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In this work the polarizability of a subwavelength core-shell sphere is considered, where the shell
exhibits a radially inhomogeneous permittivity profile. The mathematical treatment of the electrostatic
polarizability is formulated in terms of the scattering potentials and the corresponding scattering ampli-
tudes. As a result, a generalized expression of the polarizability is presented to be dependent of the radial
inhomogeneity function. The extracted general model is applied for two particular cases, i.e., a power-law
profile and a new class of permittivity profiles that exhibit exponential radial dependence. The proposed
analysis quantifies in a simple manner the inhomogeneity effects, allowing the direct implementation of
naturally or artificially occurring permittivity inhomogeneities for a wide range of applications within
and beyond the metamaterial paradigm. Specifically, a special case of symmetric-antisymmetric resonant
plasmonic degeneracy is identified and shown for the case of a core-shell sphere with a power-law permit-
tivity profile. This degeneracy could be used for the experimental identification of inhomogeneity-induced
effects or for applications where a strong coupling resonant regime is required. Furthermore, the described
analysis opens avenues towards the phenomenological and first-principles modeling of the electrodynamic
scattering effects for graded-index plasmonic particles at the nanoscale. Finally, such a description can be
readily used either for the benchmarking of novel computational methods incorporating inhomogeneous
materials or for inverse scattering purposes.
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I. INTRODUCTION

Electromagnetic scattering by a subwavelength sphere
is a canonical and fundamental problem found in the core
of many areas such as RF and optical engineering, bio-
engineering, and material sciences [1–3]. The significance
of this problem reaches from conventional applications,
such as sensing [2] and energy harvesting [4], towards
more exotic ones, such as invisibility cloaks [5], super scat-
terers [6], and optical energy localization [7]. Studies on
subwavelength spherical scatterers unveiled several fun-
damental aspects of the resonant scattering of a sphere, a
testbed for extracting physical intuition for a plethora of
phenomena in physics like the plasmon hybridization and
Fano resonances on single scatterers [8–10].

This universality emerges, perhaps, from the fact that
the scattering response of a small dielectric sphere can
be rigorously quantified by a (normalized) polarizability
expression [11]:

α = 3
ε1 − εh

ε1 + 2εh
, (1)

where ε1 is the permittivity of the sphere embedded in a
host medium of permittivity εh. This simple expression

*dimitrios.tzarouchis@aalto.fi

conveys a wealth of physical phenomena, such as the
position and the width of the localized surface plasmon
resonance (LSPR) or plasmonic resonance (ε1 = −2εh).
The very same expression can be found in a large num-
ber of studies on the modeling of small resonant elements
with dipolelike radiation [12–15]. Therefore, revisiting and
refining the context of this expression can potentially have
an effect on a wide range of disciplines.

In this work, the concept of the polarizability is imposed
to a more general case of a sphere with a radially inhomo-
geneous (graded-index, or RI) permittivity profile. These
kinds of profiles occur either naturally [16], or as a result
of sophisticated engineering processes [17,18]. However,
this category can include even simpler structures, such
as core-shell spheres, which are nothing but inhomoge-
neous spheres with a stepwise permittivity profile. Hence,
by studying the properties of RI spheres we can expand
our current understanding on the effects of partially or
continuously inhomogeneous scatterers.

The concept of an RI profile has a history. In optical and
radio engineering, the Luneburg, Eaton, and Maxwell fish-
eye lenses are characteristic examples of the utilization of
inhomogeneity for tailoring the electromagnetic scattering
response [19–21]. These first examples were initially
analyzed within the geometrical optics approximations.
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Quickly after these problems were reformulated as a
classical boundary value problem using Maxwell equa-
tions, and rigorous remedies were available. Aden and
Kerker, in their seminal work [22] delivered an à-la
Lorenz–Mie solution to the problem of a core-shell struc-
ture, while Wait [23] generalized the stepwise homoge-
neous problem for spheres with n layers. In this way, any
RI profile can be constructed by a stratified sphere with
variable permittivities for each layer. Undoubtedly, this
robust brute-force methodology solves the required scatter-
ing problem, however, without offering physical intuition
on the involved mechanisms.

An alternative treatment for the RI problem is the invari-
ant imbedding technique [24–26]. This technique treats the
step-homogenous problem in its infinite layer limit refor-
mulating the original scattering problem to a problem that
satisfies a nonlinear Riccati equation. Subsequently, the
resulting nonlinear equation is numerically evaluated for a
given permittivity profile. Hence the invariant imbedding
technique can be categorized as a semianalytical approach.
Furthermore, the RI problem has been attacked by sev-
eral different volume-based numerical philosophies (see
for example [27,28]). Apparently, all the aforementioned
remedies are used mostly for designing the scattering
behavior of RI particles. The main drawback of these
methods is that they rarely offer any physical insights on
the involved scattering mechanisms and their particular
characteristics.

One possible treatment that restores the physical intu-
ition is obviously the exact solution of the corresponding
boundary value problem, and the formulated differential
equation (second order) of the radial function, for a given
graded-index profile. A comprehensive overview of the
available exact solutions for the electrodynamic problem
up to the late 1960s can be found in [29], while more recent
works are listed in [30]. For instance, the exact solution
for a sphere with a Luneburg profile has been given by
Tai [31], where the formulated radial differential equation
is satisfied by a hypergeometric function, while Westcott
explored the available exact wave solutions for spherical
stratified media [32].

