b

Fig. 6   Effects of mis-coregistration on LCMV beamforming as quan-
tified by the distance between the true source location and the max-
ima of the beamformer �-estimate. a Distributions shown as density 

plots. b The mean difference in source localisation error compared to 
the reference array over all subjects at the highest error levels
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that it had superior source localisation accuracy compared 
to the 184-sensor array (mean PPE for 102- and 184-sensor 
arrays: 10.8 and 11.4 mm for shallow sources, 27.9 and 27.9 
mm for deep sources). Dipole modelling in the presence of 
mis-coregistration behaved the opposite way: the sparser 
array had larger source localisation errors than the denser 
array (mean DPE for 102- and 184-sensor arrays: 9.5 and 
8.7 mm for shallow sources, 17.2 and 16.4 mm for deep 
sources). LCMV beamforming performed similarly for both 
the 102-sensor and 184-sensor arrays, both without (mean 
source localisation error for 102- and 184-sensor arrays: 
7.7 and 7.9 for shallow sources, 15.6 and 16.2 mm for deep 
sources) and with mis-coregistration (mean source localisa-
tion error for 102- and 184-sensor arrays: 9.5 and 9.4 mm 
for shallow sources, 16.2 and 17.0 mm for deep sources).

Discussion

In this study, we have investigated the effects of mis-
coregistration of on-scalp MEG sensors, arranged in non-
rigid MEG sensor arrays, on the forward model and source 
estimation. We found superficial sources to be affected 
more than deeper ones. We also discovered that the effect 
of sensor position error was larger than that of the sensor 
orientation. RMS sensor position errors less than 4 mm 
increase any of our source estimation error metrics by no 
more than 8% . Thus, coregistration should not impede 
the adoption of on-scalp MEG, as long as coregistration 
methods whose accuracy fulfils our guideline requirement 
are used.

Simulation Methodology

We designed our simulations according to actual, commer-
cially available OPMs (QuSpin Inc., Louisville, CO, USA); 
the stand-off distance and dimensions of the sensitive vol-
ume represented those of these sensors. The hypothetical 
sensor array was constructed to be maximally dense while 
still fitting the heads of all 10 adult subjects. The assumed 20 
mm × 20 mm scalp footprint of each sensor is a conservative 
estimate of current OPM casings; QuSpin SERF OPMs have 
footprints of 13 mm × 19 mm, and smaller yet sufficiently 
sensitive sensor designs have also been demonstrated (e.g. 
Sander et al. 2012; Alem et al. 2014). However, deploy-
ing current QuSpin OPMs in an EEG-cap-like sensor array 
would be challenging due to the 110 mm length of the sen-
sors on the axis normal to the scalp.

The noise density of 15 fT∕
√
Hz used for the OPMs in the 

dipole modelling simulations was also based on the QuSpin 

OPM. For the Elekta Neuromag® SQUID-based MEG sys-
tem, we assumed 3 fT∕

√
Hz for the magnetometers and 

3 fT∕(
√
Hz ⋅ cm) for the gradiometers, which are typical 

values for this system.
The source estimation methods selected for this study 

represent very different approaches: minimum-norm esti-
mation assumes an extended source distribution and sets a 
general, weak prior that aims at reconstructing the relevant 
part of the measurement with the source distribution that has 
the minimum l2 norm, while dipole modelling uses a very 
strong assumption of a single focal source. LCMV beam-
forming, on the other hand, assumes that the data are gener-
ated by a small number of temporally uncorrelated sources, 
and the beamformer scanning function tested the data for 
dipolar sources. Our simulations were based on single 
dipoles; the simulated signals thus fulfilled the assumptions 
behind dipole modelling and beamforming. MNE produces 
typically rather smeared estimates, making it less accurate 
in localising focal sources than dipole modelling or beam-
forming. Dipole modelling and beamforming are, on the 
other hand, considered to be more sensitive to errors in the 
forward model (Stenroos and Hauk 2013; Hillebrand and 
Barnes 2003). As the simulation setting thus favours dipoles 
and beamforming over MNE, the localization results from 
the different source estimation methods should not be com-
pared. Overall, our simulation scenarios were constructed 
specifically to investigate the effects of mis-coregistration 
on source estimates, not to compare different source estima-
tion methods.

