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A B S T R A C T

Quantitative comparisons of tree height observations from different sources are scarce due to the difficulties in
effective sampling. In this study, the reliability and robustness of tree height observations obtained via a con-
ventional field inventory, airborne laser scanning (ALS) and terrestrial laser scanning (TLS) were investigated. A
carefully designed non-destructive experiment was conducted that included 1174 individual trees in 18 sample
plots (32m×32m) in a Scandinavian boreal forest. The point density of the ALS data was approximately
450 points/m2. The TLS data were acquired with multi-scans from the center and the four quadrant directions of
the sample plots. Both the ALS and TLS data represented the cutting edge point cloud products. Tree heights
were manually measured from the ALS and TLS point clouds with the aid of existing tree maps. Therefore, the
evaluation results revealed the capacities of the applied laser scanning (LS) data while excluding the influence of
data processing approach such as the individual tree detection. The reliability and robustness of different tree
height sources were evaluated through a cross-comparison of the ALS-, TLS-, and field- based tree heights.
Compared to ALS and TLS, field measurements were more sensitive to stand complexity, crown classes, and
species. Overall, field measurements tend to overestimate height of tall trees, especially tall trees in codominant
crown class. In dense stands, high uncertainties also exist in the field measured heights for small trees in in-
termediate and suppressed crown class. The ALS-based tree height estimates were robust across all stand con-
ditions. The taller the tree, the more reliable was the ALS-based tree height. The highest uncertainty in ALS-
based tree heights came from trees in intermediate crown class, due to the difficulty of identifying treetops.
When using TLS, reliable tree heights can be expected for trees lower than 15–20m in height, depending on the
complexity of forest stands. The advantage of LS systems was the robustness of the geometric accuracy of the
data. The greatest challenges of the LS techniques in measuring individual tree heights lie in the occlusion
effects, which lead to omissions of trees in intermediate and suppressed crown classes in ALS data and in-
complete crowns of tall trees in TLS data.

1. Introduction

Tree height is one of the most important tree attributes in forest
resource investigations. Together with other fundamental attributes,
such as diameter at the breast height (DBH) and tree species, tree height

is widely used in predicting other important tree attributes that are not
directly measurable in a non-destructive manner, such as age, wood
volume, biomass, and carbon stock. The accuracy of the tree height
measurements is crucial since the estimation of most tree attributes
requires tree height as an input parameter. For example, Tompalski
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et al. (2014) found that errors in tree height estimates can impact in-
dividual-tree volume estimates more significantly than errors in species
classification. Feldpausch et al. (2012) and Kearsley et al. (2013) found
that the bias in their carbon stock and biomass estimates was mainly
caused by the uncertainties in the tree height measurements. However,
measuring the tree heights in the field is not an easy task. The error in
the field-measured tree heights can be higher than that in other field
acquired tree attributes, such as the DBH (Luoma et al., 2017). Errors in
tree height propagate to forest management decisions; therefore, the
accuracy of tree height measurements has always been an important
topic in forest science.

The most common method to non-destructively measure the tree
height is to use clinometers that are based on trigonometric relation-
ships between the planimetric distance from the instrument to a tree
and the angle between the displacements from the instrument to the
base and the top of the tree. The angle mensuration requires clear
visibility to both the tree base and the treetop. The distance mensura-
tion requires a clear view to the tree base when using devices such as
handheld laser rangefinders. However, the visibility of the tops and the
bases of trees is limited in natural forest conditions, because of various
reasons such as the restricted observation positions, the complex shape
of large and wide tree crowns, the occlusion by other neighboring
crowns, the rugged terrain and the neighboring undergrowth.
Consequently, errors are present in field tree height measurements.

Omule (1980) reported that the crew–measured tree heights using
the tangent method included a significant positive bias. Päivinen
(1992) noted that the field measurements slightly overestimated (ap-
proximately 30 cm) the tree heights for all tree species considered in the
study. Educated and experienced mensurationists are generally ac-
knowledged to provide more precise results than beginners with only
basic knowledge. Kitahara et al. (2010) confirmed the importance of
training and operator experience in the quality of field tree height
measurements. Silva et al. (2012) stated that simple visual estimations
of tree heights by trained operators were more accurate than mea-
surements made using the Haglöf Vertex instrument in a natural semi-
deciduous seasonal forest in Brazil. The same study also pointed out
that the accuracy of field tree height measurements degrades with in-
creasing tree heights. Larjavaara and Muller-Landau (2013) noted that
under typical forest conditions with rough terrain, leaning trees and
limited visibility, the performance of the tree height measurement in-
struments cannot attain the manufacturer-reported accuracies, which
were derived under ideal conditions. Some researchers have even
questioned the possibility of accurate tree height measurement in the
field (Saatchi, 2012). Nevertheless, up to now, field measurements are
widely understood to be the most reliable source of tree height in-
formation. The rigorous evaluation of the accuracy of field-measured
tree heights based on large sample sizes has yet to be performed be-
cause of the prohibitively high costs.

In recent decades, the most significant progress in remote sensing-
based forest resource investigations is due to the development of laser
scanning (LS). LS, also referred to as topographical light detection and
ranging (LiDAR) is an active sensing technology, which provides a
practical way to measure the tree height. The major advantages of LS
include (1) the direct acquisition of 3D positions of objects at the
centimeter scale or even higher levels of geometrical accuracy; (2) the
capability of canopy penetration, which reveals the terrain, the bases
and the treetops blocked by the canopy; and (3) a high level of auto-
mation in data processing, which facilitates efficient measurements
over large areas. Given the advantages, LS systems, especially airborne
laser scanning (ALS), have achieved great popularity in the studies of
forested ecosystems (Hyyppä et al., 2008; Nelson, 2013; Wulder et al.,
2013; White et al., 2016). LS techniques have also been operationally
used in national forest inventories, for example, in Nordic countries,
Austria and Switzerland.

Two most commonly applied approaches to ALS-based forest in-
ventory are the area-based approach (ABA) and the individual tree-

based approach (ITD). The ABA retrieves the forest structure at a stand
level, and the ITD extracts tree parameters by individual tree detecting
and modeling. Concerning the tree height measurement, the ITD can be
considered as an alternative to the conventional field measurement
method. The main challenge is the quality of the ALS data, that is, the
completeness and the geometric accuracy of tree digitization in the
data, which affects and the ability of the ITD algorithms to detect and to
model individual trees (Wang et al., 2016).

From the point of view of the point cloud data, the ALS-based tree
height measurement is influenced by many factors. Næsset (2009a,
2009b) investigated the impacts of the terrain models, the sensors, and
the fight and sensor configurations on ALS-derived canopy metrics. Yu
et al. (2004) investigated the effects of flight altitude and laser footprint
size on tree height estimation in a boreal forest and found that the
underestimation of tree height (and standard deviation) increased with
higher flight altitudes. The degree of underestimation did depend on
species; however, birch was less affected than spruce or pine. In addi-
tion, it is possible that the quality of the digital terrain model (DTM) is
reduced in the local area directly beneath a tree crown, which further
influences the tree height measurements. Leckie et al. (2003) reported
that errors in the ALS-derived measurement of tree base elevation due
to ground vegetation and terrain micro relief could easily introduce up
to 0.5 m of variability in height measurements.