The corresponding problem of an RI subwavelength
sphere in the electrostatic (Rayleigh) limit and the avail-
able solutions of the inhomogeneous Laplace equation
have also been reviewed in the past [33]. More recent
works on different RI profiles with power-law [34], lin-
ear [35], and polynomial profiles (with some convergence
restrictions) [36] brought into light some features of the
deeply subwavelength RI problem; a systematic study
categorizing all the available analytical solutions for the
electrostatic problem is still missing.

Inspired by the above developments and realizing the
remaining gaps, we revisit the concept of polarizability
towards a generalized description that incorporates the
effects of the inhomogeneous permittivity. Under this fresh

perspective we revisit the known case of a power-law
profile and explore its scattering peculiarities. The pro-
posed model is further expanded towards a new fam-
ily of permittivity profiles with an exact solution, i.e.,
exponentially radial profiles. Results on their resonant
spectrum reveal the existence of several scattering charac-
teristics, such as shifted plasmonic resonances and peculiar
scattering degeneracies for extreme permittivity values.
Specifically, a particular type of symmetric-antisymmetric
resonant plasmonic scattering degeneracy is identified, as
a result of the shell inhomogeneity on a core-shell sphere.

The presented results can potentially stimulate further
discussions about the theory of RI scatterers, their particu-
lar functionalities, and open fertile grounds toward their
experimental implementation on modern energy control
and harvesting applications. The analysis concludes by
reflecting on how the presented results can be used for
scatterers with naturally or artificially occurring inhomo-
geneities, such as particles exposed to temperature and
pressure gradients, irregular shaped and ligand molecules,
and extremely small particles exhibiting smooth bound-
aries. The generalization of the polarizability can also be
particularly useful in connection with inverse scattering
problems [37], where the main objective often is the identi-
fication of unique material inhomogeneities encoded in the
signatures of the observed spectra.

II. THEORY

Let us assume a sphere (Fig. 1, with subscript 0 or h for
external (host), 1 for shell, and 2 for core domain) of radii
r1 and r2, subject to a uniform (z-directed) electrostatic
field causing a scattering potential of dipolar character, i.e.,

�0(r, θ) =
(

−E0r + B0

r2

)
cos θ . (2)

Since the core region consists of a homogeneous material
we have

�2(r, θ) = A2r cos θ , (3)

while the potential in the shell region can be written as

�1(r, θ) = f (r) cos θ , (4)

assuming an arbitrary radial function f (r). The expressions
of the scattered (external, region 0) and the internal (core,
region 2) field (E = −∇�) are divergenceless, and satisfy
the other requirements of the corresponding physical prob-
lem, i.e., the scattered field vanishes at large distances and
has no singularities at the origin [38]. In a similar manner,
we also require divergenceless electric flux density at the
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FIG. 1. A radially inhomogeneous sphere of diameter d1 = 2r1
and radially inhomogeneous permittivity εr(r), with an internal
homogeneous core of radius r2 and permittivity ε2 immersed in
a host medium (εh) subject to a z-polarized plane wave (constant
excitation field in the long-wave approximation).

inhomogeneous region (shell, region 1), viz.,

∇ · D1 = −∇ · [εr(r)∇�1(r, θ)] = 0, (5)

resulting in the following ordinary differential equation
(ODE):

f ′′(r) +
[

2
r

+ ε′
r(r)

εr(r)

]
f ′(r) − 2

r2 f (r) = 0. (6)

The main focus here is to study the cases where Eq. (6)
obtains a closed form solution, hence extracting an analyt-
ical expression for the unknown scattering amplitudes by
solving the formulated boundary value problem. For these
cases one can express the radial function as

f (r) = A1A(r) + B1B(r), (7)

where A(r) and B(r) are two linearly independent solutions
of the radial function. For instance, the case of a homoge-
neous profile gives the well-known expressions A(r) = r
and B(r) = 1/r2.

The extension of the analysis including higher-order
multipoles can be done in a similar manner as described
in [34,35,38]. In this work, we concentrate only on the
main dipole contribution since in many practical cases sub-
wavelength spherical inclusions induce primarily a dipole
field for a given plane-wave excitation. This is due to the
symmetry of the excitation. Different sources, i.e., with
different symmetries such as dipoles or focused beams,
couple efficiently also with higher-order modes. For these
cases a higher-order analysis and treatment is required, a
subject left here for future investigations.

The electric fields for each domain are

E0(r, θ) = E0uz + B0

r3 (2 cos θur + sin θuθ )

E1(r, θ) = − [
A1A′(r) + B1B′(r)

]
cos θur

+ [A1A(r) + B1B(r)]
sin θ

r
uθ

E2(r, θ) = −A2uz,

(8)

where uz = cos θur − sin θuθ . The unknown scattering
amplitudes, B0, A1, B1, and A2, can be evaluated by apply-
ing the continuity of the tangential electric field and normal
flux-density components, expressed in potential form, i.e.,

∂θ�j (rj , θ) = ∂θ�j +1(rj , θ), (9)

and

εj ∂r�j (r, θ)|r=rj +1 = εj +1∂r�j +1(r, θ)|r=rj +1 , (10)

where j = 0, 1. This set of four linear equations can be
compactly expressed in a matrix form AX̄ = b for which
the four unknowns are X̄ = (B0 A1 B1 A2)

T. The system
matrices read

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
r2

1
A(r1) B(r1) 0

2εh

r3
1

εr(r1)A′(r1) εr(r1)B′(r1) 0

0 A(r2) B(r2) −r2

0 εr(r2)A′(r2) εr(r2)B′(r2) −ε2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

and the excitation vector is

b = −E0

⎛
⎜⎝

r1
εh
0
0

⎞
⎟⎠ . (12)

Note that primes denote the differentiation with respect
to r. The determination of the scattering amplitudes at
each region is reduced to a brute-force matrix inver-
sion, an algebraically laborious but rather straightforward
task.

