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Abstract: The problem of user scheduling with reduced overhead of channel estimation in the uplink of massive multiple-input
multiple-output (MIMO) systems has been investigated. The authors consider the COST 2100 channel model. In this paper, they
first propose a new user selection algorithm based on knowledge of the geometry of the service area and location of clusters,
without having full channel state information at the BS. They then show that the correlation in geometry-based stochastic
channel models (GSCMs) arises from the common clusters in the area. In addition, exploiting the closed-form Cramer–Rao
lower bounds, the analysis for the robustness of the proposed scheme to cluster position errors is presented. It is shown by
analysing the capacity upper bound that the capacity strongly depends on the position of clusters in the GSCMs and users in
the system. Simulation results show that though the BS receiver does not require the channel information of all users, by the
proposed geometry-based user scheduling algorithm the sum rate of the system is only slightly less than the well known greedy
weight clique scheme.

1 Introduction
Massive multiple-input–multiple-output (MIMO) is a promising
technique to achieve high data rate [1–3]. However, high-
performance multiuser MIMO (MU-MIMO) uplink techniques rely
on the availability of full channel state information (CSI) of all user
terminals at the base station (BS) receiver, which presents a major
challenge to their practical implementation. This paper considers
an uplink MU system, where the BS is equipped with M antennas
and serves Ks decentralised single antenna users (M ≫ Ks). In the
uplink mode, the BS estimates the uplink channel and uses linear
receivers to separate the transmitted data. The BS receiver uses the
estimated channel to implement the zero-forcing (ZF) receiver,
which is suitable for massive MIMO systems [4]. To investigate
the performance of MIMO systems, an accurate small-scale fading
channel model is necessary.

Most standardised MIMO channel models such as IEEE 802.11,
the Third Generation Partnership Project spatial model and the
COST 273 model rely on clustering [5]. Geometry-based stochastic
channel models (GSCMs) are mathematically tractable models to
investigate the performance of MIMO systems [6]. The concept of
clusters has been introduced in GSCMs to model scatterers in the
cell environments [6]. In [7], Samimi and Rappaport use clusters to
characterise an accurate statistical spatial channel model in
millimetre-wave (mmWave) bands by grouping multipath
components (MPCs) into clusters. mmWave communication
suffers from very large path losses, and hence requires large
antenna arrays in compensation. [6]. This paper investigates the
throughput in the uplink for the massive MIMO with carrier
frequency in the order of 2 GHz, but the principles can also apply
to other frequency bands including mmWave.

Most existing massive MIMO techniques rely on the
availability of the full CSI of all users at the BS, which presents a
major challenge in implementing massive MIMO. As a result,
massive MIMO techniques with reduced CSI requirement are of
great interest. An important issue in massive MIMO systems is
investigating user scheduling, in which MU diversity gain with
imperfect CSI is considered [8]. Recently, a range of user
scheduling schemes have been proposed for large MIMO systems.
Most of these such as that described in [9] require accurate
knowledge of the channel from all potential users to the BS –

which in the frequency-division duplex (FDD) massive MIMO
case is completely infeasible to obtain. In [10], Xu et al. proposed a
greedy user selection scheme by exploiting the instantaneous CSI
of all users. However, in this paper we focus on a simplified and
robust user scheduling algorithm, by considering massive MIMO
simplifications and the effect of the cell geometry.

1.1 Contributions of this work

This work investigates a new user selection algorithm for high-
frequency stochastic geometry-based channels with large numbers
of antennas at the BS receiver. We investigate user scheduling by
considering the massive MIMO assumption. The proposed
geometry-based user scheduling (GUS) is similar to the greedy
weight clique (GWC) algorithm, but with a different cost function.
In the GUS algorithm, the BS selects users based only on the
geometry of the area, whereas in the GWC the BS uses the channel
of the users for user scheduling. Given a map of the area of the
micro-cell, we perform efficient user scheduling based only on the
position of users and clusters in the cell. In GSCMs, MPCs from
common clusters cause high correlation which reduces the rank of
the channel. In this paper, we investigate the effect of common
clusters on the system performance. Moreover, we assume that the
space-alternating generalised expectation (SAGE) algorithm [11,
12] is used (offline) to estimate the direction of arrival (DoA) and
the delay of the path. The performance analysis shows the
significant effect of the distinct clusters on the system throughput.
We prove that to maximise the capacity of system, it is required to
select users with visibility of the maximum number of distinct
clusters in the area. Next, we show that the position of clusters in
the area can be given by geometrical calculation. Our results and
contributions are summarised as follows:

• Close analytical approximations for massive MIMO systems are
found.