Another highly relevant factor affecting the tree height estimation is
the ALS point density, which depends on the sensor characteristics and
flight settings. Maltamo et al. (2004) compared ALS-derived tree height
measurements with accurate field measurements for 29 Scots pine trees.
The field measurements were acquired with a fiberglass rod or, in the
case of taller trees, using a tacheometer and theodolite with a dist-
ometer. They reported that ALS (10 pts/m2) underestimated the tree
heights by 0.65m, with a standard error of 0.49m. Wilkes et al. (2015)
proposed a point density of 0.5 pts/m2 to be the threshold of obtaining
useable canopy height estimates from ALS. Roussel et al. (2017) stated
that approximately 10 pulses/m2 (i.e., at least 10 pts/m2, taking mul-
tiple returns into account) are required to estimate the canopy height
with a reasonable accuracy (mean bias less than 10 cm). Zhao et al.
(2018) proposed an empirical model, which takes the point density as a
variable for estimating the tree heights from the ALS data.

ALS systems are generally thought to underestimate tree heights due
to the chances of missing treetops for various reasons. This conclusion is
also based on the hypothesis that the field-measured tree height from
clinometers is accurate, since most studies have relied on the field–-
measured tree heights to evaluate the accuracy of the estimates from LS
data (e.g., Kaartinen et al., 2012) or to construct regression models of
canopy structures (e.g., Bouvier et al., 2015).

Nevertheless, the disturbance from the errors in the field measure-
ments in evaluating ALS-based tree heights has been a common concern
in previous studies. Persson et al. (2002) noted that a significant portion
of the RMSE of ALS-based tree height estimates in their study could be
caused by errors in the field height measurements. Hyyppä et al. (2004)
recognized that the accuracy of conventional field inventory techniques
may not be sufficient for detailed evaluations of the errors in ALS tree
height measurements. Hunter et al. (2013) reported that under tropical
forest conditions, the field-measured heights are consistently higher
than the ALS-based heights for dominant trees, yet the potential un-
derestimation bias in ALS-derived tree height is smaller than the un-
certainties in the field estimates.

Rigorous comparison between LS- and field-based tree height
measurements is rare due to the difficulty and cost of collecting ground
truth data, and contradictory conclusions have been reached in recent
discussions. For example, Andersen et al. (2006) claimed that the tree
heights acquired with an impulse handheld laser rangefinder are sig-
nificantly more accurate than those acquired via ALS (6 pts/m2) based
on a total station survey of 30 ponderosa pine and 29 Douglas fir trees.
In contrast, Sibona et al. (2016) reported that based on destructively
measured tree heights of 100 felled trees (including Larix decidua, Picea
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abies and Pinus sylvestris) in an alpine forest, the ALS (10 pts/m2) esti-
mates of tree heights were closer to the ground truth than the non-
destructive field-measured heights.

The hypothesis that the field-measured tree heights are accurate
enough to evaluate other measurement methods has not been seriously
challenged up to now. An essential question remains unclarified: Which
of the non-destructive measurement instrument/technologies is the
most reliable and robust one?

To provide convincing answers to this question requires a large
number of samples from forests with different types of stand conditions.
However, existing accuracy comparisons between LS- and field-based
tree height observations in forests are hampered by the small amount of
sample data (i.e., less than a hundred individual trees) and by the fact
that the forest stand conditions have been insufficiently investigated.
Therefore, the conclusions derived may lack representativeness. For
example, according to the pictures of the test sites provided in Andersen
et al. (2006), the stands had low stem densities and flat terrain, which
represent simple forest conditions favorable for rangefinder measure-
ments. In addition, the applied LS data in existing reports are no longer
representing the state of the art. Recently developed, reasonably priced
LS systems produce much denser point clouds (e.g., above 100 pts/m2

in Amiri et al. (2017)) than what was used in 10–20 years ago (e.g.,
approx. 10 pts/m2 in Wang et al., 2008).

In this paper, we would like to start this discussion through a
comparison study of tree heights derived from conventional field
measurements, ALS and terrestrial laser scanning (TLS) in typical
Nordic boreal forests. The ALS dataset used in this study is a high-
density point cloud acquired from a very low flight altitude and re-
presents a state-of-the-art scenario that is balanced between the point
density and the cost. The TLS data were collected via a multi-scan ap-
proach, which represents the state-of-the-art terrestrial data in an op-
erational scenario from various platforms (e.g., static, mobile and per-
sonal platforms (Liang et al., 2014)) and different point-cloud sources
(e.g., laser scanning, image and structure light (Hyyppä et al., 2017;
Liang et al., 2015)). The data were chosen to benchmark the best efforts
of state-of-the-art point cloud technologies.

The analysis included 1174 individual trees in 18 sample plots. The
tree heights were manually measured from the ALS and TLS datasets,
and in the field using conventional non-destructive measurements
techniques. The test sites, the acquisition of the LS datasets and the
measurement of tree heights utilizing ALS, TLS, and field measurements
are introduced in Section 2. Sections 3 and 4 carry out thorough in-
vestigations on the accuracy of the tree heights from different sources in
different stand conditions. In addition, the influences of the crown
class, the tree height and the species are discussed. Important findings
of this study are summarized in Section 5. To the best of our knowledge,
such a large dataset has not been used in evaluating tree height mea-
surements so far. In addition, up until now, this is the most detailed
study on the reliability of individual tree height measurement using LS
and conventional field techniques.

2. Materials and methods

2.1. Test site and sample plots

The study area was located in a southern boreal forest in Evo,
Finland (61.19°N, 25.11°E) as shown in Fig. 1. The main species in the
area included Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies
H. Karst L.), silver birch (Betula pendula Roth) and downy birch (Betula
pubescens Ehrh). Eighteen sample plots comprising various forest stand
conditions were selected for the test. The sample plots had a fixed size
of 32m×32m.

The sample plots were classified by professional foresters into three
stand complexity categories, namely, ‘easy’, ‘medium’, and ‘difficult’.
The ’easy’ category featured a low stem density (ca. 700 stems/ha),
minimal understory growth, and mostly mature trees. The ’medium’

category featured a moderate stem density (ca. 1000 stems/ha), mod-
erate understory vegetation, and trees in diverse growing stages. The
“difficult” category, featured a high stem density (ca. 2000 stems/ha),
abundant understory growth, and mostly young trees. Detailed statistics
for all trees (with DBH greater than 5 cm) in the three stand categories
are listed in Table 1.

2.2. Experiment design

The aim of the experiment was to evaluate the accuracy of ALS, TLS
and conventional field measurements in non-destructive tree height
measurements. Thus, the following conditions must be satisfied; First,
the locations of individual trees are accurately measured in the field
and the LS point clouds in order to recognize corresponding trees from
the three data sources; Second, tree height measurements using dif-
ferent technologies are independent from each other; Third, tree height
measurements using each technique are independent from impact fac-
tors other than the systematic setups of the applied technologies.

Therefore, the whole process of the field measurement and the LS
data processing was guided by tree maps of sample plots that were
produced by a combination of interpretation of multi-scan TLS data and
in-situ inspections. To guarantee the independency of the tree height
measurements from different data sources and to minimize the influ-
ences of LS data processing methods, individual tree detections and tree
height measurements were manually carried out in ALS and TLS point
clouds separately. Therefore, no automatic point cloud processing
methods, such as automatic tree detection and modeling, were applied
in this study.