In the dipole modelling and beamforming simulations, 
separate and non-overlapping source spaces were used for 
data generation and source estimation. Thus, any bias that 
could be caused by using the same source space for simula-
tion and estimation was avoided. This procedure also sets a 
lower bound for the dipole position error. The closest point 
in the estimation source space to the data generation source 
space was on average 1.3 ± 0.6mm (mean ± standard devia-
tion). We did not apply different data generation and source 
estimation source spaces to the MNE simulations, as we 
judged the prior of the minimum-norm model to be so dif-
ferent from the simulated single dipoles that the estimation 
grid does not play a major role when the analysis is done 
using distributed metrics.

The parameters used for the LCMV beamforming simu-
lations were chosen as to attain a scenario that specifically 
characterises the effect of mis-coregistration on the source 
estimate. In particular, we chose a very long effective sam-
pling time. Beamformers are known to react differently to 
forward model error, or mismatch, than other source estima-
tion methods: In the presence of forward model errors such 
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as mis-coregistration, high input SNRs may be detrimental 
to source estimation performance. This is well known both 
within the field of neuroimaging (Hillebrand and Barnes 
2003; Dalal et al. 2014) and in other fields utilising beam-
formers (e.g. Cox 1973).

When conducting the simulations, the possibility of 
intersecting or below-scalp sensor housings was not taken 
into account as this situation can happen in reality if errors 
are present in sensor position or orientation measurements. 
However, such a “sanity check” should be implemented in 
real coregistration procedures to ensure that the measured 
sensor positions are reasonable. In particular, if the sensi-
tive volume intersects the head surface, forward modelling 
may produce large errors. In this study, we rejected sensor 
locations for which any integration point was closer than 2 
mm to the scalp.

Effects of Sensor Position and Orientation Errors

Generally, random sensor orientation error produces less 
adverse effects than position error both on the forward mod-
els and source estimation results. Unlike the position error, 
orientation error affects the forward model throughout the 
source space regardless of source position or depth. Addi-
tionally, sensor orientation errors mostly affected the RE 
rather than CC values, suggesting that orientation errors 
primarily alter amplitudes rather than the shapes of topog-
raphies. This phenomenon did not directly translate to the 
source estimation methods included in this study; sensor 
orientation error mostly affected shallow sources rather than 
having a global effect.

The localisation performance of MNE for the simu-
lated focal sources is modest with both the OPM and 
SQUID arrays as demonstrated by the PPE metric, which 
was never below 5 mm, even without any mis-coregis-
tration. Regardless of the localisation accuracy of MNE, 
on-scalp MEG systems possess higher spatial resolution 
than conventional SQUID-based MEG systems, as seen 
as lower SD values in the current work. Similar findings 
were also reported by Iivanainen et al. (2017).

The higher source localisation performance of the 
OPM sensor array in comparison to the SQUID arrays 
was also manifested in the dipole modelling and beam-
forming simulations; the source localisation error was 
consistently smaller for OPM arrays even with substan-
tial sensor position error, regardless of the much lower 
SNR of the OPM arrays. When the OPM noise density 
was set equal to that of current SQUID magnetometers in 
the dipole modelling simulations, the SNR of the OPMs 

was very high, providing a modest improvement in dipole 
localisation accuracy.

LCMV beamforming results were similar to those 
attained by dipole modelling, although beamforming had 
slightly superior source localisation performance (7.9 vs. 
9.7 mm without mis-coregistration). The performance dif-
ference can be explained by the amount of time-domain 
information used: The LCMV source estimate is based on 
a data covariance matrix from multiple samples while the 
other estimators used only single samples.

