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ABSTRACT
The emergence of IoT poses new challenges towards solutions for
authenticating numerous very heterogeneous IoT devices to their
respective trust domains. Using passwords or pre-defined keys
have drawbacks that limit their use in IoT scenarios. Recent works
propose to use contextual information about ambient physical prop-
erties of devices’ surroundings as a shared secret to mutually au-
thenticate devices that are co-located, e.g., the same room. In this
paper, we analyze these context-based authentication solutions
with regard to their security and requirements on context quality.
We quantify their achievable security based on empirical real-world
data from context measurements in typical IoT environments.
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1 INTRODUCTION
The emergence of the Internet of Things (IoT) is rapidly and drasti-
cally increasing the number of connected devices. Hence, there is
an increasing need for reliable and usable solutions for provisioning
security associations among devices belonging to the same trust
domain (e.g., Smart Home, Smart Office, etc.). At the same time,
state-of-the-art techniques can’t provide adequate authentication
solutions in such scenarios. Firstly, device pairing protocols like,
e.g., Bluetooth pairing tend to quickly encounter usability limita-
tions in settings with many devices, as it is tedious (and error-prone)
to use a relatively laborious authentication process for every de-
vice separately. Secondly, solutions based on pre-shared keys or
certificates can’t be applied in practice due to the huge number
of IoT device manufacturers that would need to set up a common
key pool or PKI. Manufacturer-specific pre-shared keys also do not
address the problem adequately, since it is not possible to use them
to distinguish between devices belonging to different trust domains
(e.g., Smart Home devices of different neighbors).
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As a solution for IoT device pairing scenarios, several previous
works [7, 8, 10, 11] proposed to use common contextual features
observed by co-located devices as a shared secret to enable them to
authenticate their co-presence in the same contextual environment,
e.g., in the same physical space like a room. The underlying assump-
tion is that the ability to observe common contextual features like
audio is spatially and temporally limited, either by mutual distance
or environmental perimeters like walls. This can be utilized to dis-
tinguish between the devices to be paired and other devices. The
related pairing can be either a one-time user-initiated process, or,
performed implicitly by utilizing the sustained co-presence of de-
vices in mutual proximity as a means to identify devices belonging
to the same trust domain.

Goals and Contributions. In this paper, we revisit the schemes that
have been proposed for context-based device pairing. We analyze
their applicability to IoT scenarios and the security assurance that
they provide. Concretely, we provide following contributions:

• A unified model of the use of context as a shared secret in
authentication applications (Sect. 3),

• A security analysis of proposed schemes taking the entropy
loss incurred by used error-correction schemes and privacy
amplification into account (Sect. 4), and,

• An empirical evaluation of the security of context-based
pairing based on real-world context data from environments
relevant to IoT (Sect. 5).

2 CONTEXT-BASED PAIRING SCHEMES
2.1 System Model
Context-based pairing can be applied in situations in which two
IoT devices A and B do not have a prior security association and
want to establish one because they belong to the same trust domain
D. A trust domain denotes a set of devices that are intended to
be able to communicate with one another and form collaborative
(trusted) ensembles. Typically, devices owned by the same person or
organization form such a trust domain. We also assume that there
is a priori no key management infrastructure for authenticating the
membership of devices A and B in the same trust domain D.

In all context-based pairing approaches [8–11], A and B utilize
measurements of physical features of their ambient surroundings
observed with their on-board sensors for deriving a context finger-
print w. This fingerprint is subsequently used to establish a shared
secret between the devices. These approaches are either based on
demonstrative identification via proximity or implicit context-based
authentication as we describe in the following.
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2.2 Demonstrative Identification via Proximity
In these scenarios, pairing is a one-time operation where the user
demonstratively identifies [1] devices to be paired by placing them
close to each other. Usability considerations dictate that pairing
completes within a few seconds as it is unacceptable for users
to maintain A and B in close proximity for longer periods. This
approach is amenable to mobile devices like smartphones that are
relatively easy to place in any desired constellation. It requires
active involvement of the user to explicitly initiate pairing andmake
sure that no other adversarial devices are within pairing distance
d of either device A or B. Pairing can thus not be automated, as
otherwise devices might pair with any devices sufficiently close
to them. Especially in mobile scenarios, e.g., in crowded public
transport systems this would lead user’s devices to potentially
establish pairings with devices of complete strangers just happening
to stand nearby the user.