To solve the problem of lacking absolute ground truth of tree
heights, the tree height observations from the three sources, i.e., ALS-
point cloud, TLS-point clouds, and field measurements, were cross-
compared to each other. The conclusions were drawn based on com-
parative statistical analyses and logical deductions. Furthermore, the
evaluation was carried out with respect to different stand complexity
conditions (i.e., easy, medium and difficult plots), crown classes (i.e.,
dominant, co-dominant, intermediate and suppressed trees), height
groups (in 5m interval), and species (i.e., spruce, pine and birch).

2.3. Datasets

In-situ manual measurements, in-situ multi-scan TLS data acquisi-
tions, and low-altitude ALS data acquisitions were carried out for all
sample plots.

Fig. 1. Map of the test site and sample plots in Evo, Finland.
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2.3.1. Multi-scan terrestrial laser scanning data
The multi-scan TLS data were collected in the sample plots as the

first step in the whole data acquisition campaign. The sample plots were
scanned in summer 2014, using a Leica HDS6100 TLS scanner (Leica
Geosystems AG, Heerbrugg, Switzerland). The wavelength of the
scanner was 650–690 nm, the field of view was 360°× 310°, and the
range measurement accuracy was±2mm at 25m distance to the
scanner. The data acquisition used a “high density” mode where the
angle increment was 0.036° in both horizontal and vertical directions,
which gives a point spacing of 15.7mm at 25m distance to the scanning
location in both horizontal and vertical directions. A full field-of-view
scan takes approximately 3min. The raw point cloud of each scan was
de-noised using the software provided by the manufacture of the
scanner and with default parameter settings.

The plots were not touched during the data collection except when
placing the TLS scanner and reference spheres that were used to register
the individual scans. To minimize the impact of occlusion within a plot,
each plot was scanned from the center and the four corners. The the-
oretical position of the middle scan was at the plot center and the
distance between the four scans in four quadrant directions to the
center scan was 11.3m. Six spheres were placed such that they were
visible to the center scan and at least three spheres could be seen in
each corner scan. The average registration accuracy for all sample plots
was approximately 2mm, which corresponds to the discrepancy be-
tween the 3D sphere locations in the registered scans.

The multi-scan TLS point cloud was then registered to the world
coordinate system (EUREF-FIN) based on the locations of the reference
spheres measured with a Trimble R8 GNSS receiver (Trimble Inc., CA,
USA) with a real-time kinematic correction and a Trimble 5602
DR200+ total station. The GNSS receiver was used to define at least
two reliable reference points in an open area either inside or outside
each plot to guarantee the visibility of the satellites. A survey point was
established near the plot center by measuring the distance and angles
from the survey point and two reference points. The locations of the
reference spheres (ATS Scan Reference System, ATS Ab, Goethenburg,
Sweden) were then measured using the total station. The goal of this
setup was to achieve a registration precision that was as high as pos-
sible for the multi-scan TLS datasets, so that the alignment between the
TLS and the ALS point clouds could be realized.

2.3.2. In situ field measurements
Based on the multi-scan TLS data, a preliminary tree map was

generated for each sample plot by manually labeling trees with high
stem visibility in the point cloud, which guided the following field
measurements in each sample plot.

In the field, the preliminary tree map was verified and updated by
double-checking the locations of labeled trees and adding the omitted
trees (due to occlusions in the data) to the map. For each sample plot,
all the standing trees with a DBH value greater than 5 cm were marked
on the finalized tree map. The locations of the trees were then revisited
again in the multi-scan TLS point cloud to inspect the consistency be-
tween the on-site modifications and the point cloud.

During the on-site plot visiting, the heights of all mapped trees were
measured with a Vertex 3.0 instrument (Haglöfs, Sweden) at a resolu-
tion of 0.1 m. For each mapped tree, three independent measurements
were made from the same location where the visibility of the treetop

was guaranteed, and the average was used as the tree height. The
species and the DBH of the mapped trees were also recorded.

In addition, all the trees on the tree map were classified into four
different crown classes, i.e., dominant (Dom), codominant (CoD), in-
termediate (Int) and suppressed (Sup), following the quantificational
definitions applied in Kaartinen et al. (2012) and Wang et al. (2016):

Dominant: Tallest trees in the neighborhood or isolated trees that have a 2D
distance to the closest neighboring tree that exceeds 3m;

Codominant: Trees in a group of similar trees, where the 2D distance between
these trees and the closest neighbor is less than 3m;

Intermediate: Trees located next to a larger tree and whose crowns are partly
covered;

Suppressed: Trees located under a larger tree and whose crowns are totally
covered by neighboring crowns.

2.3.3. High-density airborne laser scanning data
The ALS data were acquired in the winter 2014 from a helicopter

using a Riegl VQ-480-U scanner (RIEGL Laser Measurement Systems
GmbH, Austria). The Riegl VQ-480-U is a light-weight (7.5 kg) pulsed
scanner with a 60° field of view. The laser beam wavelength is 1550 nm,
and the beam divergence is 0.3 mrad. The scanner was operated with a
scan speed of 150 Hz and a pulse repetition rate of 550 kHz. The flight
altitude was 75m above the ground level, which is a similar to the
altitude of a drone (i.e., UAV) platform; thus, the ALS data can be
considered analogous to UAV-based LS data. The target flight speed was
50 km/h; therefore, a very dense point cloud was produced with a
ground footprint size, on-ground pulse spacing along the scan line, and
on-ground pulse spacing between scan lines of approximately 2.3 cm,
4.7 cm, and 9.3 cm, respectively. The error points, that is, isolated
points in the sky or below the ground level were manually removed.
The point density of the ALS data was approximately 450 points/m2.

The ALS data was geo-referenced into a world coordinate system
(EUREF-FIN). To further align the aerial and terrestrial point clouds, the
ALS point clouds of the sample plots were manually co-registered to the
multi-scan TLS point clouds by determining whether the tree crowns in
both point clouds overlapped from the top-view and two side-views.
Manual fine-tuning was implemented when an offset between the point
clouds remained observable in the horizontal plane. Based on an on-
screen estimation, the remaining discrepancy between the ALS and TLS
point clouds was less than 10 cm in the horizontal plane.

Fig. 2 illustrates three examples of trees recorded in the multi-scan
TLS and ALS point clouds. The examples were selected after the re-
presentative species on site, that is, a group of pine trees, a spruce tree,
and a birch tree. Fig. 2(a–c) presents the occlusion effects in the TLS
data, especially on the upper part of crowns. The crown of the tree in
the middle is occluded by the tree to its left. In Fig. 2(d–f), an ideal
situation is presented in both TLS and ALS data. Fig. 2(g–i) show the
occlusion on the upper crown of a tree brought by its own lower crown
in the TLS data. The figures also show that the influence of the leaf-off
situation on the height of birch trees is minor, for example, referring to
the lower branches of the birch tree recorded in the ALS data. Fur-
thermore, considering the shape of the crowns in the ALS data, there is
no evidence of canopy deformation brought by downwash of the heli-
copter.

