Halli, Petteri; Heikkinen, Joonas J.; Elomaa, Heini; Wilson, Benjamin P.; Jokinen, Ville; Yliniemi, Kirsi; Franssila, Sami; Lundström, Mari

Platinum Recovery from Industrial Process Solutions by Electrodeposition-Redox Replacement

Published in:
ACS Sustainable Chemistry and Engineering

DOI:
10.1021/acssuschemeng.8b03224

Published: 05/11/2018

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Platinum Recovery from Industrial Process Solutions by Electrodeposition—Redox Replacement

Petteri Halli, † Joonas J. Heikkinnen, ‡ Heini Elomaa, † Benjamin P. Wilson, † Ville Jokinen, ‡ Kirsi Yliniemi, § Sami Franssilä, † and Mari Lundström ‡

† Hydrometallurgy and Corrosion, Department of Chemical and Metallurgical Engineering (CMET), School of Chemical Engineering, Aalto University, Otakaari 3 J, P.O. Box 12200, FI-00076 Aalto, Finland
‡ Microfabrication, Department of Chemistry and Materials Science (CMAT), School of Chemical Engineering, Aalto University, Micronova, Tietotie 3, P.O. Box 13500, Fi-00076 Aalto, Finland
§ Department of Chemistry and Materials Science (CMAT), Aalto University, School of Chemical Engineering, Kemistintie 1, P.O. Box 16100, FI-00076 Aalto, Finland

ABSTRACT: In the current study, platinum—present as a negligible component (below 1 ppb, the detection limit of the HR-ICP-MS at the dilutions used) in real industrial hydrometallurgical process solutions—was recovered by an electrodeposition—redox replacement (EDRR) method on pyrolyzed carbon (PyC) electrode, a method not earlier applied to metal recovery. The recovery parameters of the EDRR process were initially investigated using a synthetic nickel electrolyte solution ([Ni] = 60 g/L, [Ag] = 10 ppm, [Pt] = 20 ppm, [H₂SO₄] = 10 g/L), and the results demonstrated an extraordinary increase of 3 × 10⁵ in the [Pt]/[Ni] on the electrode surface cf. synthetic solution. EDRR recovery of platinum on PyC was also tested with two real industrial process solutions that contained a complex multimetal solution matrix: Ni as the major component (>140 g/L) and very low contents of Pt, Pd, and Ag (i.e., <1 ppb, 117 and 4 ppb, respectively). The selectivity of Pt recovery by EDRR on the PyC electrode was found to be significant—nanoparticles deposited on the electrode surface comprised on average of 90 wt % platinum and a [Pt]/[Ni] enrichment ratio of 10¹¹ compared to the industrial hydrometallurgical solution. Furthermore, other precious metallic elements like Pd and Ag could also be enriched on the PyC electrode surface using the same methodology. This paper demonstrates a remarkable advancement in the recovery of trace amounts of platinum from real industrial solutions that are not currently considered as a source of Pt metal.

KEYWORDS: Circular economy, Critical precious metals, Electrochemistry, Green chemistry, Electrochemically assisted cementation

INTRODUCTION

In hydrometallurgical industries, significant amounts of impurities¹−⁵ and some additives⁶−⁸ are present in the base metal (Cu, Ni, Zn)-rich process solutions. The presence of such contaminants can be either detrimental to the process/base metal product or beneficial as they help improve process operation and feasibility. Typically, most impurities are other base metals,²⁴ which subsequently end up in the process bleed solution or leach residue, and the recovery can be a challenge as processing consumes additional chemicals and energy.¹¹,¹² In addition, noble metals like Pt, Pd, and Ag¹¹ can also be present in these types of solutions, albeit at much lower concentrations. It is widely known²⁵ that minor amounts of noble elements can be found in the final products of hydrometallurgical processing like copper, nickel, or zinc cathodes; i.e., the noble metals are “diluted” within the bulk metal. Nevertheless, according to circular economic principles, and more importantly due to the ever-increasing need for critical precious metals, it is essential that the loss of even minor amounts of noble elements into bulk metals be avoided.