• Using the map of the area and positions of users, a new user
scheduling scheme is proposed under the assumption of no CSI
at the BS, other than the location of clusters. Since the positions
of clusters in the area are fixed, we assume that cluster
localisation can be done offline.
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• Simulation results show that the proposed scheme significantly
reduces the overhead channel estimation in massive MIMO
systems compared with conventional user scheduling
algorithms, especially for indoor and outdoor of micro-cells.

• To investigate the robustness of the proposed algorithm to
cluster localisation, the performance degradation is shown for
different values of the error in cluster localisation and simulation
results show the robustness of the proposed user scheduling
algorithm to poor cluster localisation.

1.2 Outline

The rest of this paper is organised as follows. Section 2 describes
the system model. The proposed user scheduling scheme is
presented in Section 3. Section 4 presents performance analysis of
the proposed user scheduling with no estimated CSI. The
robustness of the proposed user scheduling algorithm to cluster
localisation errors is investigated in Section 5. Numerical results
are presented in Section 6. Finally, Section 7 concludes this paper.

1.3 Notation

Note that in this paper, uppercase and lowercase boldface letters
are used for matrices and vectors, respectively. The notation E{ ⋅ }
denotes expectation. Moreover, | ⋅ | stands for absolute value.
Conjugate transpose of vector x is xH. Finally xT and X† denote the
transpose of vector x and the pseudo-inverse of matrix X,
respectively.

2 System model
We consider uplink transmission in a single cell massive MIMO
system with M antennas at the BS and K > M single antenna users.
The M × 1 received signal at the BS when Ks(Ks ≪ M) users have
been selected from the pool of K users, is given by

r = pkHx + n, (1)

where x represents the symbol vector of Ks users, pk is the average
power of the kth user and H denotes the aggregate M × Ks channel
of all selected users. The BS is assumed to have CSI only of the
selected users. We are interested in a linear ZF receiver which can
be provided by evaluating the pseudo-inverse of H, the aggregate
channel of all selected users according to

W = H† = HHH
−1

HH . (2)

Then after using the detector, the received signal at the BS is

y = pkWHx + Wn . (3)

Let us consider equal-power allocation between users, i.e.
p = (Pt/k), in which Pt denotes the total power. The achievable
sum rate of the system is obtained as

R = ∑
k = 1

Ks

log2 1 + p |wkhk|2

1 + ∑i = 1, i ≠ k
K p |wkhi|2

, (4)

where wk and hk are, respectively, the kth rows of the matrix
W = [w1

T, w2
T, …, wKs

T ]T and the kth column of
H = [h1, h2, …, hKs].

2.1 Geometry-based stochastic channel model

In GSCMs, the double directional channel impulse response is a
superposition of MPCs. The channel is given by [13]

h(t, τ, ϕ, θ) = ∑
j = 1

NC

∑
i = 1

Np

ai, jδ(ϕ − ϕi, j)δ(θ − θi, j)δ(τ − τi, j), (5)

where Np denotes the number of MPCs, t is time, τ denotes the
delay, δ denotes the Dirac delta function and ϕ and θ represent the
DoA and direction of departure (DoD), respectively. Similar to
[13], we group the MPCs with similar delay and directions into
clusters. Three kinds of clusters are defined; local clusters, single
clusters and twin clusters. Local clusters are located around users
and the BS while single clusters are represented by one cluster and
twin clusters are characterised by two clusters related, respectively,
to the user and BS side as shown in Fig. 1. A local cluster is a
single cluster that surrounds a user; single clusters can also occur in
a different position. Twin clusters consist of a linked pair of
clusters, one of which defines the angles of departure of multipaths
from the transmitter, whereas the other defines the angles of arrival
at the receiver [13]. There are a large number of clusters in the
area; however, just some of them can contribute to the channel.
The circular visibility region (VR) determines whether the cluster
is active or not for a given user. The MPC's gain scales by a
transition function that is given by