Table 1
The statistics of the stand complexity categories.

Complexity categories Stem density (stems/ha) DBH (cm) Tree height (m) Basal area (m2/ha) Number of sample plots

Mean Std Mean Std Mean Std Mean Std

Easy 660 174 19,9 7.5 18.0 6.4 22.9 6.7 5
Medium 898 343 17.1 11.7 15.3 7.4 29.6 9.9 6
Difficult 2130 502 12.2 6.4 13.2 5.8 30.9 6.8 7
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2.4. Tree height measurement from aerial and terrestrial point clouds

DTMs were generated from the multi-scan TLS data and the ALS
data independently. Regardless the source of the point cloud, the gen-
eration of DTMs followed an identical procedure. First, points be-
longing to the ground were classified utilizing the classification algo-
rithm in TerraScan software (TerraSolid oy, Helsinki, Finland). The
algorithm is based on the method introduced in Axelsson (2000).
Second, a DTM of 20 cm×20 cm resolution was fitted to the ground
points by applying linear interpolation to fill in the shadowed (no data)
space. In a final step, the DTMs were visually inspected and any ab-
normal peaks were manually removed. The altitude differences be-
tween the ALS- and multi-scan TLS- based DTMs are given in Fig. 3. In
the easy and medium plots, the RMSDs (Root-Mean-Square-Deviations)
between the DTMs are below 10 cm. In difficult plots, due to the sha-
dows on ground in both ALS and TLS point clouds, the difference be-
tween the DTMs significantly increased (e.g., doubled compared to the
easy and medium plots), but the RMSD was below 20 cm and the per XY
location bias was below 6 cm. The altitudes of the TLS-based DTMs tend
to be higher than that of the ALS-based DTMs (i.e., Fig. 3(b)).

Both multi-scan TLS data and ALS data were normalized with re-
spect to the corresponding DTM extracted from each LS data separately.
The tree heights were manually measured from the normalized point
clouds under the guidance of the tree maps. For each tree on the tree
maps, the existence of its treetop was interactively inspected in the TLS
or ALS point clouds. The ALS- and TLS-based treetop identification of
all individual trees was carried out by an experienced operator, and the
treetops were defined as the highest visible TLS or ALS point inside the
crown area of an individual tree. The normalized height of the TLS or
ALS treetop point was then taken as the tree height from the corre-
sponding data source. Among 2417 individual trees present in the 18
sample plots, 1174 trees satisfied the condition stipulating that their
treetops were identifiable by the human eye in both the multi-scan TLS

and the high-density ALS point clouds, indicating that both ALS-based
and TLS-based tree heights were available. The following analysis of the
tree heights is based on these 1174 trees.

2.5. Evaluation

The comparison was carried out in pairs. The Pearson’s correlation
coefficient (r), the RMSD, RMSD%, bias and bias% were calculated in
three pairs: the ALS-based versus the field-based tree heights, the TLS-
based versus the field-based tree heights, and the TLS-based versus the
ALS-based tree heights. The RMSD% and bias% were the relative ver-
sions of the RMSD and bias, respectively, and they equaled

= × HRMSD% 100% RMSD/ ¯ and = × Hbias% 100% bias/ ¯ , where H̄ is
the mean tree height. In addition, the influence of the stand condition
(easy, medium, and difficult) and the four crown class on each of the
three measurement techniques was investigated. The detailed results of
the analysis are given in Section 3.

In addition, the analysis identified a group of outliers, in which clear
differences exists among the three tree height measurements, indicating
that at least one of the measurements likely contains coarse error. The
outliers are defined as follows: for each tree ti, =i n1, , , where i is the
index of the tree and n is the number of trees, the relative residual

a
i
( ,field) between the measurement method a, a {'ALS', 'TLS'} and field
measurement were calculated using the equation

= H H H| |/a
i

a
i i i

( ,field) field field (1)

where Ha
i is height observation of the tree ti from the measurement

source a. Hi
field is the height observation of the tree ti from the field.

Using the relative difference a
i
( ,field) , we define the outlier S (also called

a ‘suspicious case’ below) as

=S t{ | 0.2 0.2}i i i
(TLS,field) (ALS,field) (2)

The outliers are considered as errors, therefore, excluded from the

Fig. 2. Examples of trees in the LS data. LS point clouds are in local coordinate system and the axes unites are in meters; (a) a group of pine trees in multi-scan TLS
data; (b) the corresponding trees of (a) recorded in ALS data; (c) multi-scan TLS and ALS data of the pine trees in the same scene; (d) a spruce tree in multi-scan TLS
data; (e) the corresponding spruce tree of (d) recorded in ALS data; (e) multi-scan TLS and ALS data of the spruce tree in a same scene; (g) a birch tree in multi-scan
TLS data; (h) the birch tree in (e) recorded in ALS data; (i) multi-scan TLS and ALS data of the birch tree in the same scene.
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analyses in Sections 4.2–4.4. They are separately discussed in Section
4.5.

3. Results

The evaluations of the ALS-based and TLS-based tree heights with
respect to the field-based tree height are denoted as ALSv.Field and
TLSv.Field, respectively. The evaluation of the TLS-based tree height
with respect to the ALS observations is denoted as TLSv.ALS. All 1174
trees were included in the analyses in this section. It should be noted
that for the RMSE% and bias%, the divisor H̄ of the ALSv.Field and
TLSv.Field comparison was the average of the field- measured tree
heights, while the divisor of the TLSv.ALS comparison was the average
of the ALS-based tree heights.

3.1. Tree height observations in the easy plots

In the easy stands, a high correlation was observed among the tree
heights from all three data sources, that is, the values of correlation
coefficients (r) are close to 1.0. The detailed statistics are listed in
Table 2. Overall, the RMSD and bias values of the ALSv.Field indicate a
high consistency between ALS- and field-derived tree height measure-
ments in the easy plots. The intermediate crown class has the lowest
consistency between the ALS- and field-based tree height estimates,
suggesting a higher uncertainty in the tree height measurements of
intermediate trees. The distribution of the tree height estimates in
Fig. 4(a) reveals that ALS generally does not underestimate the tree
height with respect to the field-measured tree height as the overall bias
is 0.04m and hence close to zero.

The RMSD and bias values of TLSv.Field and TLSv.ALS clearly
showed that TLS underestimates the tree heights. This agreed the
general understanding on TLS-based tree height measurements (e.g.,

Liang et al. (2018)) A more detailed investigation indicates that a
turning point exist at a tree height of approximately 15m. For trees
taller than 15m, the residuals between the TLS-based tree height and
the other two tree heights are markedly higher, as shown in Fig. 4(b)
and (c). When the tree heights are above 20m, such residuals increase
even more remarkably. Thus, a threshold for reliable TLS-based tree
height measurements is suggested to be below 15–20m.

3.2. Tree height observations in medium plots

The correlation in medium plots remains strong among the tree
heights derived from all three different sources, as shown in Table 3 and
Fig. 5. However, the residuals between tree height measurements from
different sources become larger than those in the easy plots. The results,
as illustrated in Fig. 5(a), indicate that the intermediate crown class has
the highest uncertainty in the ALS vs. field comparison. According to
the bias values in Table 3, the ALS-based tree heights are obviously
lower than those from the field (−0.52m bias) for co-dominant trees,
which was, however, not observed in other crown classes.