The basic idea of electrodeposition—redox replacement (EDRR)—and related methods like surface-limited redox replacement (SLRR)¹⁴—is to deposit a more noble metallic element via the spontaneous redox replacement reaction of a more reactive metal as a result of reduction potential difference between the metals.¹⁵−₂₃ Although SLRR and related methods have been previously utilized on the laboratory scale for the formation of smooth monolayers, mostly relying on underpotential deposition, or nanoparticles, so far only very few studies have made use of the EDRR method specifically for metal recovery—all of them using synthetic solutions: Ag retrieval from synthetic Zn process solutions,²⁶,²⁷ Au recovery from simulated cyanide-free cupric chloride leaching sol-
hydrometallurgical process solutions. In this paper, EDRR is employed as part of a comprehensive Pt, Pd, and Ag. 3

concentrations (<ppm or even <ppb) of critical metals such as production of Ni (2.1 Mt), Cu (19.7 Mt), and Zn (13.2 Mt) is reported. This is despite the fact that the global annual (porous) layer of a sacrificial economy of metals.

decreased while simultaneously enhancing the circular

chemicals, unlike, e.g., precipitation or solvent extraction

complex multimetal process solutions without additional

metallurgy-type solutions. In contrast to the earlier studies, in as a reference electrode (RE), a 25 mm electrode cell with a saturated calomel electrode (B521, SI Analytics)

Co, Cu, Mn, Zn, Pb, and Fe. All synthetic solutions were made using following impurities in the range of 0.001% to 0.01%: Na, Mg, Ca, K, Al, As, Cu, Fe, Ni, Pb, Zn, Cd, Ag, Au, Pd, Pt

■ EXPERIMENTAL PROCEDURE

EXPERIMENTAL PROCEDURE

Materials. Chemicals used in this work included NiSO₄·6H₂O, Pt AAS standard, Ag AAS standard (Alfa Aesar, Germany), and H₂SO₄ (VWR Chemicals, Belgium). All chemicals were of high purity grade except for the technical grade NiSO₄·6H₂O, which contained the following impurities in the range of 0.001% to 0.01%: Na, Mg, Ca, K, Co, Cu, Mn, Zn, Pb, and Fe. All synthetic solutions were made using distilled water. The measurements were conducted in a three-electrode cell with a saturated calomel electrode (B521, SI Analytics) as a reference electrode (RE), a 25 mm × 25 mm × 3 mm type 1 glassy carbon plate (Alfa Aesar) as counter electrode (CE), and PyC (pyrolyzed carbon) as a working electrode (WE). An IviumStat 24-bit CompactStat (Ivium, NL) was employed for the electrochemical measurements, and scanning electron microscope—energy dispersion spectroscopy, SEM-EDS (Leo 1450 VP, Zeiss, Germany, INCA-software, Oxford Instruments, UK) was used for the chemical analysis of the electrodes after each EDRR experiment, whereas a Mira® Tescan GM (Czech Republic) was used for higher magnification imaging. In addition, the components within the two industrial solution samples investigated were determined using either inductively couple plasma—optical emission spectroscopy or high resolution mass spectroscopy, ICP-OES/HR-MS (OES: Iris intrepid, Thermo Fisher Scientific, USA, and HR-MS: Nu AttoM, Nu Instruments Ltd., UK, housed at GTK, Espoo). Prior to analysis, the two sulfate-based industrial process solutions were diluted with 2 vol % HNO₃ in order to prevent any precipitation of the investigated elements during the analysis and to put them in the working range of the ICP-OES/HR-MS. The resulting clear solutions were run on the ICP (OES or MS) along with appropriate blanks and multielement standards prepared from ultrapure 1000 ppm standard solutions. With OES, the linear calibration lines with known concentrations were drawn from blanks and standard solutions before analyzing the samples. The analyses with MS were performed by using a standard liquid sample introduction system involving a 50 μL Meinhardt nebulizer, a cyclonic spray chamber and a single-collector ICP-MS at low mass resolution (Δm/m = 300). The trace element measurements were performed in a mode using peak jumping, 5 blocks with 800 sweeps per block. The peak dwell time of 5 ms.