ProxiMate by Mathur et al. [8] is a scheme that uses fluctuations
in a radio signal that A and B jointly observe to extract random
secret bits to be used as a shared secret. Its security is based on the
fact that these fluctuations are correlated between A and B only
if they are located within half the wavelength λ of the used RF
frequency of each other. Beyond this distance, no correlation exists.

The scheme by Schürmann and Sigg [10] extracts entropy from
ambient audio and bases its security on the assumption that only
if A and B are located close to each other they can observe similar
audio environment. They extract context fingerprints by observing
significant changes in the sound energy levels at different frequency
bands in order to extract a maximum amount of entropy. In their
approach, both A and B extract context fingerprints w and w′,
respectively, based on their context observations. A uses its finger-
print w to ’hide’ a randomly selected secret s in a fuzzy vault [5]
based on a Reed-Solomon error-correcting code. The check-in func-
tion of the fuzzy vault provides error-correcting information P ,
which A transmits to B. Using P and a fingerprint w′ sufficiently
similar tow, i.e., within Hamming distance dist(w,w′) ≤ t , B is able
to retrieve secret s from the fuzzy vault. In a similar fashion, also
the scheme by Mathur et al. uses an error-correcting Golay code to
enable B to correct deviations between w′ and w and subsequently
use the corrected fingerprint as the shared secret between A and B.

2.3 Implicit Context-Based Authentication
A scheme utilizing implicit context-based authentication was first
introduced by Miettinen et al. [9]. It allows establishing security
associations between devices that are permanently located in the
same context. The underlying assumption is that all such devices
belong to the same trust domain D. In this approach A and B
repeatedly monitor their context and iteratively execute a pairing
protocol, which will succeed if the context observations of A and B
are similar enough, e.g., if A and B are located in the same room,
or fail otherwise. After a sufficient number of successful pairing
iterations, A and B will accept the established pairing as authentic.

A challenge for implicit context-based authentication are devices
not belonging to trust domainD that might be temporarily present
in the contextC (e.g., a visitor’s smartphone). Therefore the implicit
scheme requires sustained presence from devices by repeating au-
thentication iterations over a prolonged period of time longer than

the reasonable assumed duration of a visiting device’s visit. This
does, of course, not precludeA or B from granting guest-level access
to the counterpart already after one or a few successful authentica-
tion iterations. However, full access to trust domain D would be
granted only after a sufficient number of successful iterations.

3 ADVERSARY MODEL AND SECURITY
GOALS

We consider the following adversary model. Given two legitimate
IoT devices A and B belonging to the domain D, the adversary
E is a device that is not in the same proximate context C as A
and B. Depending on the pairing scheme, proximate context may
either denote close proximity in terms of physical distance d , or, the
physical space that encloses both devices and is separated from the
outside space by an enclosure like the walls of a room. In particular,
we assume the adversary E to have following properties:

• It is equipped with the same contextual sensors as legitimate
devices A and B.

• It can wirelessly communicate with bothA and B in the same
way as A and B with each other.

Impersonation. In an impersonation attack, adversary E that
does not belong to the same trust domain D as A attempts to
convince device A that it is a legitimate device B ∈ D and establish
a successful pairing with it. This can happen if E can fabricate
context observations that are similar enough to those of A that it
will lead to successful authentication.

Man-in-the-Middle. If E can successfully execute the imperson-
ation attack simultaneously with both A and B, it will gain the
ability to perform man-in-the-middle attacks against A and B, i.e.,
completely controlling the communications between them.