AVR(r̄MS) = 1
2 − 1

π arctan 2 2 Lc + dMS, VR − RC
λLc

, (6)

where r̄MS is the centre of the VR, RC denotes the VR radius, LC
represents the size of the transition region and dMS, VR refers to the
distance between the mobile stations (MSs) and the VR centre. For
a constant expected number of clusters NC, the area density of VRs
is given by

ρC = NC − 1
π RC − LC

2 . (7)

All clusters are ellipsoids in the environment and can be
characterised by the cluster spatial delay spread, elevation spread
and azimuth spread. Once the positions of the BS and users are
fixed, we need to determine the positions of the clusters in the area
by geometrical calculations. For the local clusters, we consider a
circle around the users and the BS, so that the size of the local
cluster can be characterised by the cluster delay spread (aC),
elevation spread (hC) and the position of MPCs [13]. For local
clusters, the cluster delay, azimuth and elevation spreads can be
given by

aC = Δτc0

2 , (8a)

bC = aC, (8b)

hC = dC, BS tan θBS, (8c)

where c0 denotes the speed of light, dC, BS is the distance between
the cluster and the BS, Δτ refers to the delay spread and θBS is the
elevation spread seen by the BS. The delay spread, angular spreads
and shadow fading are correlated random variables and for all
kinds of clusters are given by [14]

Fig. 1  General description of the cluster model. The spatial spreads for
the cth cluster are given
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Δτc = μτ
d

1000
1/2

10στ(Zc/10), (9a)

βc = τβ 10σβ(Yc/10), (9b)

Sm = 10σs(Xc/10), (9c)

where Δτc refers to the delay spread, βc denotes angular spread and
Sm is the shadow fading of cluster c. Moreover, Xc, Yc and Zc
denote correlated random variables with zero mean and unit
variance. Correlated random process can be computed by Cholesky
factorisation [14]. Cholesky factorisation can be used to generate a
random vector with a desired covariance matrix [15]. The MPCs’
positions can be drawn from the truncated Gaussian distribution
given by [13]

f (r) =
1

2πσr, o
2 exp − r − μr, o

2σr, o

2

|r | ≤ rT

0 otherwise,
(10)

where rT denotes the truncation value. For single clusters, the
cluster delay, azimuth and elevation spreads can be given by

aC = Δτc0/2, (11a)

bC = dC, BS tan ϕBS, (11b)

hC = dC, BS tan θBS . (11c)

To get the fixed positions of the single clusters, the radial distance
of the cluster from the BS drawn from the exponential distribution
[13]

f (r) =
0 r < rmin

1
σr

exp − r − rmin

σr
otherwise . (12)

To determine the fixed position of the cluster, the angle of the
cluster can be drawn from the Gaussian distribution with a standard
deviation σϕ, C. For the twin clusters, for both the BS and user side
clusters we have

aC = Δτc0

2 , (13a)

bC = dC, BS tan ϕBS . (13b)

For the BS side cluster, the elevation spread can be given by

hC = dC, BS tan θBS, (14)

while for the MS side cluster, we have

hC = dC, MS tan θMS . (15)

Fig. 1 gives an example of the geometry of the Cth cluster. For
twin clusters, the distance between the cluster and the BS and the
distance from the VR centre and the MS is given by [13]

dC, BS tan ΦC, BS = dC, MS tan ΦC, MS . (16)

The delay of a cluster is represented by [13]

τC = (dC, BS + dC, MS + dC)/c0 + τC, link, (17)

where the geometrical distance between twin clusters is
represented by dC, dC, MS denotes the geometrical distance between
the user and the centre of the VR, dC, BS refers to the distance
between the BS and the cluster and finally τC, link is the cluster link

delay between the twin clusters. Hence, the cluster power
attenuation is given by [13]

AC = max exp −kτ(τC − τ0) , exp −kτ(τB − τ0) , (18)

where kτ denotes the decay parameter and τB is the cut-off delay.
We assume Rayleigh fading for the MPCs within each cluster.
Hence, the complex amplitude of the ith MPC in the jth cluster in
(5) is given by

ai, j = LpAVR ACAMPC e− j2π f cτi, j, (19)

where Lp is the channel path loss, AMPC is the power of each MPC
which is characterised by the Rayleigh fading distribution and τi, j
is the delay of the ith MPC in cluster j given by [13]