For TLS-based tree heights, the turning point at approximately 15m
remains observable in the medium complexity stands, as shown in
Fig. 5(b) and (c). The TLS-based tree heights of trees lower than 15m
are consistent with the ALS-based and the field-based tree heights.
However, significant underestimations present in the TLS-based tree
heights with respect to both ALS- and field-based tree heights for trees
taller than 15m.

When the tree height is below 15m, the majority of the outliers in
the medium plots of all three pair comparisons come from the inter-
mediate trees (Fig. 5). This is similar to is the situation in the easy plots
(Fig. 4).The largest disagreements of this tree-crown class among dif-
ferent sources suggest that the heights of intermediate trees are difficult
to measure. Fig. 5 also shows that, when the tree height is below 15m,

Table 2
Statistical evaluations of the comparisons of tree heights derived from ALS, TLS and field measurements in easy plots.

Crown Class ALSv.Field TLSv.Field TLSv.ALS

RMSD (RMSD%) Bias (Bias%) r RMSD (RMSD%) Bias (Bias%) r RMSD (RMSD%) Bias (Bias%) r

Dom 0.61m (3.2%) 0.06m (0.3%) 0.99 1.60m (8.2%) −0.96 (−4.9%) 0.95 1.51m (7.7%) −1.02m (−5.2%) 0.97
CoD 0.56m (2.7%) −0.06m (−0.3%) 0.99 2.05m (9.9%) −1.44 (−7.0%) 0.95 1.87m (9.1%) −1.38m (−6.7%) 0.95
Int 1.17m (6.9%) 0.22m (1.3%) 0.98 1.15m (6.8%) −0.70 (−4.2%) 0.98 1.42m (8.3%) −0.92m (−5.4%) 0.98
Sup 0.38m (5.4%) −0.11m (−1.6%) 0.98 0.35m (5.0%) −0.23 (−3.3%) 0.99 0.27m (3.9%) −0.11m (−1.7%) 0.99
All 0.69m (3.6%) 0.04m (0.2%) 0.99 1.68m (8.8%) −1.04 (−5.5%) 0.97 1.59m (8.3%) −1.08m (−5.7%) 0.97

Fig. 4. Correlation of tree height observations from ALS, TLS and field measurements in easy forest stands: (a) ALS vs. field; (b) TLS vs. field; (c) TLS vs. ALS. The
dashed light blue line represents the identity function y = x . The vertical lines in (b) and (c) indicate the turning point at 15m beyond which TLS tends to
underestimate the heights of trees. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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more co-dominant and intermediate trees are located closer to the
identity function in (c) than in (a) and (b). This indicates a higher
agreement between the ALS- and TLS-based tree height measurements
compared to the agreement between ALS and field and agreement be-
tween TLS and field. For suppressed trees, all three tree height mea-
surement techniques maintain a very high consistency, with r equal to
1.0 and bias close to zero (Table 3).

3.3. Tree height observations in difficult plots

In contrast to the easy and medium plots, large disagreements were
observed among the tree height measurements in the difficult forest
stands. The overall correlation coefficients of the ALSv.Field and the
TLSv.Field decreased to below 0.95, and the correlation coefficients of
the intermediate and the suppressed trees in the ALSv.Field and
TLSv.Field comparisons dropped by approximately 50%, as shown in
Table 4.

On the other hand, the correlation coefficient of the TLSv.ALS tree
heights in difficult stands remained at a robust level similar to that in
the easy and medium plots. These results indicate that, in the difficult
stands, a good agreement existed between the ALS- and TLS-based tree
heights, while the field-based tree heights deviated from both the ALS-
and TLS-based tree heights. This pattern can also be observed by
comparing the sub-figures of Fig. 6, in which the number of the outliers
in (a) and (b) is clearly higher than that in (c).

With respect to the crown classes, the tree heights of dominant and
codominant trees from both the ALS and TLS data tended to be lower
than those from the field measurements (with above 0.5m negative
bias). For intermediate and suppressed trees, the height estimates from
ALS and TLS clearly deviated from the field measurements, thereby
producing the majority of the outliers. Compared with the field mea-
surements, the disagreements between ALS- and TLS-based tree heights,

especially for intermediate and suppressed trees, were clearly lower, as
illustrated in Fig. 6(c). The 15-m turning point for the underestimation
of TLS-based tree height in the TLSv.Field comparisons was less sig-
nificant in difficult plots than in the easy and medium plots (Fig. 6(b)).
However, it was still present in the TLSv.ALS comparison, as shown in
Fig. 6(c).

4. Discussion

The findings from the cross-comparisons of tree heights derived
from ALS, TLS and field regarding the plot complexity are summarized
in Section 4.1. To further clarify the causes for the disagreements be-
tween the three height measurement techniques, we need to study the
trees that clearly deviate from the identity functions if Figs. 1–3 (i.e.,
outliers/suspicious cases). Three sets of outlier cases, that is, S(als,field),
S(tls,field) and S(als,tls), were identified according to Eq. (2) in Section 2.4.
Out of the 1174 trees, a subset of 103 trees, or 9%, were identified as
outliers, and was excluded from discussion in Sections 4.2–4.4, then
specifically studied in Section 4.5.

4.1. The tree height observations in different stand categories and crown
classes

According to the comparison results in Section 3, in general, dis-
agreements between the ALS-, TLS- and the field-based tree height
measurements increase with an increasing complexity of the forest
stand. The following three interesting observations were achieved.
First, the correlation between the TLS- and ALS- based tree height
measurements are robust with respect to the stand conditions. The
values of r in TLSv.ALS comparisons remained at a same level in three
stand complexity categories as shown in Tables 2–4. On the contrary,
the correlations in the ALSv.Field and TLSv.Field comparisons

Table 3
Statistical evaluations of the comparisons of tree heights derived from ALS, TLS and field measurements in medium plots.

Crown Class ALSv.Field TLSv.Field TLSv.ALS

RMSD (RMSD%) Bias (Bias%) r RMSD (RMSD%) Bias (Bias%) r RMSD (RMSD%) Bias (Bias%) r

Dom 0.98m (4.7%) −0.03m (−0.2%) 0.99 2.48m (11.8%) −1.72 (−8.2%) 0.97 2.34m (11.1%) −1.69m (−8.1%) 0.98
CoD 0.98m (5.6%) −0.52m (−3.0%) 0.99 1.88m (10.9%) −1.48 (−8.6%) 0.98 1.41m (8.4%) −0.96m (−5.7%) 0.99
Int 1.41m (11.7%) 0.28m (2.3%) 0.94 1.08m (8.9%) −0.33 (−2.7%) 0.96 1.43m (11.5%) −0.60m (−4.9%) 0.94
Sup 0.31m (4.3%) −0.01m (−0.2%) 1.00 0.26m (3.6%) −0.02 (−0.3%) 1.00 0.21m (2.9%) −0.01m (−0.1%) 1.00
All 1.11m (6.6%) −0.12m (−0.7%) 0.99 1.92m (11.4%) −1.21 (−7.2%) 0.98 1.77m (10.6%) −1.09m (−6.5%) 0.98