In the schemes presented above, the context measurements of A
and B are used to derive a shared secret s to be used either as an
authentication token, or, directly as a cryptographic key. Depending
on its use, s has to fulfill following requirements.

Use as Authentication Token. It is necessary that s has sufficient
entropy to resist an on-line guessing attack by E. A should imple-
ment strict rate-limiting for the number of permissible authentica-
tion attempts for each set of context observations, since re-trying
does not help if the used context data do not change. It is therefore
sufficient for s to have a min-entropy of approximately 20 bits, i.e.,
H̃∞(S) ≥ 20, where S denotes the probability distribution from
which s is drawn. This achieves a comparable resilience against
guessing attacks as in the PIN-based Bluetooth pairing protocol,
which can be considered a widely accepted industry standard for
device pairing applications.

Use as Cryptographic Key. In schemes where the shared secret s
is used directly as a cryptographic key, the requirements are much
stricter. Not only has the min-entropy H̃∞(S) to be sufficient to
withstand off-line known-plaintext attacks, but, also the probabil-
ity distribution S from which s is drawn, needs to be sufficiently
indistinguishable from the uniform distribution in order for s to be
considered a good cryptographic key.
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Figure 1: The context-based authentication approach for us-
ing context fingerprint w as an authentication token (Case
1) or for deriving a cryptographic key (Case 2).

4 SECURITY OF PAIRING SCHEMES
Recent context-based pairing schemes proposed in literature [8–10]
use error-correcting codes to derive the shared secret s from context
observations. None of these works, however, provide a quantitative
empirical evaluation of their security under practical real-world
requirements. In the following, we analyze the factors influencing
security that these context-based pairing schemes can provide and
evaluate their effectiveness in a real-world setting that is typical
for IoT environments.

4.1 Context-Based Authentication
Since context observations in practice always are influenced by ran-
dom errors arising from, e.g., context sensors’ hardware or random
fluctuations in themonitored context parameter, the observations of
devices A and B will be similar but not identical. To compensate for
these deviations, error-correcting codes like Golay or Reed-Solomon
are used to perform information reconciliation [3] to ’correct’ the
context fingerprints of A and B to be identical.

The process of context-based authentication is shown in Fig. 1.
First, device A derives a context fingerprint w, a quantization of its
context observations. How this quantization is done is specific to
each scheme and depends on the used context modality. In the sub-
sequent discussion, we will simply refer to this process as context
fingerprinting. Subsequently, A derives error-correcting informa-
tion P from its fingerprint with the help of an appropriate error-
correcting code (ECC), and sends it to B. Using this information B
can adjust any deviations in its own context fingerprint w′ in com-
parison to w, as long as the Hamming distance of its fingerprint w′

toA’s fingerprint w is within the error-correcting capability t of the
used ECC, i.e., dist(w,w′) ≤ t . The resulting adjusted fingerprint
w∗ = w can then either directly be used as the authentication token
s or utilized further for deriving the cryptographic key s .

For deriving a cryptographic key s from the context finger-
prints, A and B need to employ privacy amplification, as the error-
correcting information P may provide partial information about
the fingerprint w to adversary E. The privacy amplification step
will take fingerprint w about which E has partial information and
output a secret s of which E has virtually no information. In addi-
tion, privacy amplification is used to make sure that the distribution
S from which s is drawn is arbitrarily indistinguishable from the
uniform distribution.

4.2 Entropy Loss
The shared secret s is derived from the context fingerprint w. There-
fore its secrecy is dependent on the entropy of w from the point of
view of adversary E. This is measured in terms of its min-entropy
H̃∞(W |P), whereW is the probability distribution of the finger-
prints w and P denotes the error-correcting information. Min-
entropy is a measure of the ’worst-case’ entropy, i.e., it measures the
entropy of values ofw that are easiest to guess for E. It is therefore
a good measure for the security of the scheme, since it considers
the most favorable outcome for E.