τi, j =
dMPCi, j, BS + dMPCi, j, MS

c0
+ τi, C, link . (20)

By assuming a fixed orthogonal frequency-division multiplexing
subcarrier, we can drop the variable τi, j from (39). For the non-
line-of-sight (NLoS) case of the micro-cell scenario, the path loss
expression can be given by [16]

L = 26log10 d + 20log10
4π
λ , (21)

where d and λ denote the distance (in metres) and the wavelength
(in metres), respectively.

3 Geometry-based US
In this section, we consider user scheduling with ZF based on the
position of clusters and users in the area. To avoid a huge channel
estimation load in the uplink of a massive MIMO system with
many users and antennas, we propose to estimate only the channels
of the selected users. The reduction in the amount of channel
estimation required between each transmit and receive antenna is
the important result of the proposed scheme. The gain achieved by
selecting users with the strongest channel is referred to as MU
diversity and requires CSI of all users [17]. However, we propose a
new user selection scheme which relies on maximising the number
of distinct clusters seen by the scheduled users. In the next
sections, we prove that the proposed scheme results in less inter-
user interference and increases the users’ signal-to-interference-
plus-noise ratio and the system's sum rate. In the following section,
we present a scheme to select users which maximises the long-term
sum rate and as it is based on the position of the users and does not
need the estimated channel of all users in the uplink, and hence can
be a practical user selection scheme for large MIMO systems. For
this case, the performance analyses are found in the next section.

3.1 Proposed GUS

In this section, an algorithm is proposed for increasing the system
throughput based on the geometry of the system and without
estimating the channels of all users in the area. Once the set of
active users has been determined, the receiver BS estimates the
channels of the selected users and the users’ transmit data. Next,
the performance of the proposed user selection algorithm to
maximise the sum rate is evaluated. In large MIMO systems with
large numbers of users estimating the channels of all users, it is
practically difficult. So the proposed user scheduling algorithm can
be an efficient way to reduce the overhead of channel estimation.

First, we generate the matrix V, as the following equation:

V =

v1
1 v2

1 … vNC
1

v1
2 v2

2 … vNC
2

⋮ ⋮ ⋱ ⋮
v1

K v2
K … vNC

K

, (22)
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where

vi
j = Lp, i

j AVR, i
j AC, i

j , (23)

where Lp
j denotes the channel path loss for user j, AVR, i

j  is the MPC
power attenuation which is a function of the distance between the
user i and the centre of the VR related to the jth cluster and is given
by (6) and AC, i

j  denotes the cluster power attenuation given by (18)
for the user j and the ith cluster. So, the matrix V is a function of
the distance from the BS to users, the distance of the BS from
clusters and from users to the centre of the VR.
 

Algorithm 1: GUS algorithm

1. Initialise W0 = [1, …, K], S0 = ∅, i = 1.
2. Repeat until |S0 | = Ks.
3. i = i + 1.
4. π(i) = arg maxk ∈ Wi − 1 f ( | |vk | | ) = arg maxk ∈ Wi − 1 | |vk | |,

S0 ← S0 ∪ {π(i)}, v^(i) = v(π(i)).
5. Wi = k ∈ Wi − 1, k ≠ π(i), |vkv^(i)

T | / | |vk | | | |v^(i) | | < ϵh .
6. If |W| = 0, end.

Note that increasing ϵh allows the users to have a larger number
of shared clusters. If the value of ϵh is too high, Algorithm selects
users with a large normalised correlation which can reduce the sum
rate due to the interference in the number of selected users. For a
low ϵh, the number of users in set V0 in step 5 decreases and
Algorithm 1 selects a small number of users. Suppose W0 contains
user indices considered in the proposed algorithm. Finally, S0
contains Ks = |S0| indices of the selected users.