Fig. 5. Correlation analyses for tree height observations from ALS, TLS and field measurements in medium forest stands: (a) ALS vs. field; (b) TLS vs. field; (c) TLS vs.
ALS. The dashed light blue line represents the identity function y= x . The vertical lines in (b) and (c) indicate the turning point at 15m beyond which TLS tends to
underestimate the heights of trees. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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significantly vary with the changing stand conditions, especially for
intermediate and suppressed trees. Taking the suppressed tree as an
example, the values of r in easy, medium and difficult plots were 0.99,
1.00, and 0.55, respectively, in the TLSv.Field comparison; In the
ALSv.Field comparison, the corresponding values of r were 0.98, 1.00,
and 0.51, respectively, and in the ALSv.TLS comparison 0.99, 1.00, and
0.97, respectively. Considering the totally different terrestrial and aerial
viewing geometries of the TLS and the ALS, the high correlation be-
tween TLS and ALS suggests that both TLS and ALS data record the top
part of tree crowns. Specifically in the difficult plots, the RMSD of TLS
and ALS tree height measurements was 0.81m, which also supports the
assumption that both TLS and ALS data approximately reached the top
part of crowns. Meanwhile, in difficult plots, the r of suppressed trees in
ALSv.field was 0.55 and in TLSv.field 0.51, which dropped approxi-
mately 50% in comparison with the easy and medium plots. The 2.66m
RMSD in ALSv.field and 2.18m RMSD in TLSv.field revealed large
disagreements between ALS- and field-, as well as between TLS- and
field- measured tree heights for suppressed trees in difficult plots. It is
therefore reasonable to question the reliability of the field-measured
suppressed tree heights in difficult plots. The possible reasons for the
unreliable field-based suppressed tree height can be the difficulties of
identifying treetops or measuring instrument-stem distances due to the
dense undergrowth. Thus, it can be concluded that the field-measured
tree height was more sensitive to the stand conditions than the LS
systems. The more complex the stand, the more unstable was the per-
formance of the field measurements.

Second, from the point of view of the crown classes, the highest
uncertainty is associated with the intermediate trees, regardless of the
stand conditions or the applied measurement methods (Tables 2–4). In
easy and medium plots, all three techniques provide creditable tree
height measurements for suppressed trees, with less than 0.40m RMSD
and correlation r close to one in all comparisons. In difficult plots, the
uncertainties in the height of suppressed trees significantly raised, and

as discussed above, such uncertainties can be associated with the in-
stability of the field measurements. Thus, it can be concluded that ALS
performance was stable in height measurements of suppressed trees,
regardless of the stand conditions.

Third, the ALS-based tree heights can be either higher or lower than
those of the field measurements, except for the co-dominant trees
whose height estimates tend to be lower than the field measurements in
all stand conditions. The underestimations in TLS-based tree heights
were easy to recognize, especially when the trees were taller than 15m.

4.2. The agreement and disagreement in the tree heights observations from
different sources

By excluding the outliers, the absolute values of the tree heights
acquired from the ALS-, TLS- and field-based measurements in all 18
sample plots are plotted in Fig. 7 in ascending order sorted by the field-
based tree height. The four sub-figures represent the different crown
classes.

According to Fig. 7(a)–(d), the residuals between the ALS-, TLS- and
field-based tree heights of trees lower than 15m are smaller than those
of the trees taller than 15m, indicating a common reliability of the tree
height measurements for small trees from all three techniques. It is
again recalled in Fig. 7(a)–(c) that underestimation of tree heights from
TLS become more obvious for trees taller than 15m. In the ALS-based
tree height observations for trees taller than 15m, no significant trend
of over- or underestimation can be observed in dominant and inter-
mediate trees, as shown in Fig. 7(a) and (c). However, for the co-
dominant trees in Fig. 7(b), the ALS-based tree heights tended to be
lower than the field-based tree heights, specifically when trees are taller
than 15m.

For trees taller than 15m (outliers excluded), the RMSD and bias
values of the ALSv.field comparison are (RMSE and bias, respectively)
0.84m and −0.04m for dominant trees, 1.02m and −0.54m for co-

Table 4
Statistical evaluations of the comparisons of tree heights derived from ALS, TLS and field in difficult plots.

Crown Class ALSv.Field TLSv.Field TLSv.ALS

RMSD (RMSD%) Bias (Bias%) r RMSD (RMSD%) Bias (Bias%) r RMSD (RMSD%) Bias (Bias%) r

Dom 1.16m (6.2%) −0.52m (−2.8%) 0.98 2.50m (13.4%) −1.79 (−9.6%) 0.94 1.80m (9.9%) −1.27m (−7.0%) 0.96
CoD 1.14m (6.1%) −0.65m (−3.4%) 0.95 2.08m (11.1%) −1.69 (−9.0%) 0.92 1.43m (7.9%) −1.04m (−5.8%) 0.94
Int 2.01m (15.4%) 0.28m (2.2%) 0.86 1.96m (15.0%) −0.45 (−3.4%) 0.86 1.61m (12.0%) −0.73m (−5.5%) 0.92
Sup 2.66m (41.4%) 0.99m (15.4%) 0.51 2.18m (33.9%) 0.76 (11.9%) 0.55 0.81m (11.0%) −0.22m (−3.0%) 0.97
All 1.69m (10.8%) −0.12m (−0.8%) 0.94 2.11m (13.6%) −1.02 (−6.6%) 0.94 1.56m (10.1%) −0.90m (−5.8%) 0.96

Fig. 6. Correlation analyses for tree height observations from ALS, TLS and field measurements in difficult forest stands: (a) ALS vs. field; (b) TLS vs. field; (c) TLS vs.
ALS. The vertical lines in (b) and (c) indicate the turning point at 15m beyond which TLS tends to underestimate the heights of trees.

Y. Wang et al. ISPRS Journal of Photogrammetry and Remote Sensing 147 (2019) 132–145

139



dominant trees, and 1.06m and 0.00m for intermediate trees. Suppose
that ALS underestimates tree heights as understood in previous studies.
Then, the underestimation should at least appear on all trees in the
uppermost canopy layer, which is not the case in this study. Therefore,
it is safe to suggest that, in this study, the field-measured heights for tall
trees in codominant canopy class tended to be higher than the real tree
height.

As was reported in Larjavaara and Muller-Landau (2013), due to the
difficulty in determining the exact locations of the base and the top of a
tree from a distance, operators tend to shoot high up when using tan-
gent tree height instruments, leading to overestimations of the tree
height. The abnormality of the field-based tree height for co-dominant
trees also suggests that it was more difficult for the field operators to
define the treetops of co-dominant trees even when they were located in
the uppermost canopy layer. Thus, at least in this study, the over-
estimation of the height of the co-dominant trees in the field-based
technique can be considered as a systematical phenomenon.

4.3. The impact of tree height on tree height measurements

The RMSD% of the ALSv.Field comparison generally decreases with

an increasing tree height, as shown in Fig. 8(a). However, such a trend
reaches an inflection point at tree heights greater than 20m, and the
RMSD% starts to rise. This pattern is unreasonable for ALS data since
tall trees should have a better observation geometry and suffer less from
occlusion effects than small trees. Thus, tall trees should be observed
with higher certainty than small trees. Hence, the increased ALSv.Field
RMSD% for trees above 20m height can most likely be attributed to the
decreased accuracy in the field-based tree heights. In this case, the field-
based tree height observations were higher than the true heights, in
agreement with the findings based on the crown classes in the previous
section.