Information reconciliation. When device A reveals the error-cor-
recting information P for its fingerprintw this inevitably leaks some
information about w. The extent of this entropy loss depends on
the used error-correcting scheme. In the Schürmann and Sigg [10]
scheme this is realized through a fuzzy vault [5] that utilizes fuzzy
commitments [6]. Fuzzy commitments are equivalent to a secure
sketch [4] utilizing the so-called code-offset construction, in which
P is obtained by adding fingerprint w to the codewordC(s) of secret
s , i.e., P = w ⊕C(s). We therefore analyze the entropy loss incurred
by the error-correction with the help of secure sketches, as these
can be generalized also to other schemes utilizing ECCs.

A secure sketch as introduced by Dodis et al. [4] is a pair of effi-
cient algorithms SS(·) and SRec(·, ·) such that the secure sketching
operation SS(w) = P provides error-correcting information P that
can be used to reconstruct w using the operation SRec(w ′, P) = w
given a value w′ that is sufficiently similar to w, i.e., dist(w,w ′) ≤ t .
For secure sketches based on [n,k, 2t + 1] ECCs it can be shown [4]
that the entropy loss incurred by revealing the error-correcting
information P is bounded by (n − k), where n denotes the length, k
the dimension and t the error-correcting capability of the ECC. The
selection of the code is dependent on the amount of error-correction
t that is required. In general, an ECC with higher error-correction
capability will also incur a higher entropy loss.

Privacy Amplification. If the reconciled context fingerprint w is
used to derive a cryptographic key, privacy amplification is needed
to obtain a secret s over which E does not have even partial infor-
mation. This is not considered in the Schürmann and Sigg scheme.
Mathur et al. discuss privacy amplification, but do not take the
entropy loss caused by it into account. To this end, a universal hash
function h(·) can be used on the fingerprint w to generate a close-
to-uniformly distributed secret, of which the adversary E does not
have any information. According to the generalized Leftover Hash
Lemma (LHL) [2], the privacy amplification will incur log ϵ−1 bits
of entropy loss, where ϵ is a security parameter determining how
indistinguishable the output is from the uniform distribution.

5 EVALUATION
To evaluate the feasibility of context-based authentication for IoT
devices in a real-world setting that is applicable to typical smart
home appliances like smart light bulbs, smart power plugs, IP cam-
eras, etc., we performed two longitudinal experiments in domestic
and office environments, representing typical deployment environ-
ments for IoT devices. In both experiments, data collection was
performed continuously over a time period of 30 days in order to
capture typical variations in contextual activity caused by daily and
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weekly differences in routines. In our evaluation we focus on the
audio modality, as it is readily available and the required sensors
relatively inexpensive to integrate in devices.

We focus on two measures of fitness: the false accept rate (FAR)
and the false reject rate (FRR). FAR measures the rate at which
fingerprints of adversary E will be falsely accepted byA as genuine,
enabling thus an impersonation attack. FRR in contrast, measures
the rate at which fingerprints of a genuine device B will be falsely
be rejected by A. As FAR is a measure of the security of the scheme
and FRR for its usability in practice, a good context-authentication
scheme will seek to minimize both of these measures.

5.1 Data Collection
For data collection we used recent models of Android smartphones
for which we had developed a data collection app recording the
ambient sound energy level in the context every 100 ms. In each
experiment we considered two different settings: one with two and
another with three co-located devices marking IoT devices in the
same trust domain D, and one adversary device E. In total the
dataset covered therefore 12 distinct devices over a period of 30
days, covering more than 8000 hours of context measurements.

To model the positioning of typical IoT devices, data collection
devices were installed in a room of the target environment at a
distance of 2-3 meters from each other and adversary devices were
placed in adjacent rooms. However, due to practical constraints in
the experimental set-up in the Home environment, the contextual
isolation of the adversary device E was not as good as in the office
environment, as the adjacent roomwas connected by a light-weight
door that had to be opened from time to time. This allowed us,
however, to analyze what impact the quality of the contextual
separation has on the security of the context-based pairing.