After the modularization of the solution we can shift
our focus on the available permittivity profiles. First, we
consider the power profile that has been studied in [34].
Second, the formulated electrostatic differential equation
of Eq. (6) can be solved for another family of radially
inhomogeneous permittivity profiles, i.e., exhibiting expo-
nential radial dependence of the type e(nr)p

, with two
parameters n and p (p is an integer). In this work, we
focus on two particular exponential profiles, i.e., the lin-
ear enr (p = 1) (exp for short), and the inverse linear
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e1/nr (p = −1) (inv exp). The term linear corresponds to
the power of the exponent nr, and correspondingly its
inverse 1/nr.

Exponential profiles can be applied for several purposes.
For instance, the exponential profile can be approximated
as e(nr)p ≈ 1 + (nr)p when nr → 0 and p ≥ 0. Assuming
that the arbitrary constant n can be of the form bω2

p/ω
2,

where b is a normalization length, the exponential pro-
file gives an approximation of a Drude-like model, where
the plasma frequency exhibits a radial dependence. The
above observation can be generalized for every exponen-
tial profile, allowing the implementation of such profiles
and also the modeling of realistic permittivity distribu-
tions [39,40].

Similar forms of exponential permittivity profiles have
been used as a phenomenological description for the
problem of solution-solvent electrostatic interactions [41].
Here, we take the metamaterial or composite material
approach and analyze exponential profiles from a light-
scattering perspective. It is projected that these kinds of
profiles can be used in an effective material description
of artificially engineered composites or used as a model-
ing fit for an experimentally extracted scattering response,
where the triggered mechanisms require a permittivity
description beyond the standard stepwise homogenous
model.

A. Power-law profile

We start our analysis by assuming a power-law profile,
i.e.,

εr(r) = ε1

( r
b

)n
, (13)

where b is a normalization factor with units of meter and n
is the power factor (n ∈ R). By inserting the above profile
to the general ODE of Eq. (6) we obtain

f ′′(r) + 1
r

(n + 2) f (r)′ − 2
r2 f (r) = 0, (14)

known as the nonhomogeneous Euler-Cauchy differential
equation, which has a solution of the form

f (r) = A1r p1 + B1r p2 , (15)

where

p1,2 = −1
2

[
n + 1 ∓

√
(n + 1)2 + 8

]
, (16)

are the power factors of the solution. These factors exhibit
certain interesting properties. For example, p1 and p2 are
always of different sign for any value of n, and their
product is constant, i.e.,

p1p2 = −2. (17)

The limiting cases are limn→+∞ p1(n) = 0 and
limn→−∞ p1(n) = +∞, while p1(0) = 1 and p2(0) = −2
result in the well-known radial functions of a homoge-
neous permittivity.

B. Linear exponential profile enr

The first exponential profile under examination is the
linear exponential profile, i.e.,

εr(r) = ε1en r
b , (18)

where n can be any arbitrary real parameter, and b is a nor-
malization radius with units (m). For the sake of simplicity,
b is equal to the external radius r1 and will be omitted.

Following Eq. (6), the formulated ODE is

f ′′(r) + 1
r

(nr + 2) f ′(r) − 2
r2 f (r) = 0, (19)

and its solution, expressed in terms of the corresponding
A(r) and B(r) functions, reads

A(r) = 1
n

(
1 − 2

nr
+ 2

n2r2

)
, (20)

and

B(r) = e−nr

r2 , (21)

where both A(r) and B(r) are singular at the origin. This
is a rather counterintuitive fact since the profile (18) is
smooth over the center of the sphere. In order to sidestep
the effects of this behavior, a singularity subtracting core is
required.

C. Inverse-linear exponential profile e1/nr

The second exponential case is the inverse-linear expo-
nential profile (inv exp) expressed as

εr(r) = ε1eb/nr, (22)

with n being again an arbitrary variable, similar to the
exponential profile, and b is the radius normalization fac-
tor, similar to the previous cases (for simplicity here we
also assume b = 1). This leads to

f ′′(r) + 1
nr2 (2nr − 1) f ′(r) − 2

r2 f (r) = 0, (23)

and the associated functions are

A(r) = 2nr − 1
2n − 1

, (24)
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and

B(r) = n
2nr + 1
2n − 1

e− 1
nr , (25)

D. Remarks about A(r) and B(r)

At this end, a couple of necessary observations about the
character of A(r) and B(r) can be drawn. For both cases
of homogeneous and power-law profiles A(r) is a well-
behaving function at the origin (no singularity at r = 0),
while B(r) contains a singularity, e.g., r p1 is smooth at the
origin (p1 > 0 for every n), while r p2 is singular (p2 < 0
for every n).