Interestingly, the full SQUID array with both planar 
gradiometers and magnetometers performed worse in 
LCMV beamforming than the SQUID array consisting 
only of magnetometers. In fact, utilising only the SQUID 
planar gradiometers in the beamformer resulted in worse 
performance (mean source localisation error for shallow 
and deep sources was 18.2 and 19.1 mm, respectively). 
This counterintuitive result is due to the absence of brain 
noise in the simulations, which causes the magnetom-
eters to have much larger SNRs than the gradiometers. 
It would seem that the lower SNRs of the gradiometers 
partially corrupt the data covariance estimate, worsening 
the source localisation performance of the SQUID array 
with both sensor types.

The relative effect of mis-coregistration on source 
localisation accuracy was most pronounced for MNE, 
as shown by the PPE metric. Dipole modelling was less 
susceptible to mis-coregistration when OPMs had a noise 
density of 15 fT∕

√
Hz , however, when the SNR was 

increased by changing their noise density to 3 fT∕
√
Hz , 

the relative effect of mis-coregistration was increased as it 
was no longer masked by noise. LCMV beamforming was 
more sensitive to mis-coregistration than dipole model-
ling at equal SNRs, but not as sensitive as MNE.

Requirements for Sensor Localisation Accuracy

Since the SNR of MEG diminishes with increasing source 
depth, shallow neocortical sources typically dominate 
MEG signals. Therefore, in the following we focus on the 
results for shallow sources. According to our results, an 
RMS sensor position error of 4 mm increases the source 
localisation error by 7% for MNE (change in PPE), 10% 
for dipole modelling (change in DPE, OPM noise density: 
3 fT∕

√
Hz ) and 8% for LCMV beamforming compared to 

error-free coregistration. We also included simulations 
scenarios in which both position and orientation errors 
were present. For example, combined 2-mm and 5◦ RMS 
errors had < 6% effect on sensor localisation accuracy for 
any of the tested source estimation methods. However, 
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RMS errors of 4 mm and 10◦ increased source localisa-
tion errors by 17%, 11% and 10% for MNE, dipole model-
ling and beamforming, respectively. For MNE, the spatial 
spread of the estimate also increases with mis-coregistra-
tion: for example, RMS errors of 4 mm and 10◦ increases 
by 18%.

Ultimately, it is up to the user to decide how accurate 
source estimates are needed for their specific research 
question and methodology, and thus by extension how 
large sensor position and orientation errors can be toler-
ated. Nevertheless, on the basis of our simulation results, 
we propose 4-mm sensor position and 10◦ sensor orienta-
tion RMS errors as a general guideline for the maximum 
acceptable mis-coregistration for large on-scalp MEG sys-
tems. When coregistration errors are smaller than these 
requirements, the on-scalp MEG system performed at or 
above the level of conventional SQUID-based MEG sys-
tems. With larger coregistration errors, the advantage of 
on-scalp MEG may be lost.

These guideline requirements are appropriate for the 
inverse modelling techniques presented in this study. 
Compared to those techniques, other distributed source 
estimates which pose strong priors, typically sparsity of 
the estimate, may be more sensitive to mis-coregistration. 
These methods include minimum-l1-norm estimation 
(Matsuura and Okabe 1995; Uutela et al. 1999), mixed-
norm estimation (Ou et al. 2009; Gramfort et al. 2012) 
and techniques utilising multivariate source prelocalisa-
tion (Mattout et al. 2005).

Interference suppression techniques based on the phys-
ics of the measurement, such as the signal-space separa-
tion (SSS) method (Taulu and Kajola 2005) and variations 
thereof, may also have stricter coregistration requirements. 
For example, Nurminen et al. (2008) showed that highly 
accurate knowledge of array geometry was necessary for 
both SQUID magnetometer and axial gradiometer arrays 
to reach high suppression factors against external magnetic 
field sources when using SSS. Additionally, they reported 
that these accuracy requirements are likely to be even stricter 
for sensor arrays capable of measuring higher spatial fre-
quencies, such as on-scalp MEG systems.