The composition of industrial solutions #1 and #2 are presented in Table 1, which shows that both solutions had extremely low Pt and Ag content, for example, solution #1 [Ag] = 5.9 ppb and [Pt] < LOD (limit of detection), whereas in solution #2 both Pt and Ag were below the detection limit. While Ni content was high in both solutions (from 141 to 144 g/L), the iron and copper content was determined to be higher in solution #1 than in solution #2 (Fe 16 g/L, Cu 6 g/L vs Fe 4.2 ppm, Cu < LOD). In contrast, the composition of the synthetic solution was 60 g/L Ni, 10 ppm Ag, 20 ppm Pt, and 10 g/L H₂SO₄ with copper present as an impurity (~1 ppm) that originated from the purity of the technical grade NiSO₄·6H₂O used in preparation. The selected concentrations of the synthetic solution ([Ni] = 60 g/L, [Ag] = 10 ppm, [Pt] = 20 ppm) were selected to be representative of the nickel levels in industrial hydrometallurgical base metal solutions, whereas Ag and Pt concentrations were high enough to get a clear response for the EDRR parameter optimization; it is worth noting that according to the literature, the composition of nickel-rich process solutions can vary considerably.

The PyC electrodes used were made via a pyrolysis process that involved the fabrication of a thin epoxy layer on a pyrolytic carbon electrode (PyC) as a working electrode. During optimized EDRR operation, only a very thin (porous) layer of a sacrificial metal is deposited during an ED step, and this is then spontaneously replaced by a nobler metal during redox replacement step (and RR step is performed without the use of any externally applied potential or current). In hydrometallurgy, this process is known as cementation, and thus, the EDRR methodology can also be considered as an electrochemically assisted cementation. Repetition of this procedure multiple times results in a high quality noble metal deposit that enables the selective recovery of, e.g., platinum from complex industrial solutions where it is present at very low concentrations.

Table 1. Compositions of Two Investigated Solutions from an Industrial Hydrometallurgical Plant

<table>
<thead>
<tr>
<th>Solution #1</th>
<th>Solution #2</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Al</strong></td>
<td>ppm</td>
</tr>
<tr>
<td><strong>As</strong></td>
<td>ppm</td>
</tr>
<tr>
<td><strong>Cu</strong></td>
<td>ppm</td>
</tr>
<tr>
<td><strong>Fe</strong></td>
<td>ppm</td>
</tr>
<tr>
<td><strong>Ni</strong></td>
<td>ppm</td>
</tr>
<tr>
<td><strong>Pb</strong></td>
<td>ppm</td>
</tr>
<tr>
<td><strong>Zn</strong></td>
<td>ppm</td>
</tr>
</tbody>
</table>

All results were analyzed by ICP-OES (ppm) or HR-ICP-MS (ppb). LOD = Limit of detection. b-value below detection limit.
The rate of 20 mV/s. During the EDRR experiments, three deposition (0.0 mV over the potential ranges typical for Pt, Ag, and Cu as well as to determine the optimum deposition ($E_d$) and cutoff ($E_c$) potentials for Pt enrichment (Figures 1 and 2). Figure 1 displays a CV with a potential range where the oxidation/reduction peaks of Pt, Ag, and Cu as expected, as indicated. Figure 2A shows a magnification of the Ni reduction area with competing H$_2$ evolution reaction, whereas Figure 2B presents the Ni oxidation occurring during the reverse scan. The equilibrium potential—or OCP (open circuit potential)—of the synthetic solution was measured to be +370 mV vs SCE, and therefore, the cutoff potential ($E_c$) in EDRR was defined to be just below at +350 mV vs SCE.

Figure 3 presents an example of the EDRR data obtained ($E_1 = -175$ mV and $E_2 = +350$ mV vs SCE, $t_1 = 10$ s, $t_2 = 1000$ s and $n = 10$), and all EDRR data recorded showed similar profiles, independent of deposition time or number of cycles.