This observation, however, does not hold for every solv-
able case presented here. In particular, for the exp profile,
both A(r) and B(r) [Eqs. (20) and (21)] are singular at the
origin. In order to overcome this, a singularity extracting
region at the origin (core) is therefore necessary for cal-
culating the polarizability of the core-shell inclusion; the
intact case can be approached as the limiting case of a
vanishing core (r2 → 0). Note that the exp profile has no
singularity at the origin.

On the other hand, for the inverse-exponential profile
both A(r) and B(r) [Eqs. (24) and (25)] are smooth at
the origin when n ≤ 0, a rather counterintuitive result.
This fact creates a rather unusual (in terms of standard
boundary-value problems in electromagnetics) situation
since both A(r) and B(r) satisfy the radial function within
the bounded shell region. This gives a total of three
unknown amplitudes (B0, A1, and B1), making the intact
scatterer case (one interface) an underdetermined system.
Here, we circumvent this by introducing an extra interface
(core region) that completes the required conditions for the
exact determination of the problem.

The inv exp permittivity profile is smooth at the cen-
ter for n → ±∞ since limn→±∞ εr(r) ≈ ε1. However, for
the case when n → 0− we have either an epsilon-near-
zero (ENZ) profile at the center [limr→0− εr(r) ≈ 0], or
limr→0+ εr(r) ≈ ∞. The latter is a form of a perfect
electric conductor- (PEC-)like behavior. Equivalently, the
same limits can be reached when r → 0 and n < 0 and
r → 0 and n > 0, i.e., ENZ and PEC behavior, respec-
tively.

It is evident that these permittivity-induced peculiarities
require the existence of a singularity regularization core
region either as singularity subtraction or as a way to prop-
erly determine the formulated boundary-value scattering
problem. Therefore, the consideration of a general core-
shell setup is necessary for extracting a regular solution
for both exponential profiles and analyzing the more gen-
eral problem of a core-shell scatterer. The validity of our
mathematical analysis is discussed in the Appendix, where
the implementation of a multilayer approach is given and
a comparison between the scattering spectrum is briefly
discussed.

III. ANALYSIS AND DISCUSSION

Once the matrices A, and b are assembled (see Sec. II),
all the unknown field amplitudes can be determined by the
expression X̄ = A−1 · b. The external amplitude B0 rep-
resents the amplitude of the dipolar field created outside
the scatterer, quantifying the dipole strength caused by
the presence of an external field. In other words, param-
eter B0 is nothing but the polarizability of the studied
inclusion [42]. The resulting static polarizability can be
computed as follows:

αs = 3
B0

r3
1E0

. (26)

The extracted electrostatic polarizability quantifies only
the electrostatic effects. This model successfully cap-
tures the radiation enhancement (or Fröhlich condition)
without, however, taking into account any kind of radi-
ation reaction that restores the conservation of energy
for this physical system [12,43,44]. To do so, an imagi-
nary term accounting for the radiation reaction needs to
be introduced to restore the energy balance of this pas-
sive system. This new corrected [or modified long-wave
approximation (MLWA) [44]] quasistatic polarizability
reads [45,46]

αd = −i(2/9)αsx3

1 − i(2/9)αsx3 , (27)

where x = kr1 is the size parameter relative to the host
medium (k is the wavenumber of the host medium). Con-
sequently, the scattering and extinction efficiencies are
written as

Qsca = 6
x2 |αd|2, (28)

and

Qext = 6
x2 �{αd}. (29)

In the following sections all the scattering and extinction
efficiencies depicted are given by Eq. (29), accounting
also for the radiative reaction effects. In this sense, the
validity of the proposed model expands beyond the electro-
static regime, and can be readily used up to moderate-sized
spheres.

At this point it is necessary to refine the way the
extracted dipole-scattering amplitude (polarizability) is
expressed. The inversion of matrix (11) for a general εr(r)
profile can be compactly written as

Bgeneral
0 = Cεr(r1) − ε0

Cεr(r1) + 2ε0
E0r3

1, (30)
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where

C = r1
ε2

[
A′(r1)B(r2) − A(r2)B′(r1)

] + εr(r2)r2
[
A′(r2)B′(r1) − A′(r1)B′(r2)

]
ε2 [A(r1)B(r2) − A(r2)B(r1)] + εr(r2)r2 [A′(r2)B(r1) − A(r1)B′(r2)]

(31)

is the inhomogeneity factor. This complicated but rather
straightforward expression conveys elegantly all the effects
of the inhomogeneity in a core-shell structure.

The form of Eq. (30) facilitates the analysis of pro-
files that do not have an analytical solution, expand-
ing its significance for inverse-scattering problems. For
a given (arbitrary) material profile one can either exper-
imentally or numerically extract the scattering spectrum
of a given inhomogeneous sphere, and fit the phenomeno-
logical description of Eq. (31) to the observed spectrum
by properly adjusting the inhomogeneity factor C. There-
fore, the inhomogeneity factor is directly applicable for
inverse-engineering and scattering purposes.