5.2 Context Quantization
We utilize a fingerprint quantization scheme based on detecting
prominent peaks in the audio measurements and using list-encoding
to generate context fingerprints w. List-encoding is an efficient way
of transforming continuous measurements into binary fingerprints
as, e.g., Mathur et al. [8] have shown. In contrast to their scheme,
which used minima and maxima of observed RF-measurements to
encode “1” and “0” bits of the fingerprint, respectively, we slightly
modified their scheme, as the audio signal doesn’t contain clear
minima. In our scheme A detects significant peaks in the audio
measurements and uses these to encode “1” bits of its context fin-
gerprint w. To encode “0” bits,Awill randomly pick a roughly equal
amount of non-peak observations at a minimum distance of 500
ms from any observed peaks and use these to encode zero bits. For
the resulting fingerprint w, A will then derive the error-correcting
information P and sends it along with the timestamps tsi of the
observations used to encode the fingerprint bits to B, which uses
the timestamps tsi to decode its fingerprint w′ based on its own
context measurements. It will decode each tsi corresponding to a
peak within a distance of 500 ms as a “1” bit and as a “0” bit if it
does not correspond to a peak within this time window.
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Figure 2: Bitrate of fingerprint extraction during different
times of day

5.3 Contextual Activity
As fingerprint extraction is dependent on observed contextual ac-
tivity, the amount of fingerprint bits that can be obtained from the
context typically varies depending on the hour of day. The average
hourly bitrate during different times of the day for the evaluation
data is shown in Fig. 2. We focus our analysis therefore on the active
hours of the day, i.e., on the hours between 6.a.m. to 9 p.m. in the
Home environment and between 9 a.m. and 6 p.m. in the Office
environment. During these times the average bit rate was 309 in
the Home and 368 bits per hour in the Office environment.

5.4 Similarity of Fingerprints
In the Home environment, average similarity of fingerprints ex-
tracted during the active hours of the day is constantly over 92%, the
average being 93.2%. For the Office environment, during the active
office hours on weekdays, even higher similarity can be reached,
being constantly at least 94%, the average being 95.2%. Fingerprint
similarity for adversary devices is in both scenarios consistently
lower than 90%, 86.1% in the Home and 67.9% in the Office scenario
on average, showing the impact that the lower quality of contextual
separation in the Home experiment has. In both environments, an
ECC with error-correcting capability of ca. 10% is sufficient to allow
co-located devices to successfully pair, while adversarial devices
would not be able to do so.

However, the above figures apply only to the average case. Our
evaluation revealed that another factor, which earlier works [8, 10]
have not explicitly taken into account has to be considered, namely
the inherent variation in the similarity of context fingerprints. Our
data show that from time to time the fingerprint of adversary E is
in fact sufficiently similar to the fingerprint of A, thus enabling E

to falsely authenticate with A. Two factors affect the probability of
this happening: 1) higher error-correcting capability t increases the
probability that E’s fingerprint will be accepted, while 2) longer
fingerprints average out short-term fluctuations in fingerprint sim-
ilarity, thus reducing E’s success probability. Figure 3 shows the
impact of these factors on the FAR and FRR values.

Due to the better contextual separation in the Office experi-
ment, the FAR/FRR values (Fig. 3a) are clearly lower than in the
Home experiment (Fig. 3b). For short fingerprint lengths, the FAR
is relatively high, e.g., ranging from 1.4% to 8.6% for 32-bit finger-
prints. Increasing the fingerprint length effectively reduces FAR,



Revisiting Context-Based Authentication in IoT DAC ’18, June 24–29, 2018, San Francisco, CA, USA

0

0.1

0.2

0.3

0.4

0.5

0 0.02 0.04 0.06 0.08 0.1

Fa
ls

e 
R

ej
ec

t 
R

at
e

False Accept Rate

32 64

128 256

512

(a) Office

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fa
ls

e 
R

ej
ec

t 
R

at
e

False Accept Rate

32 64 128

256 512 1024

2048 4096 8192

(b) Home (with insufficient contextual separation)

Figure 3: FAR vs. FRR for error-correction levels
5%, 8%, 10%, 12% and 15% for different fingerprint lengths.

so that close-to-optimal performance can be achieved with a 512-
bit fingerprint length with a FAR of 0.2% and FRR of 0.8% at an
error-correction level of 10%.