In the first instance, the EDRR parameters in synthetic solutions were optimized for Pt recovery, primarily $E_1$, $t_1$, and $n$. More information about the definition of the parameters have been outlined previously, and they are also denoted in Figure 3. Three deposition potentials ($E_1$) at a deposition time $t_1 = 10$ s were investigated to ascertain the role of different sacrificial metals. Two of these potentials (−750 and −500 mV and vs SCE) were chosen to be within the nickel deposition region (Figure 2), while the third and most positive deposition potential (−175 mV vs SCE) was selected such that minor elements like Cu and Ag would be deposited in preference to Ni. This is due to the fact that the sacrificial metal, which deposits at the most positive potential, is beneficial in terms of energy efficiency.

Table 2 outlines the metal compositions of the resultant particles as analyzed by SEM-EDS. The amount of platinum in the deposited particles was high (over 90 wt %), and this was found to remain relatively constant irrespective of the applied deposition potential. Nevertheless, the more negative deposition potential of $E_1 = -750$ mV resulted in higher Ni contents—more than eight times—when compared to $E_1 = -175$ mV vs SCE. The same amount of process time (16 h) was used for all three samples (Table 2), although due to cutoff time limitation, this resulted in a different number of cycles ($n$): For $E_1 = -750$ mV vs SCE only 79 EDRR cycles were completed, whereas $E_1 = -500$ mV finished 303 cycles and $E_1 = -175$ mV resulted in a total of 723 cycles. The average times required to complete one EDRR cycle using $E_1 = -750$, −500, and −175 mV vs SCE were 729, 190, and 80 s, respectively, and this behavior indicates that more base metal was deposited at $E_1 = -750$ mV vs SCE, resulting in slower redox replacement step.

Figure 4 shows SEM BSE micrographs of PyC electrodes after 16 h of the EDRR operation and shows that the deposited particles cannot be separately resolved. In addition, these micrographs (Figure 4B and C) also highlight the fact that competitive hydrogen evolution reaction has taken place at the surface—observed as metal-deficient circles in the images—during the electrodereposition step at $E_1 = -750$ and −500 mV. In contrast, the deposition potential of −175 mV vs SCE (Figure 4A) shows no circular patterns, indicating that no significant H$_2$ evolution has occurred, and the deposited material on the surface is primarily smooth with the exception of only a few deposit clusters. Additionally, Figure 5 presents the average current densities (mA/cm$^2$) obtained during the first 50 ED cycles (n = 50) when deposition ($E_1$) potentials of −175, −500, and −175 mV vs SCE were applied. As can be seen, there is a significant difference in the current density obtained when more cathodic deposition potentials are applied, and consequently, a deposition potential of −175 mV vs SCE was selected for the following experiments in order to avoid excess current consumption due to H$_2$ evolution.

Effect of EDRR Cycles and Deposition Time. Figure 6A shows the effect of cycles ($n$) and the deposition time ($t_1$) on the metal content deposited at the PyC electrode with a potential of −175 mV vs SCE. In addition, Figure 6B displays the [Pt/sacrificial elements] ratio, which is a critical factor for determining the recovery in the terms of the product quality obtained. The chemical analyses of the deposits were
conducted with SEM-EDS and the response of PyC electrode itself (i.e., Si, O, and C) was excluded from the data. As can be observed from Figure 6A, both the Pt and Ag content in the deposits is similar (42 wt % cf. 45 wt %) after only 10 EDRR cycles and short deposition time ($t_1 = 2$ s). Nevertheless, when the deposition time is increased—to $t_1 = 5$ and $10$ s, respectively—the proportion of Pt increases with a corresponding decrease in Ag content (Figure 6B and C). This is believed to be due to the fact that at longer deposition times, more sacrificial metal (like Ni or Cu) is deposited, resulting in the longer redox replacement time. Longer redox replacement time seems to favor Pt as it also provides time for the Ag to be first deposited (via RR reaction) and then start to act as sacrificial metal for Pt. From the results, it can also be determined that silver, nickel, and copper contents in the deposited material all reduce with a higher number of cycles. For example, Ni and Cu contents were in the region of 5−15 wt % with $n = 10$, and these decreased to 1−3 wt % with an increase in the number of cycles. This finding suggests that all three can act as the sacrificial metal when the number of EDRR cycles increases beyond $n = 10$. Further analysis of the Pt to sacrificial element (Ni, Cu, and Ag) ratios clearly demonstrates the effect of deposition time; when $t_1 = 10$ s, the highest level of Pt enrichment ($\text{Pt/(Ni + Cu + Ag)} \approx 35$) after 400 cycles was recorded (Figure 6D), indicating that longer durations between deposition steps favors the redox replacement. The results clearly verify the effectiveness of the EDRR method for the recovery and enrichment of Pt metal. When the optimal parameters were used, the Pt/(Ni + Cu+ Ag) ratio increased from $3 \times 10^{-4}$ (solution) to 33.6 (metal deposit), which is equivalent to an enrichment ratio of $\sim 10^5$ for Pt. It is also worth noting that Ag can be enriched when a lower number of deposition cycles are used, for example, $[\text{Ag}] / [\text{Ni}] = 2 \times 10^{-4}$ (in solution) to 4.4 (at the electrode)−an $\sim 2.6 \times 10^4$ enrichment for Ag−after 10 cycles. Investigation of the surfaces using a SEM backscatter imaging (Figure 7) also shows that as the number of EDRR cycles (at $E_1 = −175$ mV) was increased from 10 to 400, and