The case of an intact sphere can be approached by tak-
ing the limit of the inhomogeneity factor C when r2 → 0
in Eq. (31). Generally, this is a function of both A(r)
and B(r). However, for the standard case of well-behaved
functions, i.e., limr→0 A(r) = 0 and limr→0 B(r) = ∞, the
inhomogeneity factor includes only A(r) and its value on
the external boundary of the sphere, viz.,

C = r1
A′(r1)

A(r1)
= r1 [ln(A(r))]′ |r=r1 . (32)

The compact form of polarizability in Eq. (30) might
also be of particular use for the plasmonic-scattering-
enhancement case, since it generalizes the resonance con-
dition in a simple manner, i.e.,

εr(r1) = −2εh

C
. (33)

One can observe that the inhomogeneity factor contributes
directly to the main resonant condition. Finally, when the
radiative reaction is included [Eq. (27)], the resonance
leads to the following complex expression:

εr(r1) = −2εh

C
− i

2εh

C
x3, (34)

implying that the inhomogeneity factor modifies not only
the resonant position but also the width and the maxi-
mum resonant absorption of plasmonic resonance [45,46].
This nontrivial fact enables the unprecedented control of
the scattering process, hence, justifying why or how par-
ticular inhomogeneities (discrete or continuous) affect the
scattering spectrum.

Exact forms of the extended quasistatic polarizabil-
ity are of paramount importance for applications focused
in controlling light-matter interactions, either as single-
scattering effects or as collective effects in composite
devices. For instance, the dispersion engineering prob-
lem can be approached by analytic, closed-form polar-
izability expressions; the effective medium description is
proportional to the single-inclusion polarizability [42,47].

Additionally, knowledge of the RI polarizability gives
direct inspection for the limiting behavior of multilayer
particles, especially when the number of layers increases.
This limiting process obviously can lead to simpler and
physically intuitive understanding regarding which param-
eters affect the scattering behavior of the proposed scat-
terer.

Actually, there is a remarkably large amount of mod-
ern applications, from optical antennas [48] to plas-
monic devices and sensors [13], optical forces [49], and
hot-electron photocatalysis [15,50], where polarizability
expressions give direct estimations on the scattering and
absorptive characteristics of the corresponding systems.
In all the above cases, engineered or stochastic (random)
inhomogeneities of a single particle may significantly
alter the overall scattering behavior. Therefore, closed-
form solutions of RI particles allow the direct study and
implementation of these phenomena.

A. Homogeneous core-shell: inhomogeneity
perspective

A core-shell particle with homogeneous regions (core
ε2, and shell, ε1) is perhaps the simplest case of an inho-
mogeneous profile, with a stepwise function character.
For this case [A(r) = r and B(r) = 1/r2] the polarizability
reads

Bcs
0 = Cε1 − εh

Cε1 + 2εh
E0r3

1, (35)

where the introduced coefficient is

Ccs = −2 + 3
1

1 − ε2 − ε1

ε2 + 2ε1
η3

, (36)

and η = r2/r1 is the radius ratio. The scaling factor C
approaches unity when either η = 0 (no core) or the con-
trast between the core and shell permittivity is zero (ε1 −
ε2 = 0). On the other hand, C = ε2/ε1 for η → 1, and
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the expression leads to the well-known polarizability for
a core-shell sphere [51]

Bcs
0 = (ε1 − εh)(ε2 + 2ε1) + η3(εh + 2ε1)(ε2 − ε1)

(ε1 + 2εh)(ε2 + 2ε1) + 2η3(ε1 − εh)(ε2 − ε1)
E0r3

1.

(37)

The homogeneous core-shell particle has been used as a
conceptual testbed for a great variety of applications, as
stated above. A summary of the most general characteris-
tics can be found in Refs. [51,52]. The response of such a
sphere can be perceived as a combination between a solid
sphere and a cavity where the overall scattering response is
a result of the hybridization of the main plasmonic modes
available for each structure [8]. Briefly, the position, width,
and other qualitative characteristics are a function of all
core-shell material and the radius ratio η.

B. Power profile

The polarizability of an intact sphere with a power pro-
file has been given and studied to a certain extent in works

such as Refs. [34,53]. Here we revisit these results, deliv-
ering additional insights regarding the scattering behavior
of this resonant inhomogeneous sphere. The generalized
polarizability of a core-shell inhomogeneous sphere with a
power profile [Eq. (13)] reads

Bpower
0 = Cεr(r1) − εh

Cεr(r1) + 2εh
, (38)

where the inhomogeneity factor is

Cpower = p2 + p1 − p2

1 − ε2 − p1εr(r2)

ε2 − p2εr(r2)
ηp1−p2

. (39)

Apparently, this result reduces to Eqs. (36) and (37)
when n = 0, p1 = 1, p1 = −2, εr(r1) = ε1, and εr(r2) =
ε1. Inset Figs. 2(a) and 2(c) depict the scattering efficiency
of such a sphere as a function of the permittivity ε1 and the
power factor n, for two distinctive cases, i.e., (a) η = 0.01
and (b) η = 0.1. We observe a smooth redshift of the main
plasmonic resonance as the power factor increases.