The values for the Home experiment in Fig. 3b show how crucial
contextual separation is for the security of the scheme. For short fin-
gerprint lengths, E has a relatively high success probability of 21.8%
to 61.7%. In this experiment, even using extremely long fingerprints
of 8192 bits would bring down the FAR to only 10.7%.

From Fig. 3 we can, however, see that even under favorable con-
ditions, the adversary has a non-negligible chance of succeeding.
This means that in order to further decrease the FAR for increased
security, one needs to adopt the approach proposed by Miettinen
et al. (Sect. 2.3), where the authentication is iteratively repeated, in
order to increase the confidence in the counterpart’s authenticity.
The number of authentication iterations required is dependent on
the FAR of the used ECC. Figure 4 shows the amount or required
iterations for reaching a FAR of 2−20 (comparable security to Blue-
tooth pairing) for the different ECCs in the examined environments.
We can see that, e.g., at the 10% error-correction level, 3 − 4 itera-
tions in the Office environment would be required, while 10 − 16
repetitions would be needed in the Home environment.

5.5 Entropy Analysis
As discussed in Sect. 4.2, an [n,k, 2t + 1]-code will incur an (n − k)-
bit entropy loss during the information reconciliation stage. The
higher the required error-correcting capability is, the larger also
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Figure 4: Required number of authentication iterations to
reach FAR of 2−20 for different fingerprint lengths.

the entropy loss. From this point of view, Reed-Solomon (RS) codes
provide an optimal trade-off between error-correction capability
and entropy loss, as for each symbol of error-correction capability,
the codewill incur an entropy loss of two symbols, i.e., in practice an
error-correction capability of t bits will incur 2t bits of entropy loss.
This assumes an approach used, e.g., by Schürmann and Sigg [10],
where fingerprint bits are encoded with the help of symbols of the
RS-code. Our evaluation shows that an error-correction capability
of ca. 10% is required to enable A and B to perform successful
pairing with low FRR. The fingerprint w would therefore need to
have initially at least 25 bits of min-entropy to retain a leftover
entropy of 20 bits after the information reconciliation step with
20% of entropy loss. As discussed in Sect. 3, this would be sufficient
for using the fingerprint as an authentication token.

For deriving a cryptographically strong secret of 128 bits, also
the entropy loss incurred by privacy amplification needs to be taken
into account. As discussed in Sect. 4.2, this amounts to log ϵ−1 bits,
where ϵ is a parameter defining the desired indistinguishability of
S , the distribution of the secrets s , from the uniform distribution.
For, e.g., ϵ = 2−20 this would result in additional 20 bits of entropy
loss associated with the privacy amplification step. To retain a min-
entropy of 128 bits after information reconciliation and privacy
amplification, the min-entropy of the context fingerprint would
therefore need to be at least 128+20

80% = 185 bits, if a Reed-Solomon
error-correcting code with 10% error-correction capability is used.
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5.6 Duration of Pairing
The best strategy for adversary E to guess A’s fingerprint is to use
its own fingerprint, as on average 86.1% of fingerprint bits in the
Home environment and 67.9% of the fingerprint bits in the Office
environment will be identical with A’s fingerprint bits. Therefore,
the amount of entropy of each fingerprint bit from E’s point of view
is only 0.24 bits in the Home and 0.32 bits in the Office environment.
Obtaining sufficient min-entropy, i.e. 25 bits, for an authentication
token will therefore require ⌈ 25

0.24 ⌉ = 105 fingerprint bits in the
Home and ⌈ 25

0.32 ⌉ = 79 fingerprint bits in the Office environment,
on average. At average bit generation rates of 309 and 368 bits per
hour, the required time for acquiring sufficient bits would therefore
be 20.4 min in the Home and 12.9 min in the Office environment.