Table 2. SEM-EDS Results of Metal Particles on PyC Electrodes at $E_1 = −175, −500$, and $−750$ mV vs SCE (60 g/L Ni, 20 ppm Pt, 10 ppm Ag, ~1 ppm of Cu, and 10 g/L H$_2$SO$_4$), Deposition Time $t_1 = 10$ s

<table>
<thead>
<tr>
<th>$E_1$ vs SCE</th>
<th>Pt [wt %]</th>
<th>Ag [wt %]</th>
<th>Cu [wt %]</th>
<th>Ni [wt %]</th>
</tr>
</thead>
<tbody>
<tr>
<td>−175 mV</td>
<td>97.68</td>
<td>1.52</td>
<td>0.67</td>
<td>0.12</td>
</tr>
<tr>
<td>−500 mV</td>
<td>95.95</td>
<td>2.00</td>
<td>0.63</td>
<td>1.42</td>
</tr>
<tr>
<td>−750 mV</td>
<td>94.95</td>
<td>1.49</td>
<td>0.99</td>
<td>2.56</td>
</tr>
</tbody>
</table>

*a N.B. Base material of the PyC electrode (Si, O and C) is excluded from the results.
there is an analogous enhancement in the density of particles that can be observed on the PyC electrode surface.

The average size of the deposited platinum particles on the PyC surface ranged from tens to several hundreds of nanometers as can be observed in Figure 8. This micrograph of the PyC electrode shows that the surface is covered with small clusters deposited platinum, which most likely nucleate preferentially on areas of surface inhomogeneity. Formation of Pt nanoparticles on the surface of the PyC electrode followed the same pattern in every experiment; initially, a small Pt particle forms on the electrode surface during one cycle, followed the same pattern in every experiment; initially, a small Pt particle forms on the electrode surface during one cycle, but most likely nucleate preferentially on areas of surface inhomogeneity. This clustering nature is only observable at higher magnifications as can be observed in Figure 8. This micrograph of the PyC electrode shows that the surface is covered with small clusters deposited platinum, which most likely nucleate preferentially on areas of surface inhomogeneity.26,37 For the first 50 EDRR cycles, as can be seen by comparison between Figure 4 (60 g/L Ni, 20 ppm Pt, 10 ppm Ag, ∼1 ppm of Cu and 10 g/L H2SO4).