Furthermore, the number of sensors may affect the 
robustness of source estimation results in the presence 
of mis-coregistration. We constructed a sparser 102-sen-
sor OPM array and compared it to the 184-sensor OPM 
array. When the sensor density is increased, co-registration 
errors of the same absolute level become larger in rela-
tion to the inter-sensor distance, which was reflected in 
the larger forward-model relative errors (RE) of the dense 
array. Since the topography correlation coefficients (CC) 

were similar, the larger REs of the dense array stem pri-
marily from relative sensitivity changes without changes 
in topography shape.

Due their differing sensitivities to RE, the robustness of 
source estimation methods could depend differently on the 
channel count. We found that for MNE the sparser array had 
slightly worse source localisation accuracy when no coreg-
istration errors were present, but this sparser array was also 
more robust to mis-coregistration. For dipole modelling, this 
was not the case; in the presence of mis-coregistration, the 
additional sensors in the 184-sensor array provided more 
error tolerance. LCMV beamforming was not affected by 
the number of sensors to the same extent; source localisation 
accuracy was similar for both the 102-sensor and 184-sensor 
arrays, regardless of mis-coregistration.

The results of this study can to some extent be gener-
alised to other novel sensor types than OPMs, as long as 
the sensors are deployed in non-rigid arrays. For example, 
coregistration requirements for arrays comprising high-TC 
SQUIDs are likely similar although it should be taken into 
account that these sensors have a planar sensitive area while 
OPMs have a sensitive volume.

Sensor Localisation Methods

In light of our results, most of the sensor localisation meth-
ods that have been applied in MEG and EEG seem to fulfil 
our guideline requirements; these methods yield < 4-mm 
RMS errors in a head-sized volume when used with care, 
and should thus guarantee source estimation performance 
at least on the level of SQUID-based MEG. For exam-
ple, the Polhemus® 3D electromagnetic digitiser system 
(Polhemus Inc., Colchester, VT, USA) has a reported 
accuracy of 3–7 mm (e.g. Koessler et al. 2010; Baysal and 
Şengül 2010; Dalal et al. 2014). Methods more accurate 
than the Polhemus® system exist, especially the recently-
developed optical ones such as photogrammetry (e.g. Bauer 
et al. 2000; Russell et al. 2005) and structured-light scan-
ning techniques (e.g. Koessler et al. 2011; Ettl et al. 2013; 
Hironaga et al. 2014). However, other factors such as cost, 
ease of use, coverage, and speed may be the decisive fac-
tors in choosing the method. For example, the Polhemus® 
system requires the operator to move a digitiser stylus to 
every sensor, making coregistration more laborious and 
error-prone. This holds true especially if one needs to dig-
itise the sensor orientation as well, requiring one to digitise 
at least two points along the sensor normal. To its benefit, 
the Polhemus® system is proven to work reliably and is 
widely used for coregistration for both EEG and MEG. 
Optical surface mapping methods, on the other hand, have 
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the potential to be fast (Koessler et al. 2011) or even instan-
taneous (Bauer et al. 2000) depending on the implementa-
tion. In contrast to e.g. the Polhemus® system, sensor ori-
entation can be determined from optical scan surface data 
without any additional measurement steps. When using 
optical methods, one needs to identify the individual sen-
sors non-ambiguously. In spite of this complication, optical 
surface mapping methods seem a very promising solution, 
as they can collect large amounts of surface data, includ-
ing the shape of the head and face, very quickly (Koessler 
et al. 2011). However, line-of-sight issues may hinder the 
use of optical coregistration methods depending on how 
the sensors are mechanically supported. Additionally, some 
coregistration methods may not be suited to continuous use 
during measurements, which limits their practical benefits.

In SQUID-based MEG, the Polhemus® system is the 
most widely used coregistration method, although some 
developments using the methods described above have 
taken place; optical scanning systems have been applied 
to MEG (Bardouille et al. 2012; Hironaga et al. 2014; 
Murthy et al. 2014), as well as individualised head casts 
that snugly fit between the head of the subject and the 
helmet-shaped cavity of the dewar (Troebinger et al. 2014; 
Meyer et al. 2017). Similar efforts have been devoted to 
OPM-based on-scalp MEG by Boto et al. (2017), who used 
a head cast for both coregistration purposes and to physi-
cally support the sensors. When the sensors are mounted 
in a fixed geometry, such as a head cast, the coregistration 
problem will be similar to that of current SQUID-based 
MEG, where systematic shifts of the array are the domi-
nant error sources.