(a)

(b)

(c)

(d)

(e)

FIG. 2. The scattering efficiency Qsca (logarithmic scale) as a function of the power factor n, and permittivity ε1 for (a),(b) η = 0.01
(very small core radius) and (c),(d) η = 0.1. In (a),(b),(c), and (d) the yellow regions indicate the radiation enhancement (plasmonic
resonance) while the blue line indicates the scattering minimum. The insets in (b) and (d) depict a detail of the symmetric-antisymmetric
degeneracy observed at the scattering spectrum. Figures (I) and (II) illustrate the (normalized) potential for the antisymmetric (I) and
symmetric (II) resonances for the (d) case, i.e., η = 0.1. Finally, (e) depicts the permittivity profile for the case of η = 0.1, n = 0.9 at
the antisymmetric resonance at ε1 = −2.6087 (orange curve) and the symmetric resonance (blue curve) at ε1 = −3.045, respectively.
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It is obvious that the power factor n offers an extra
degree of freedom for engineering the overall response.
For example, the radius ratio dependence observed in
Eq. (39) exhibits an exponent of the form p1 − p2 =√

(n + 1)2 + 8. This interesting feature reveals that the
power-law profile plasmonic resonances with different
fraction volume, ηp1−p2 , than the volume dependence (η3)
observed in a homogeneous core-shell case [see for exam-
ple Eq. (37)] [52]. Note that for n = −1 this exponent
obtains its global minimum value, i.e., 2

√
2.

Turning now to a simpler case, that of an intact inho-
mogeneous sphere (η → 0), the polarizability expression
reduces to

B0 = p1εr(r1) − εh

p1εr(r1) + 2εh
, (40)

since the inhomogeneity parameter is C = p1. As can be
seen, Eq. (40) exhibits resonant behavior when the condi-
tion εr(r1) = −(2/p1)εh is satisfied. For the limiting cases
when n → +∞, the power factor is p1 → 0, implying that
εr(r1) → −∞, while for n → −∞ we have p1 → +∞
and εr(r1) → 0. Similar trends can be deduced for the
scattering minimum.

It is interesting to note that the existence of a core
gives a zero-pole scattering crossing for values close to
n = 0.36 and n = 0.83 for η = 0.01 and η = 0.1, as can
be seen in Figs. 2(b) and 2(d). This point corresponds to a
degenerate point between the symmetric and antisymmet-
ric resonance. Specifically, the potential distribution for
both antisymmetric (antibonding) and symmetric (bond-
ing) resonances appear in inset Figs. 2(I) and 2(II). The
antisymmetric resonance is characterized by a change of
sign between the external (shell) and internal (core) res-
onances, as can be seen in Fig. 2(I). Equivalently, the
internal and external potential distributions exhibit the
same signs for the case of the symmetric one [Fig. 2(II)].

The plasmon hybridization model suggests that the
resulting resonances of a core-shell structure are due to
the contribution of two distinctive resonances, one of a
solid sphere and its dual shape, i.e., a cavity surrounded
by a metallic material [8]. In our case, the power-law
sphere and cavity problem give two resonances approxi-
mately at ε−

1 = −(2/p1)εh (symmetric, intact sphere) and
ε+

1 = −(p1/2ηn)εh (antisymmetric, intact cavity), assum-
ing that r1 = 1 (normalized value) and r2 = ηr1. Requiring
that both symmetric and antisymmetric resonances occur
at the same point, i.e., ε−

1 = ε+
1 , we obtain the following

expression:

η =
(p1

2

)2/n
. (41)

The extracted condition of Eq. (41) reveals the relation
between the n and the radius ratio η for which a symmetric-
antisymmetric degeneracy occurs. Figure 3 illustrates the
required η as a function of the power factor. We observe

FIG. 3. Plot of Eq. (41), as a function of the power factor n. The
plot validates the exact positions of the symmetric-antisymmetric
degeneracy observed in Figs. 2 (a) and 2(c).

that even for the case of a vanishingly small power fac-
tor, i.e., an almost homogeneous profile, there is always
a proper core-shell ratio that contributes to an observed
degeneracy.

This observation may be the smoking gun for identi-
fying the effects of inhomogeneity in realistically grown
particles, since the symmetric and antisymmetric reso-
nances exhibit several distinctively different scattering
characteristics, such as the internal field distribution shown
by the potential distribution of Figs. 2(I) and 2(II), or
the position of the maximum absorption (see for exam-
ple [52]). From an inverse-engineering perspective this
mechanism reveals that even a small power-law material
inhomogeneity can modify the antisymmetric resonance,
forcing it to be strongly coupled to a trivial plane-wave
excitation, even for the case of an extremely small core.

A similar type of symmetric-antisymmetric degeneracy
occurs also in homogeneous core-shell spheres, this time
only for vanishingly small cores and for a proper contrast
between the core and host permittivities, i.e., ε2 = 4εh for
the case of a dipole-type resonances [52]. Here, however,
the observed degeneracy is controlled by the power factor
n (for a fixed η), i.e., there is always a degeneracy point
even for large core-shell ratios.

Moreover, as can be seen in Fig. 2(d), for values below
the n, the symmetric resonance is dominant, while the
antisymmetric exhibits very weak resonant coupling char-
acteristics, i.e., vanishingly small resonant bandwidth and
strength. Interestingly, this behavior is flipped for val-
ues above the branching power factor. In this case, the
antisymmetric resonance dominates while the symmetric
resonance exhibits weaker characteristics.

From a physical point of view, the symmetric-
antisymmetric plasmonic resonant degeneracy (crossing)
creates a strong coupling regime, a rather attractive fea-
ture for systems where particularly strong light-matter
interactions are required [54–57].
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The observed form of resonant crossing is generally fol-
lowed by an extremely sharp field enhancement at the core
region, an indication that this structure can, in the ideal
lossless case, support eigenmodes that allow almost infi-
nite resonant lifetimes [7,58]. This type of degeneracy is
attributed solely to the existence of a core to the sys-
tem and the ability of tuning the resonances through the
inhomogeneity factor.