Comparison of EDRR and EW. In order to compare the efficiency of EDRR to the more traditional electrochemical recovery method electrowinning (EW), i.e., electrodeposition without a redox replacement step, six EW experiments were performed with synthetic solutions at two EW potentials: (i) −175 mV (equivalent to the E1 potential) and (ii) +350 mV vs SCE (≈E2). The latter potential also favors selective Ag deposition without pulsing (Figure 1), and the time used for EW was equal to the duration of 100 cycles of EDRR deposition. Quality of the deposition produced by EW was compared to the those produced by EDRR at −175 mV vs SCE (for t1 = 2, 5, or 10 s, n = 100) by SEM-EDS analysis of 5 to 10 distinct areas—30 ± 10 × 15 ± 5 μm—on each electrode. N.B. This is in contrast to the analysis presented in Table 2 and Figure 6, where the metal particles were sufficiently large to perform point analysis. The contents of Pt, Ag, and Cu determined from the surface analysis are presented in Figure 9. The area analysis shows that the content of platinum was highest (24.4 wt %, Figure 9) when EDRR was performed at t1 = 10 s and n = 100, while with the equivalent EW experiment the corresponding Pt content was only 9.7 wt %. Further results from deposition times of 2 and 5 s also show a 2–10 fold increase in platinum content for EDRR vs EW. Overall these differences, determined between the Pt enrichment with EDRR when compared to EW, clearly demonstrate how critical the redox replacement step is for the recovery of Pt from ≤ ppm-level solution concentrations.

Recovery of Pt, Ag, and Pd from Industrial Process Solutions. The applicability of the EDRR method for Pt recovery from complex multimetal solutions was verified with real industrial hydrometallurgical solutions (Table 1). Solution #2 comprised solution #1 that had been purified via an industrial precipitation process that resulted in a lower concentration of both impurities and precious metals.

Industrial Process Solution #1. On the basis of the results from the EDRR optimization experiments with synthetic solution, the following parameters were used with solution #1 for Pt recovery: n = 10–400, t1 = 2–10 s, t2 = 1000 s, E1 = −175 mV, and E2 = +350 mV vs SCE. N.B. Industrial solution #1 contained almost double the level of nickel as the synthetic solution investigated (140 g/L vs 60 g/L) and a significantly lower level of Pt (<LOD) and Ag (4.4 ppb). Moreover, the copper content of the solution was also much higher in industrial solution #1 (5850 ppm) and contained relatively high levels of Pd (∼100 ppb) in contrast to the synthetic solution. Figure 10A outlines the content of Pt on the surface of PyC as a function of deposition time (n = 10), whereas Figure 10B displays the respective Pd and Ag contents. As can be seen, the level of Pt increases almost linearly with longer deposition times from t1 = 2 to 10 s, and as the most noble metal, it is major replacement metal (up to 80 wt %). However, deposited Pd and Ag is clearly lower, and behavior is more transient (Figure 10B). The results suggest that Ag dominates over Pd at short t1 (2 s) and long t1 times (10 s), whereas in the interim periods (t1 = 4, 6, 8 s) Ag and Pd are present at a similar level in the Pt-rich deposits. One possible reason could be that especially at short deposition times—which lead also to short redox replacement times (Figure 10C)—Ag predominates over Pd. Currently, the reason for this is unknown, but
results from the literature related to electroless plating indicate that the activation energy ($E_a$) for Ag can be lower ($\sim 50$ kJ/mol) than that for Pd ($\sim 62$ kJ/mol). It is also possible that the complex chemistry of such industrial solutions will have an effect on redox replacement behavior, especially when compared to simpler standardized solutions. Nevertheless, such hypotheses remain highly speculative, and the exact nature of the Ag and Pd redox replacement behavior in the complex industrial solution is to be studied further. The levels of enrichment achieved is remarkable given that the contents of Pt, Pd, and Ag in the industrial hydrometallurgical solution were only <LOD, 117, and 4.4 ppb, respectively (Table 1).