The increasing trend in TLSv.Field RMSD% in Fig. 8(b) agrees with
the general understanding of the TLS-based tree height observations,
namely, the taller the tree, the higher are chances for tree height un-
derestimation.

On the other hand, the ALS- and TLS-based tree height observations
have a stronger agreement. The RMSD value is below 0.4m for trees
under 10m, and below 1m for trees between 10 and 20m, as shown in
Fig. 8(c). This observation is similar to the findings presented in Section
3 demonstrating that the threshold for reliable TLS-based tree height
observation is between 15 and 20m. Notably the TLSv.ALS RMSD% of

Fig. 7. Tree height observations from ALS (in blue), TLS (in red) and field measurements (in yellow) for dominant (a), co-dominant (b), intermediate (c) and
suppressed (d) trees. The x -axis represents the number of trees; the y-axis represents the absolute tree height value. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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the tree height group 0–5m included a single large error, which did not
belong to the outlier case defined by Eq. (2). The larger error sig-
nificantly influenced the RMSD% calculation in the group of small
trees. Should this case have been excluded, the TLSv.ALS RMSD would
have been 0.15m (3.4%), which was more than 50% less than the value
given in Fig. 8(c). Consistency exists between the ALS- and TLS-based
tree height observations of small trees (i.e., below 10m), where TLS has
a favorable viewing geometry of small trees and a high probability of
recording their tree tops. This consistency reveals that once sufficient
visibility was provided, high-density ALS is capable of recording the
treetops of small trees.

In summary, for tree height measurement, the influence from the
geometric accuracy inside the TLS and ALS point clouds was not crucial.
However, the different observation perspectives, that is, terrestrial vs.
aerial, did have significant impacts on the visibility inside the canopies
and consequently influenced the performance of the LS systems in di-
gitizing the trees. Given the robustness of systematic geometric accu-
racy of the LS point clouds, the actual accuracy of the height estimate of
a tree was determined by the completeness of the tree digitization in the
point clouds. For example, TLS has a limited capacity to measure tree
height for trees taller than 15m in complex stands, mainly caused by
the dropped completeness of the upper crowns due to the strong oc-
clusion effects. When the trees were completely captured, for example,
for most of the suppressed trees, TLS-measured tree heights were highly
accurate.

4.4. The impact of species on tree height measurement

The total number of trees in each species class was 398, 324, 323
and 29 for pine, spruce, birch and others, respectively. The distribution
of each species in different crown classes is illustrated in Fig. 9. The
dominant trees in the test plots were mainly comprised by pines and
spruces, and the co-dominant trees were mainly pines and birches. The
amount of the three tree species in intermediate trees were similar, and
the suppressed trees were mainly spruces. Considering the sizes of the
samples, the following discussion is concentrated on the pines, spruces
and birches.

As illustrated in Fig. 10(a)–(c), the largest residuals existed in the
TLS- and the field-based tree height measurements regardless of the
species. A general trend was that the tree height observations of ALS lay
between those of field and TLS. Usually, the field-measured tree height
is the highest among the three methods, and TLS-based tree height is
the lowest, with the distance between ALS- and TLS-based tree heights
larger than that between ALS and field. Such a trend was less relevant to
the species classes.

Given the robustness of the geometric accuracy in LS point clouds
(Section 4.3), the accuracy of the LS-based height estimation of a tree
was determined by the visibility of the tree in the point cloud, that is,
how completely the tree was recorded in the data. In Fig. 10(c), it is
shown that the largest residuals between ALS and TLS tree height

observations came from spruce, followed by birch. From the aerial
perspective of the ALS, it was unlikely that the crown completeness
could be seriously impacted for a large population of spruce and birch;
therefore, it should be the TLS-based tree height observations that were
influenced due to the occlusions brought by the branches of spruce and
birch at the lower part of the stem. Thus, the influence of the species to
the LS-based tree height measurements was actually due to the occlu-
sion effects brought by the crown and branch shapes of certain species.

What comes to the comparison between ALS- and field-based tree
heights, it was clear that the residuals for pine and spruce kept at a
similar level, which was approximately 0.6 m. For birch, the residuals
between the two observations almost doubled (Fig. 10(a)). Considering
the point density of the applied ALS data, as previously mentioned, the
ALS-based tree heights were relatively robust against different species
classes. Therefore, it can be suggested that the higher residual of birch
in the ALS- and field-based tree height comparisons was mainly brought
by the uncertainties in the field-measured tree heights. Namely, un-
certainties in field-measured tree heights of birch were higher than
those of pine and spruce, which agreed with the understanding that the
in-situ identification of the treetop of birch was much more difficult
than that of pine and spruce.

4.5. Analysis of the outliers

In the 103 cases of outliers, 38 cases (36.9%) were associated with
uncertainty in the field-based measurements, 17 cases (16.5%) were
associated with uncertainty in the ALS-based measurements, and 48
cases (46.6%) were associated with uncertainty in the TLS-based
measurements. The outliers represent errors in the measurements, thus,
the appearance of the outliers in each measurement methods reveals
the weaknesses of the corresponding method.

4.5.1. Cases in which the field-based tree heights were more uncertain than
the other measurements

In total, 38 trees fell into the intersection of S(ALS,field) ∩ S(TLS,field). As
illustrated in Fig. 11, for all trees in this group, relative residuals be-
tween ALS and TLS based tree heights were below 30%, which is a
much lower value than that of ALSv.Field and TLSv.Field. This indicates
that the large residuals are likely caused by errors in the field-based tree
heights.

As discussed in previous sections, compared to the LS systems, the
field measurements are more sensitive to the stand conditions, the
crown classes of trees, and the species of trees. The distribution of the
outlier cases in Table 5 indicates that the field measurements are
hampered by the difficult forest stands, where there are high risks of
errors in the tree height measurements of intermediate and suppressed
trees.

4.5.2. Cases in which the ALS-based tree heights were more uncertain than
the other measurements

In total, 17 trees have large residuals associated only with
ALSv.Field, that is, the trees are in set S(ALS,field) but not in the set
S(TLS,field). The relative residuals of the ALSv.Field, TLSv.Field and
TLSv.ALS comparisons of these 17 trees are illustrated in Fig. 12. Be-
cause the ALS-based tree height observations deviated from those of the
other two datasets, the uncertainty is clearly much higher in the ALS-
based observations.

Fifteen of the 17 trees, were intermediate trees (Table 6). The
number of intermediate trees increases with an increasing forest stand
complexity. The remaining two of the 17 included one co-dominant tree
in a medium plot and one suppressed tree in a difficult plot. Therefore,
the intermediate trees are the most challenging cases for ALS-based tree
height measurement, associated with difficulty of identifying the exact
treetop location of such trees in the ALS point cloud.
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4.5.3. Cases in which the TLS-based tree heights were more uncertain than
the other measurements

There were 48 trees in the set S(TLS,field) and not in the set S(ALS,field)
(Fig. 13). Three random errors (Nos. 25, 28, and 29) in which the TLS-
based tree heights were overestimated were found in this set, and all
three were intermediate trees. These three trees were actually from a
same dense difficult plot with four layers. Most of the co-dominant and
intermediate trees in this plot were situated in small groups with in-
termingled crowns. These conditions could be the reason for the mis-
identification of the treetops in the TLS data. Otherwise, a general trend
of underestimation in the TLS-based tree height was obvious for the
remaining 45 trees in the group (Fig. 13). Therefore, systematic errors,
i.e., underestimations, are likely present in the TLS-based tree height
observations in this group.