4 Performance analysis
If perfect CSI is available at the BS, and assuming Gaussian input,
the ergodic capacity is given by

C = E log2 det I + Pt
Ks

HHH , (24)

where the term Pt/Ks is due to the equal-power allocation, I is an
identity matrix and the channel matrix is given at the bottom of this
page, where C(K) denotes the clusters seen by the kth user and
α = − 2π(d /λ), where d denotes the spacing between two antenna
elements. In GSCMs, common clusters can reduce the rank of the
channel and the capacity of the system, especially at finite signal-
to-noise ratio (SNR). These common clusters also affect the
multiplexing gain of the system. Fig. 2 illustrates the concept of
common and distinct clusters. When the number of objects is less
than the number of BS antennas and all objects are shared between
the users, achieving maximum multiplexing gain is impossible [18,
19]. 

For ease of mathematical tractability, we analyse the capacity of
a correlated three-user uplink using an upper bound. In the case of
a large number of antennas at the BS, the capacity upper bound can
be achieved in the case of distinct clusters. Note that in the case of
a large number of transmit antennas, the elements of HHH

converge to the correlation matrix so that R ≃ HHH. Hence, we
have

C = E log2 det I + Pt
K HHH

≃ log2 det I + Pt
K R ,

(25)

(see (26)) , where R is the channel correlation matrix and is given
by

R = E HHH =
1 r12 r13

r12
∗ 1 r23

r13
∗ r23

∗ 1
, (27)

where

r12 = E h1
Hh2 = ζ12 ejβ12, (28a)

r13 = E h1
Hh3 = ζ13 ejβ13, (28b)

r23 = E h2
Hh3 = ζ23 ejβ23 . (28c)

The term r12 can be given by (see (29)) , where ai, j, the amplitude
of the i MPCs in cluster j, is given by (39), and the terms r13 and r23
can be derived in the same way. By substituting the terms r12, r13
and r23 into (25), the capacity maximisation problem in a three-user
scenario can be formulated as

C = max
ζ12, ζ13, ζ23β12, β13, β23

log2 (1 + p)3 − p2 ζ12
2 + ζ13

2 + ζ23
2

+ p3 2ζ12ζ13ζ23 sin(β12 − β13 + β23) − ζ12
2 − ζ13

2 − ζ23
2 ,

(30)

where p = (Pt/K). To maximise (30), the gradient search method
results in ζ12 = ζ13 = ζ23 = 0, for different values of β12, β13 and β23,
which is the case when common clusters do not occur between the
users in the cell. In the case of distinct clusters between user m and
user n, we have

rClζmn = E ∑
j ∈ C(n)

∑
i = 1

Np

ai, j ∑
l ∈ C(m)

∑
g = 1

Np

ag, l
∗ = 0. (31)

Equation (31) yields ζmn = 0, which maximises the capacity given
by (30).

Fig. 2  Example of users common cluster which causes correlation
 

H =

∑ j ∈ C(1) ∑i = 1

Np ai, j ∑l ∈ C(2) ∑i = 1

Np ai, l … ∑m ∈ C(K) ∑i = 1

Np ai, m

∑ j ∈ C(1) ∑i = 1

Np ai, j ejα sin ϕi, j ∑l ∈ C(2) ∑i = 1

Np ai, l ejα sin ϕi, l … ∑m ∈ C(K) ∑i = 1

Np ai, m ejα sin ϕi, m

⋮ ⋮ ⋱ ⋮

∑ j ∈ C(1) ∑i = 1

Np ai, j ejα(M − 1)sin ϕi, j ∑l ∈ C(2) ∑i = 1

Np ai, l ejα(M − 1)sin ϕi, l … ∑m ∈ C(K) ∑i = 1

Np ai, m ejα(M − 1)sin ϕi, m,

(26)
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For the case of massive MIMO systems with a large number of
users in the cell, having distinct clusters for all users is practically
difficult. In a real scenario, it is not possible to force the term ζmn
zero. The proposed user scheduling algorithm selects users which
do not have common clusters and consequently forces the variable
ζmn to be small. A threshold is set for the power of a cluster to be
considered active. In the COST channel model, each user interacts
with several clusters in the area and the cluster power depends on
the distance between the user and the centre of VR and also the
distance between the cluster and the BS. We define a threshold
which can determine the minimum power that a cluster may have
relative to the total powers. As in [20], we set the cluster power
threshold to 0.01 × total power for a cluster to be active. A cluster
is shared between two users if contributes to both users, which
means the cluster powers seen by the users are more than the
threshold. Hence, the optimum value of ζmn can be achieved only
when there is no common cluster in the cell.