Figure 10C outlines the Pt/Ni ratio obtained after the first 10 cycles and the time needed to complete all these $n = 10$ cycles. N.B. The time spent for the deposition, $t_1 = 2$–$10$ s, is excluded from the results in order to better correlate the actual redox replacement times. As can be observed, the total time needed for redox replacement increased linearly with the increasing deposition time, while in contrast the $[\text{Pt}]/[\text{Ni}]$ ratio obtained increased exponentially. This clearly demonstrates that longer deposition times result in the presence of more sacrificial base metal deposition, and as a result, the subsequent Pt replacement reaction duration needed to achieve the cutoff potential (+350 mV vs SCE) is also prolonged. When the deposition time was changed to 10 s (from $t_1 = 2$ s), the $[\text{Pt}]/[\text{Ni}]$ ratio on the electrode underwent a 100-fold increase from 9 to $\sim 900$. Figure 10D shows the effect of current density during the deposition (ED step) on the average time needed for one RR cycle. As expected, when the average cathodic current density was at the lowest level, the time required to complete the RR cycle was also the shortest; i.e., as less base metal is deposited during the ED step, the cutoff potential resulting from the replacement between sacrificial and more noble metals is reached faster.

In order to further understand the effect of the number of EDRR cycles on the enrichment behavior from industrial solutions, experiments were performed with 100, 200, and 400 cycles for $t_1 = 8$ and 10 s. Figure 11 shows that the platinum content in the measured deposits varied between 65 and 90 wt % depending on the parameters utilized. At the same time, the $[\text{Pt}]/[\text{Ni}]$ ratio of the deposits displays a similar behavior as the Pt content becomes more significant cf. other elements with a maximum Pt enrichment ratio of $7.6 \times 10^{10}$ achieved at $t_1 = 10$ s and 100 cycles. Figure 11B shows that the concentration of Pd (<1 wt %) and Ag (<4 wt %) is relatively
low when compared to the Pt content (60–90 wt %); nevertheless, the enrichment of these elements is also significant.

**Industrial Process Solution #2.** In order to confirm the ability of EDRR to recover precious metals, another industrial solution (solution #2)—an industrially purified version of #1 with precious metal contents below the detection limit of HR-ICP-MS—was also investigated. In these experiments, the cutoff time ($t_c$) was reached before cutoff potential ($E_2$), in contrast to the previous investigations performed at higher concentrations. Figure 12 shows that the valuable metal recovery was successful even at these ultralow ($\leq$ppb) concentrations. The actual enrichment ratios could not be calculated due to limit of detection in the original industrial solution analysis, but when taking threshold value for Pt detection by HR-ICP-MS (LOD = 1.3 ppb), a truly outstanding enrichment ratio for platinum was achieved of at least $7.2 \times 10^{10}$.

**Summary of Enrichment Ratio.** Enrichment ratios of Pt, Pd, and Ag were determined from their original ratios to nickel in the industrial solution and from the deposits on the PyC electrode. Table 3 summarizes the calculated enrichment ratios using the element specific LOD values (Pt = 1.3 ppb, Pd = 2.17 ppb, Ag = 1.3 ppb) where necessary. The results shown in Table 3 are remarkable and clearly demonstrate the power of the EDRR method for recovering valuable and critical elements from industrial complex multimetal solutions where concentrations are at the ppb level. Moreover, with the indicative contents of Pt, Pd, and Ag in the solution (measured values below LOD), the calculated enrichment ratios for Pt, Pd, and Ag were several times higher.

In addition, the platinum concentration on the surface of the PyC electrodes was measured to be around 90 wt % with a Pt/Ni ratio ca. 900. When the number of EDRR cycles ($n$) was increased, the platinum concentration was also found to be enhanced. The EDRR method was able to recover Pt, Pd, and Ag from industrial process solutions with $\leq$ ppb level concentrations. The highest metal contents analyzed on PyC were 90 wt % (Pt), 2.1 wt % (Pd), and 5.5 wt % (Ag) from

---

**Figure 7.** BSE micrographs of the employed electrodes when applying deposition potential of $-175$ mV vs SCE for 10 s and varying the EDRR cycles: $n = 10$ (A), $n = 100$ (B), $n = 200$ (C), and $n = 400$ (D). The solution contained 60 g/L Ni, 20 ppm Pt, 10 ppm Ag, $\sim 1$ ppm of Cu, and 10 g/L H$_2$SO$_4$.

**Figure 8.** Secondary electron micrograph of the PyC electrode after EDRR at $E_1 = -175$ mV vs SCE for 10 s with $n = 400$.