At the vicinity of the center of the sphere the inhomoge-
neous permittivity shell exhibits an ENZ behavior allowing
the extreme confinement of electric field. The ENZ shell
behavior has been exploited for the conceptual design of
scattering characteristics (radiative and nonradiative) for
ordinary antennas [59], optical memories [60], and quan-
tum sources [61]. Here the same behavior can be obtained,
essentially affected by the inhomogeneity factor, enabling
a different type of control over the embedded eigenmodes.

C. Exponential profiles

The analysis of the previous section can be repeated in
a rigorous manner for the introduced exponential profiles.
In an attempt to deliver some insights regarding the scatter-
ing peculiarities of such a sphere, we analyze the case of an
intact sphere. As can be seen already from their mathemat-
ical treatment in Sec. II, these particular profiles require
the existence of a regularization core region. Therefore,
the case of an intact sphere and its polarizability can be
approached by repeating the analysis of a core-shell struc-
ture and taking the limit case of a vanishingly small core
(η → 0).

Starting with the linear exp profile, enr, the inhomogene-
ity factor of an intact sphere (η → 0) reduces to

Cexp = 2
en (n − 2) + n + 2

en
(
n2 − 2n + 2

) − 2
, (42)

where for n → 0 we have Cexp = 1. Figure 4 depicts the
plasmonic resonance spectrum at the parametric space of
ε1 and the factor n. One observes that in this case, large
positive n values shift both the scattering zero (Fig. 4
blue valley) and the pole (Fig. 5 yellow peak) toward the
ENZ region. At the limit where n → +∞ both features
(zero pole) finally cancel each other, creating an ultra-
sharp resonant degenerative point, a form of an embedded
eigenstate [58]. However, negative n values lead to strong
shifts of both features towards opposite directions. Obvi-
ously, when n = 0, the pole and the zero coincide with the
homogeneous case, i.e., ε1 = −2 and ε1 = 1, respectively.

This particular profile can be used for describing a scat-
terer that gradually desolves to the host medium. Requiring
that εr(r1) = εh and εr(0) = ε1 (where ε1 can be any
ordinary dispersive material) we obtain that

n = ln
εh

ε1
. (43)

FIG. 4. Scattering efficiency Qsca (in logarithmic scale) for the
linear exponential permittivity profile as a function of the scaling
factor n and the internal permittivity ε1. Note that for large pos-
itive and large negative n values both pole and zero converge or
diverge, as a function of the parameter ε1.

Therefore, for a given special value of n, the exponential
profile can be used as a phenomenological description for
a scatterer with smooth boundaries, such as ligand or irreg-
ular nanoparticles [17,62] or for extremely small particles
that electron density varies smoothly with respect to the
radius (electron spill out) [63].

Note that Eq. (43) is valid for ε1 > 0. In the case
where ε1 < 0, the expressions is generally complex with a
value of n = ln |εh/ε1| + iπ , and the material description

FIG. 5. Scattering efficiency Qsca (in logarithmic scale) of the
inverse-linear exponential permittivity profile as a function of
the scaling factor n and the internal permittivity ε1. Note the
pole-zero scattering degeneracy occur for n → 0+, indicating an
extreme embedded mode.
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is intrinsically complex. In this work, we focus only on the
first approach of such profiles, and hence a thorough anal-
ysis of the impact of a complex power factor n is left for
future studies.

Finally, the inverse linear exponential profile gives an
inhomogeneity factor of the form

Cinv-exp =

⎧⎪⎪⎨
⎪⎪⎩

1 + 1
n

− 1
2n + 1

, n > 0,

2n
2n − 1

, n ≤ 0.
(44)

In this case, the distribution of the inhomogeneity fac-
tor Cinv-exp depends on the sign of the parameter n.
The corresponding spectrum of the inv exp case (Fig 5)
reveals a reverse trend with respect to the exp case. The
homogeneous-profile case with the resonance close to ε1 =
−2 and scattering minimum at ε1 = 1, can be asymptot-
ically reached for n → ±∞, as can be seen in Fig. 5.
On the other hand, small negative values of n cause an
extreme shift of the observed resonance, while the case
of small positive values of n result in pole-zero degen-
eracy at the ENZ limit, akin to the n → +∞ for the
exp case.

At this rather exotic condition, the core of the inv exp
sphere exhibits a PEC behavior that exponentially tran-
sits to an ENZ behavior. Note that the same degeneracy
is observed for both exponential cases and constitutes
an effectively new type of degeneracy, in contrast to
the ones reported in [7,58,59]. The main difference here
comes from the fact that the reported embedded eigen-
modes require a step-homogeneous (discrete) permittivity
profile where one of the interfaces approaches ENZ val-
ues. In this work, the existence of a resonant degeneracy
is predicted this time for a continuously inhomogeneous
permittivity profile. In particular, for the limit where the
degeneracy is observed, e.g., when n → 0+ for the inv
exp profile, the permittivity experiences extreme values
(in the order of 10200 or more for n < 1/2) towards the
inner regions, effectively imitating the hard-wall ENZ trap-
ping requirements [7,58]. In other words, our findings
suggest that a continuously inhomogeneous profile could,
conceptually, support embedded eigenmodes. As a final
remark, these kinds of inhomogeneities can, in principle,
induce a symmetric-antisymmetric degeneracy, similar to
the power-law profile. The key feature for this is the study
of a corresponding core-shell problem, as described in the
previous sections.