5 Robustness of the proposed user scheduling
algorithm
5.1 Cluster localisation

The BS can estimate the DoA [21], and hence the direction of the
scattering objects should be available at the BS. There is a well
known algorithm to estimate the delay, DoA and the DoD of the
channel paths; SAGE-based algorithm [11, 12]. As a result, the BS
can identify the direction of the clusters which can be seen by the
users in the cell area, and hence build up a map of the location of
the scattering objects. The convenient tool that has overcome the
challenge of making the position of the scatterers available is the
use of environment maps [13], which also shows how measured
angles of arrival can be identified with physical objects in the
environment, and hence can be located on the map. Successive
interference cancellation has also been introduced in [22] for
scattering object identification: it uses the channel impulse
response peaks in the delay domain to map scatterers to two-
dimensional coordinates.

5.2 Robustness

To study the robustness of the proposed algorithm to cluster
localisation error, we use the well known SAGE algorithm [11, 12],
operating offline, as mentioned above. In cluster localisation, we
consider a receiver BS with an antenna array consisting of M
sensors located at a reference point [11, 12]. Moreover, we
consider planar wavefronts. The closed-form Cramer–Rao lower
bound (CRLB) for the delay, azimuth (ν) and elevation (θ) of the
path are given by [11]

CRLB(τ) = 1
γO

1
8π2BW (32a)

CRLB(θ) = 1
γO

M
2Δ cos(ν) (32b)

CRLB(ν) = 1
γO

M
2Δ, (32c)

where BW is the bandwidth and

Δ = 4π2 d
λ

2 7
3 Mx

3 − 8Mx
2 + 29

3 Mx − 4 , (33)

and

γO = M × I × N × | f (ν) |2 γI, (34)

where I is the number of periods of the received signal, N denotes
the length of the used pseudo-noise sounding sequence available at
the receiver and γI is the SNR at the input of each antenna [11, 12].
Moreover, the antenna electric field pattern can be given by [11]

f (ν) = 0.67 + 2.67ν − 6.79ν2 + 5.7ν3 − 1.71ν3 . (35)

The distance between the BS and cluster (dBS, C) is given by
geometrical calculation

cτ − dBS, C
2 = hBS − hMS + dBS, C sin(ν) 2

+ dBS, MS − dBS, C cos(ν)cos(θ) 2,
(36)

where c denotes the velocity of light, dBS, MS is the distance
between the user and the BS in the x − y-plane and hBS and hMS are
the BS and user heights. The distance between the user and cluster
is easily given by

dMS, C + dBS, C = cτ . (37)

After the offline localisation, the BS can build up the matrix V
~
 at

the beginning of each time slot, as the following equation:

V
~ =

v~1
1 v~2

1 … v~NC
1

v~1
2 v~2

2 … v~NC
2

⋮ ⋮ ⋱ ⋮
v~1

K v~2
K … v~NC

K

, (38)

where

v~i
j = Lp

jA
~

VR, i
j A

~
C, i
j , (39)

where A
~

VR, i
j  and A

~
C, i
j  can be calculated by the distances obtained in

(37). Finally, for the matrix V, the following equation holds:

V = V
~ + E, (40)

where E is due to the estimation error in cluster localisation. Then,
we use V

~
 instead of V in the proposed algorithm. The numerical

results verify the robustness of the proposed algorithm to this error.

6 Numerical results and discussion
In this section, simulation results have been provided to validate
the performance of the proposed schemes with different
parameters.

r12 = E h1
Hh2 = E ∑

j ∈ C(1)
∑
i = 1

Np

ai, j ∑
l ∈ C(2)

∑
g = 1

Np

ag, l
∗

+ ∑
j ∈ C(1)

∑
i = 1

Np

ai, j ejα sin ϕi, j ∑
l = 1 ∈ C(2)

∑
g = 1

Np

ag, l
∗ e− jα sin ϕg, l

+⋯ + ∑
j ∈ C(1)

∑
i = 1

Np

ai, j ejα(M − 1)sin ϕi, j ∑
l ∈ C(2)