Sources of Model Error

Sensor localisation is just one part of the coregistration 
process and thus not the only source of coregistration 
error. Once the position and orientation of the sensors 
and some head surface points (e.g. fiducials) are known 
in a common coordinate system, the surface points are 
typically fitted to MR-images. A variety of methods for 
this fitting procedure exist, e.g. adaptations of the Leven-
berg–Marquardt algorithm (Kozinska et al. 1997, 2001) 
and the ICP algorithm (Besl and McKay 1992). Coreg-
istration procedures using solely the standard anatomical 
landmarks (the nasion and the preaurical points; Jasper 
1958) are considered to be less accurate than those that 
additionally use dense head surface data (Whalen et al. 
2008). In the current study, mis-coregistration was attrib-
uted exclusively to errors in the measurement of sensor 
position and orientation.

Prospects

To date, several research groups as well as commercial 
entities have developed OPMs that can be and have been 
applied to MEG both in humans (e.g. Shah and Wakai 2013; 
Johnson et al. 2013) and animals (Alem et al. 2014). The 
sensors and experimental set-ups vary from single-channel 
measurements using physically very large magnetometers 
(e.g. Xia et al. 2006; Kamada et al. 2015) to compact sen-
sors (e.g. Shah and Wakai 2013; Knappe et al. 2014) that 
could feasibly be deployed in a sensor array covering the 
entire scalp. Even though single sensors theoretically suit-
able for a high-density whole-head array have been devel-
oped, no such system has been demonstrated yet. Remaining 
challenges, apart from coregistration, include improvements 
in magnetic shielding and reduction of sensor cross-talk as 
well as lowering total system cost. An additional practi-
cal challenge for OPM-based MEG is sturdy but adjustable 
mechanical support for a high-density OPM sensor array. 
Using a cap as in EEG might be viable, but it remains to 
be seen if such a solution provides enough mechanical sup-
port for OPMs, which are substantially heavier and larger 
than EEG electrodes and are sensitive to changes in their 
orientation.

Limitations

Some factors that may cause issues related to coregistration 
were not taken into account in the present work. We did not 
include sensor calibration errors, which may be a significant 
source of error for OPM-based source estimation, in our 
simulations. However, the effect of sensor-wise calibration 
error should be similar to that of sensor-wise coregistration 
error, as both error types will distort lead fields in a sensor-
wise manner. Furthermore, we concentrated exclusively on 
the effects of sensor-wise coregistration errors. Systematic 
coregistration errors, as with conventional MEG and EEG, 
may also occur, and their effects were not examined in the 
current work.

Although we touch upon the effects of on-scalp MEG 
sensor array density in this work, that is not our primary 
focus. For more extensive coverage of this issue, see e.g. 
Boto et al. (2016) and Riaz et al. (2017). We did not inves-
tigate any partial-coverage sensor arrays, as the characteris-
tics of partial-coverage arrays (and their source estimation 
performance) must be considered on a case-to-case basis, 
with factors such as scalp coverage and sampling density 
being decided based on the expected signal sources and the 
specific research question.
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Conclusions

In this work, we investigated the effect of errors in sen-
sor positions and orientations in on-scalp MEG arrays. 
We found that position error introduces larger errors in 
the forward model and hampers source estimation perfor-
mance more than the orientation error does. Based on our 
results, we propose < 4-mm RMS position and < 10◦ RMS 
orientation error levels as a general-purpose requirement 
for source estimation in on-scalp MEG. Current coregistra-
tion methods used in both EEG and MEG generally fulfil 
these requirements; thus, coregistration should not pose 
a large problem to the adoption of on-scalp MEG. Yet, 
there is a need for a faster, more reliable and practical 
method for determining on-scalp MEG sensor positions 
and orientations.
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