IV. CONCLUSIONS

The expression of Eq. (30) generalized the concept of
the homogeneous polarizability, allowing us to rigorously
explore the nontrivial physical mechanisms for a whole
new family of graded-index particles. The introduced

polarizability description offers a direct homogenization
formula for the effective permittivity perspectives in both
a realistic and engineered manner [64]. Additionally, this
description can be used to reverse engineer the inhomo-
geneity coefficient C, fitting to experimental or numerical
data. In this way, the experimentally observed deviations
of the plasmonic resonances on deeply subwavelength
spheres [40] can potentially find simpler phenomenolog-
ical interpretation; the same general form of polarizability
can be extrapolated even for nonanalytically solvable pro-
files, allowing an approximative estimation regarding their
behavior.

In particular, the cases of a power-law, an exponential,
and an inverse-exponential permittivity profile have been
rigorously studied, through the derived exact polarizabil-
ity expressions. The analysis of these structures reveals
a wealth of nontrivial plasmonic scattering characteris-
tics, such as the existence of a scattering degeneracy
between the symmetric-antisymmetric resonances that can
be potentially used as an identification of small inho-
mogeneities, or for applications where a strong cou-
pling resonant regime is required. Additionally, an exotic
case of an embedded eigenmode existent in the inv exp
profile has been identified, i.e., near an exponential a
PEC(core)-to-ENZ(shell) transition. It is evident that the
introduced exact polarizability model is a key concept
for the direct inspection of realistic and other conceptual
inhomogeneity-induced effects.

Aside from the above cases, the analytical study
can be implemented for a wide range of applications
where rigorous modeling of artificially grown inhomo-
geneous structures, e.g., stratified spheres, transformation
optics [65], irregularly shaped particles [62], is required.
In brief, the proposed inhomogeneously refined model can
directly replace the widely used homogeneous polarizabil-
ity description for each of the aforementioned cases.

The same analysis can also be deployed for thermo-
plasmonic and mechanic-plasmonic applications, where
the existence of a temperature and pressure gradient
changes the permittivity distribution, causing an effective
inhomogeneous profile. These thermally induced inho-
mogeneities might lead to improved heat-assisted mag-
netic recording [66] and reinforce our deeper understand-
ing of heat-diffusion problems in plasmonic nanoparti-
cles [67].

Lastly, diffusive effects, especially between interfaces
that follow a radially dependent distribution can be eas-
ily approached by the introduced models, for example, in
heavily doped semiconductor scatterers offering a plethora
of new absorption and scattering functionalities [68]. In
conclusion, it is envisioned that the presented study will
stimulate novel energy control and harvesting ideas for
nanophotonic applications, such as the implementation of
subwavelength plasmonic particles exhibiting Luneburg,
Eaton, or more exotic graded-index profiles.
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FIG. 6. The scattering amplitude B0 (colors in adjusted logarithmic scale) for all three analytical cases (dashed purple lines) compared
with the response of a multilayered sphere of nl = 3 (blue lines), nl = 5 (red lines), and nl = 10 (orange lines) layers. Subfigures depict
(a) the power profile for n = 2, (b) the exponential profile for n = −2, and (c) the inv-exp profile for n = −1. A multilayer sphere with
more than nl = 10 can accurately capture the scattering trends, verifying in this way the validity of the theoretical analysis.
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APPENDIX A: VALIDATING THE ANALYTICAL
MODELS

An available check point regarding the validity of the
mathematical analysis presented in Sec. II can be derived
by comparing the extracted polarizability results with a
step-homogeneous multilayered sphere. The polarizability
of such a multilayered sphere can be enumerated follow-
ing an iterative analysis presented in [35]. The permittivity
of each layer exhibits a constant value, extracted from the
continuous profile. In this sense, the permittivity profile of
the multilayered sphere is nothing but the discretized ver-
sion of each of the aforementioned continuous permittivity
profiles.

Figure 6 depicts a comparison for the three cases, as a
function of the number of layers. As we can see, a multi-
layered structure with more than nl = 10 layers reproduces
the scattering behavior very accurately. In the computa-
tions, the permittivity of layers is taken as the geometrical
mean value between the external and internal radius of
each layer.

It is evident that the analytical models introduced pre-
viously give sound and accurate predictions versus the
multilayer approach. Indeed, the main scattering character-
istics are successfully captured, as can be seen from Fig. 6,
especially regarding the shift of the main resonant charac-
teristics. However, as stated in the introductory section, the
multilayer iterative approach offers little physical insights
on the studied problem. Specifically, all the qualitative
results extracted for the power-law, exp, and inv exp

profiles became obvious only through the introduced ana-
lytical models. In particular, the inhomogeneity factor C
conveys, in an simple manner, the exact scattering behav-
ior at the studied parametric space (permittivity ε1 versus
factor n). Therefore, the present analytical study can shed
light on inhomogeneity-induced scattering peculiarities,
cultivating fertile grounds for the exploitation of RI scat-
terers for engineering purposes, physical phenomenology,
and computational benchmarking.
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