Similarly, for obtaining the required 185 bits of min-entropy
for a cryptographic secret would require ⌈ 185

0.24 ⌉ = 771 fingerprint
bits in the Home and ⌈ 185

0.32 ⌉ = 579 fingerprint bits in the Office
environment. The respective required times to harvest this entropy
would accordingly be 149.7 minutes in the Home and 94.4 minutes
in the Office environment.

5.7 Summary
Our evaluation shows that using context measurements for estab-
lishing a shared secret is possible, given sufficient time to harvest
entropy from the ambient environment. However, for any contexts
where a complete contextual separation from the outside environ-
ment can’t be guaranteed, the authentication process has to be
repeated a sufficient number of times to bring down the false accept
rate to an acceptable level (cf. Fig. 4). Therefore, an approach along
the lines of [9], in which initially only basic level access is granted
and additional privileges only added as more successful authen-
tication iterations are completed should be followed in applying
context-based pairing in real-world environments.

6 RELATEDWORK
Earlier proposals for context-based pairing have focused on using
RF-signals. AMIGO by Varshavsky et al. [11] aimed at authenticat-
ing the co-presence of devices by comparing the received signal
strength indicators (RSSI) of WiFi data packets. This approach was
subsequently extended by Kalamandeen et al.’s Ensemble [7], which
not only observed incoming packets, but utilized also transmissions
by an ensemble of trusted wearable devices to verify proximity of
devices. However, subsequent work showed that RSSI values can
potentially be inferred or influenced by a remote adversary, if it
knows the positions of A and B. Mathur et al. [8] therefore intro-
duced the ProxiMate system (cf. Sect. 2.2), which relies on physical
properties of the RF-field for secrecy. These approaches are, how-
ever, only applicable for demonstrative identification via proximity,
as the devices have to be very close to one another (e.g., 15 - 35 cm)
to authenticate. Their applicability for large-scale authentication
of numerous IoT devices, e.g., in a Smart Home environment, is
questionable, as the user needs to separately point out each and
every of the (potentially numerous) devices.

The scheme of Schürmann and Sigg [10] uses audio in the proxi-
mate context to transfer a random secret s selected by A to B to be
used as a shared key (cf. Sect. 2.2). However, they don’t consider
that the secrecy of s depends only on the min-entropy of the usedw,

over which E obtains partial information due to the released error-
correcting information P , making privacy amplification necessary.
They also don’t quantitatively analyze the entropy loss associated
with the use of ECCs.

Our approach builds on the scheme ofMiettinen et al. [9] (Sect. 2.3)
that proposes an implicit context-based authentication scheme
based on audio and luminosity. In this scheme, an initial strong
unauthenticated shared secret is established betweenA andB, which
is subsequently iteratively evolved by repeated context-based au-
thentication steps in order to gradually establish confidence in the
authenticity of the counterpart. Our evaluation shows that this
indeed is necessary, unless complete contextual isolation of the
target context from adversary E can be guaranteed.

7 CONCLUSION
Context-based pairing for authentication of IoT devices can provide
significant usability benefits as compared to traditional solutions
like, e.g. Bluetooth pairing. Applying it in practice, however, has
caveats that have not been sufficiently considered in earlier pro-
posals [8–11]. Firstly, one has to consider and quantify the entropy
losses related to the applied error-correction and privacy ampli-
fication in order to estimate a sufficient amount of entropy to be
harvested from the environment. In addition, our evaluation shows
that one also has to have a good understanding about the perfor-
mance of the fingerprinting approach as well as the level of con-
textual separation that the target environment provides. Therefore,
before deployment of context-based pairing solutions, sufficient
understanding about the target contexts should be acquired in order
to make informed decisions about relevant parameters like error-
correction level, used fingerprint lengths and number of required
authentication iterations, so that the used approach can in fact
provide sufficient security in a real-world setting.
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