∑
g = 1

Np

ag, l
∗ e− jα(M − 1)sin ϕg, l ,

(29)
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6.1 Simulation parameters for COST 2100 channel model

We evaluate the throughput of the system, averaging over 50
iterations. A square cell with a side length of 2 × R has been
considered so that we call R the cell size and also assume users are
uniformly distributed in the cell. As in [4], we assume that there is
no user closer than Rth = 0.1 × R to the BS. We simulate a micro-
cell environment for the NLoS case and set the operating frequency
f C = 2 GHz. The external parameters and stochastic parameters are
extracted from chapter 6 of [14] and chapter 3 of [13]. The BS and
user heights are assumed to be hBS = 5 and hMS = 1.5, respectively.
In (7), NC = 3, RC = 50 and LC = 20. Moreover, we consider
NP = 6 paths per cluster.

6.2 Simulation results

For this network setup, the average sum rate is evaluated for the
three scenarios. In the GUS scheme, it has been proposed that the
receiver BS selects users which maximise the number of distinct
clusters in the cell. We evaluate the average throughput of the
GWC scheme [23, 24] and random selection of users. For the case
of GWC, similar to [24], we set the optimal channel direction
constraint to achieve the best performance for GWC, so the
complexity of GWC is much higher than GUS.

Fig. 3 depicts the average sum rate with total number of receive
antennas at the BS M = 100 and 200, and two values of the
number of selected users Ks = 40 and 50 while adopting the
proposed scheme with ZF receiver. As expected, since GWC
exploits perfect CSI, it has the best throughput. As seen in Fig. 3,
the performance of the proposed algorithm is slightly lower than
the case, in which the BS exploits full CSI and performs GWC.
Interestingly, for bigger cells, the superiority of the proposed
scheme is more obvious in terms of achieving performance close to
that of the GWC scheme. 

In Fig. 4, we have plotted the average sum rate for the case of
GWC and GUS versus total number of users in the cell (K) with
different numbers of receive antennas at the BS M and of selected
users Ks. In terms of average sum rate, Fig. 4 shows that the
proposed scheme results in only a small sum rate reduction even
with a smaller total number of users. 

The amount of channel estimation load required in both GWC
and the proposed GUS is presented in Fig. 5. As this figure shows
the channel estimation load of the proposed GUS is far less than
that of the GWC scheme. 

To investigate the robustness of the proposed scheme to
different values of the error, we set

|e | = Ω × CRLB(ρ), (41)

where |e| denotes the absolute value of the estimation error, Ω is an
integer number and CRLB(ρ) is given by (32a)–(32c), where the
parameter ρ can be the delay, azimuth and elevation. Fig. 6 shows
the average sum rate with total number of receive antennas at the
BS M = 400, and two values of the number of selected users

Fig. 3  Average sum rate versus the cell size for different values of
M = 200, M = 100, Ks = 50 and 40. We set the total number of users in the
cell K = 400

 

Fig. 4  Average sum rate versus total number of users for different values
of M = 200, M = 100, Ks = 50, 40, R = 600 m and 1000 m

 

Fig. 5  Channel estimation load versus value of error of antennas at the
receiver BS for different values of total number of users in the cell

 

Fig. 6  Average sum rate versus the estimation error for different values of
total number of selected users in the cell and the cell size
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Ks = 10 and 40 versus the value of the estimation error. We set the
SNR at the input of each antenna γI = 20 dB and BW = 20 MHz.
Moreover, in (32a)–(32c), Mx = 5, N = 127, which are extracted
from [11]. This figure shows the robustness of the proposed
algorithm to poor cluster localisation.

7 Conclusions
We have investigated the user scheduling problem in massive
MIMO systems and proposed a new GUS scheme which
maximises the uplink throughput of the users, considering the FDD
mode. By applying knowledge of the location of clusters and users
and the geometry of the system, we suppose that the BS does not
need to estimate the channels of all users and selects users based
only on the location of users and clusters in the area. Next,
exploiting CRLB, we have developed a robustness analysis for the
proposed scheme. The results show that while sum rate slightly
decreases along with the reduced overhead of channel estimation,
the proposed algorithm can be an efficient scheme to reduce the
complexity of user scheduling in massive MIMO systems. In
addition, the simulation results demonstrate good robustness
against the estimation error.
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