**Figure 9.** Comparison between EDRR ($-175$ mV, 100 cycles) and EW ($-175$ and $+350$ mV vs SCE) on the platinum contents on the surface of the PyC. Solution contained 60 g/L Ni, 20 ppm Pt, 10 ppm Ag, $\sim 1$ ppm of Cu, and 10 g/L H$_2$SO$_4$. 
solution #1 and 85 wt % (Pt), 0.2 wt % (Pd), and 3.0 wt % (Ag) from solution #2.

In conclusion, this paper clearly demonstrates the outstanding performance of EDRR combined with the PyC electrode in the recovery of precious metals from solutions where they are present below the detection limits of HR-ICP-MS. Moreover, it is worth noting that this methodology is selective for platinum—a critical catalysis element—without the need for any chemical additions, which makes this methodology competitive with respect to traditional cementation processes. This was enabled by the use of a novel high surface area pyrolyzed 3D carbon (PyC) electrode material. The deposition potential (−175 mV vs SCE) was found to be very effective in terms of recovering Pt from a concentrated synthetic NiSO₄ solutions, and it was also observed that Pt also

Figure 10. Recovery of valuable metals from industrial solution #1: (A) Pt, (B) Pd, and Ag. (C) Pt/Ni ratio and time needed to complete 10 RR cycles, and (D) applied current density during ED step and average time needed to complete one RR cycle. The EDRR parameters were: t₁ = 2−10 s, E₁ = −175 mV, and E₂ = +350 mV vs SCE. The base material of PyC is excluded from the results.

Figure 11. Effect of EDRR cycles, n, on the valuable metal content and the product quality from industrial solution #1: (A) Pt/Ni ratio and Pt content and (B) (Ag+Pd)/Ni and the Ag and Pd contents. The EDRR parameters were E₁ = −175 mV and E₂ = +350 mV vs SCE, t₁ = 8 or 10 s, t₂ = 1000 s, and n = 100, 200 or 400.
replaced the deposited Cu and Ag via the redox replacement process, resulting in a product quality of Pt > 95 wt %.

Overall, this paper shows that EDRR in industrial hydrometallurgical solutions provides new opportunities for the circular economy of critical metals and can effectively recover Pt from very complex industrial Ni solutions even when present at concentrations ≤ ppb.

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: mari.lundstrom@aalto.fi.

ORCID

Petteri Halli: 0000-0002-1803-7632
Kirsi Yliniemi: 0000-0003-2536-388X

Author Contributions
All authors have given approval to the final version of the manuscript.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work has been financed and supported by the Association of Finnish Steel and Metal Producers (METSEK-project) and “NoWASTE” project (Grant 297962) funded by Academy of Finland. In addition, “GoldTail” (Grant 319691) funding by the Academy of Finland is acknowledged. J.J. Heikinen is supported by the Aalto School of Chemical Engineering doctoral programme, and the research also made use of the Academy of Finland funded “RawMatTERS Finland Infrastructure” (RAMI) based at Aalto University together with the electrode fabrication utilized the facilities of Micronova of the OtaNano infrastructure. The KAUTE Foundation is also greatly acknowledged by P. Halli, and the authors also thank Hugh O’Brien from the Geological Survey of Finland (GTK) for conducting the HR-ICP-MS analyses.

Table 3. Calculated Enrichment Ratios of Pt, Pd, and Ag from Industrial Solutions

<table>
<thead>
<tr>
<th>Solution</th>
<th>Pt</th>
<th>Pd</th>
<th>Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>7.6 × 10^10</td>
<td>1.4 × 10^6</td>
<td>1.0 × 10^5</td>
</tr>
<tr>
<td>#2</td>
<td>7.2 × 10^10</td>
<td>4.3 × 10^7</td>
<td>2.5 × 10^7</td>
</tr>
</tbody>
</table>

■ REFERENCES

(11) Dorfling, C.; Akdoğan, G.; Bradshaw, S. M.; Eksteen, J. J. Estimation of Rh, Ru, and Ir leaching kinetics during the sulfuric acid pressure leaching of Ni–Cu matte as a function of temperature, pressure, and acid concentration. Hydrometallurgy 2013, 138, 21–32.