Analysis of the stand conditions and crown classes of the trees in
this group revealed that most of the problematic TLS-based tree height
observations were associated with dominant and codominant trees
(Table 7). The results in this study agree with the common under-
standing that TLS is limited by its terrestrial perspective in recording
the upper parts of the crowns of high trees, leading to a systematic
underestimation of tree heights, especially for tall trees.

5. Conclusions

The results reveal a high agreement among all three tree height
observation methods for small trees with tree heights of less than 10m
in easy and medium stands. Also, the consistency between the ALS- and
TLS-based tree height observations of small trees (i.e., below 10m) is

high in all three stand difficulty categories. Considering the ability of
TLS to digitize small trees with height completeness, such consistency
reveals that ALS is also capable of recording the treetops of the sub-
canopy and small trees with high reliability, given a good visibility and
a high point density.

The statistics presented in this study show that the applied type of
TLS, e.g., 5 scans per plot, is reliable in measuring tree heights for trees
up to 15 and 20m in height. The easier the stand, the taller the tree can
be accurately measured with TLS. The underestimation of height for
trees taller than 15–20m is systematic in TLS due to the limited visi-
bility of the upper part of the tree crowns. In general, the taller the
trees, the less accurate are the TLS-based tree height measurements.
Considering that multi-scan TLS captures a terrestrial point cloud with
the highest data quality, this finding also applies to, for example,
image-based point clouds (Liang et al., 2015).

Results in this study reflect the robustness of the LS systems in re-
cording the height of trees, regardless the complexity of the forest
stand, the crown class, the height and the species of the trees. The most
important factor affecting the LS-based tree height accuracy is the
visibility of a tree, that is, the completeness of tree digitization in the
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Fig. 10. RMSDs of tree height observation pairs for different species classes. The x -axis represents the tree height category, and the y-axis represents the relative
RMSD of the compared tree height observations. The labels above the bars represent the absolute RMSD values in each tree height categories, the units are in meters.

Fig. 11. Relative tree height residuals with respect to the field-measured tree heights for cases in which the field-measured tree heights are suspicious. The x -axis
represents the ID of trees, and the y-axis represents the relative residuals. The blue line marks the ALSv.Field relative residual; the orange line marks the TLSv.Field
relative residual; the yellow line marks the residual value of zero. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 5
Distribution of the trees with suspicious field-based tree heights.

Dominant Co-dominant Intermediate Suppressed

Easy plots 0 0 0 0
Medium plots 0 1 4 0
Difficult plots 1 0 25 7
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data. However, the completeness of the LS digitization of a tree suffers
from the occlusion effects, which is dictated by the location of the tree
with respect to other nearby trees (i.e., the crown class of the tree), the
structure of its neighboring crowns (i.e., the stand structure), the
structure of the tree itself (i.e., the tree species), the perspective of the
observations (i.e., the geometry between the tree and the sensor) and
the settings of the applied digitization system (e.g., the sensor and
platform configurations). Given the absence of occlusion from the aerial
perspective and the small risk of missing treetops in a dense point
cloud, high-density ALS data should be a reliable technique to measure

on tree height for upper-canopy trees, that is, for dominant and co-
dominant trees.

Field-based tree height is more sensitive to the stand conditions, the
crown class and the species of trees compared to LS systems. In this
study, the field measurements overestimated the tree height for co-
dominant trees. Analyses of the outliers also suggested that the sup-
pressed and intermediate trees in complex stands are challenging for
field measurements. Uncertainties in field-measured tree heights of
birch were higher than those of pine and spruce. This agreed with the
understanding that the in-situ treetop definition for birch was much

Fig. 12. Relative tree height residuals with respect to the field-measured tree heights for the cases in which the ALS-based tree heights are suspicious. The x -axis
represents the ID of trees, and the y-axis represents the value of relative residuals. The blue line marks the ALSv.Field relative residual; the orange line marks the
TLSv.Field relative residual; the yellow line marks the residual value of zero. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 6
Distribution of the cases with suspicious ALS-based tree heights.

Dominant Co-dominant Intermediate Suppressed

Easy plots 0 0 1 0
Medium plots 0 1 4 0
Difficult plots 0 0 10 1

Fig. 13. Relative tree height residuals with respect to the field-measured tree heights for the cases in which the TLS-based tree heights are suspicious. The x -axis
represents the ID of trees, and the y-axis represents the relative residual value. The blue line marks the ALSv.Field relative residual; the orange line marks the
TLSv.Field relative residual; the yellow line marks the residual value of zero. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 7
Distribution of the cases with suspicious TLS-based tree heights.

Dominant Co-dominant Intermediate Suppressed

Easy stand 5 3 1 0
Medium stand 3 5 2 0
Difficult stand 9 8 12 0
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more difficult than for pine and spruce. The accuracy of field-based tree
heights generally degrades with increasing tree height. Therefore, more
reliable height measurements for trees taller than 20m should be ex-
pected from the ALS, with the precondition that the trees are correctly
delineated from the point cloud.

The bottleneck of ALS-based approaches currently lies in the pro-
cessing stage, that is, the automated detection and delineation of in-
dividual trees from the point cloud. Co-dominant and intermediate
trees, as well as deciduous trees, in multilayered and/or dense forest
stands remain especially challenging in terms of accurate crown de-
tection and delineation. Thus, automated individual tree detection al-
gorithms require further study and new innovations. Nevertheless, in
certain applications, for example, in forest management decision
making, one of the most often used forest inventory variables is the
dominant tree height, that is, the mean height of the 100 largest trees
per hectare. In this situation, ALS represents an optimal option since
most of the recent individual tree detection algorithms are capable of
achieving high accuracy with dominant trees in ALS point clouds.

Note that the ability of high-density ALS to record suppressed trees
remains limited due to the occlusion effects. In addition, the identifi-
cation of exact treetop locations from the point clouds can be challen-
ging for intermediate and suppressed trees, even with human inspec-
tions. Among the total of 2417 trees in the 18 sample plots, manual
treetop identification failed for 928 trees (38.4%) using the applied ALS
data with a resolution of ∼450 points/m2. Therefore, the occlusion
effects from the uppermost canopy layer remain the most important
barrier for complete digitization of secondary layers from ALS.

This paper reveals the capability of cutting edge LS techniques in
the measurement of tree height. Using high-end ALS configuration, it is
possible to acquire tree height measurements more reliably than using
conventional field measurements, and this applies especially for tall
trees. Considering the constant technological progress, high density ALS
data might be affordable for large scale survey in the coming years. On
the other hand, and interesting future research topic would be to find
out the minimum point density needed for accurate tree height mea-
surement from ALS point clouds.
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