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Human behavioural patterns exhibit selfish or competitive, as well as selfless or altruistic tendencies, both
of which have demonstrable effects on human social and economic activity. In behavioural economics,
such effects have traditionally been illustrated experimentally via simple games like the dictator and
ultimatum games. Experiments with these games suggest that, beyond rational economic thinking, human
decision-making processes are influenced by social preferences, such as an inclination to fairness. In this
study we suggest that the apparent gap between competitive and altruistic human tendencies can be
bridged by assuming that people are primarily maximising their status, i.e., a utility function different
from simple profit maximisation. To this end we analyse a simple agent-based model, where individuals
play the repeated dictator game in a social network they can modify. As model parameters we consider
the living costs and the rate at which agents forget infractions by others. We find that individual strategies
used in the game vary greatly, from selfish to selfless, and that both of the above parameters determine
when individuals form complex and cohesive social networks.
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1. Introduction

People’s behaviour towards others lies in a broad range from selfish to selfless: In the former, individuals
are concerned with their own narrow minded benefit like profit, thus acting competitively against others,
while in the latter they are concerned with the needs of the rest, that is, they behave in an altruistic and
even self-sacrificing way.

How people behave in real-life situations depends on the social or economic context and on indi-
vidual characteristics. In order to get a deeper insight into human behavioural patterns in an economic
context, Kahneman at al. designed the dictator game [1], a two-player game where one of the players,
the dictator, is tasked to divide a given sum of money between both players. The dictator can divide the
money in any way, even keeping it all. The game was designed to test some of the assumptions of mod-
ern economic theories [2], mainly the assumption of rationality, under which the dictator will always
keep all the money, not giving anything to the other player. In experiments, however, dictators tend to
give at least a minor fraction of money to the other player, thus challenging the assumption of rationality
of economic actors [3–5]. It should be emphasised at this point that the classical theory assumes that
the utility function of the dictator is just personal profit.

The mismatch between theory and observation in the dictator game is largely caused by social fac-
tors, such as appreciation for fairness and equality, caring for others, reputation, etc. In other words,
the empirical behaviour of the dictators may be understood as renouncing economic advantages to gain
social status, such as esteem of the other player, or more generally a good reputation. While social status
has been studied extensively in the social sciences, the analysis of its effects in economic theories (via,
say, the concept of bounded rationality [2] has been more limited). A way to bridge this gap between
human social and economic behaviour is to consider how the wish to maximise social status may affect
social network structure and thus the economic decisions of individuals. Social relations are a significant
part of the overall social standing or status of people, with both negative and positive effects depending
on the individual behaviour. Positive effects include increased political and economic opportunities and
social support in times of need, while negative effects can range from social exclusion to outright hos-
tility. Hence humans usually have to take into account how their actions affect their relationships with
others. In the context of the dictator game, we could see dictators weighing the worth of the monetary
reward against the penalty incurred to their social relations, should they be seen to act too selfishly.

The idea of status maximisation as a driving motivation of humans can be traced back to Adler’s
school of thought of individual psychology [6]. Adler explored the scenario in which many psycho-
logical problems are the result of feelings of inferiority and, consequently, applied this idea to develop
therapeutic techniques for what he termed inferiority complex. More recently, we used status maximi-
sation (referred here as ’better than hypothesis’ [BTH]) as a key mechanism to model the co-evolution
of opinions and groups in social networks [7]. The aim of this study is to understand how a simulated
society of individuals, driven by status maximisation, behaves when agents are allowed to freely form
economic relationships but with a utility, where the profit aspect is only one component of status max-
imisation. To that end we use the BTH to model the social interactions of agents and their strategies in
the dictator game. Previous agent-based models have considered the effect of social preferences such
as inequality aversion and a tendency to fairness [8] but not status maximisation. Here we show how
the drive of individuals to increase their status with respect to others determines both their economic
strategies and the structural properties of the social network in which they reside.

Our approach to create a new utility function based on social status could be considered as an
attempt to restore the idea of rational decision making in the economic interactions. However, we should
emphasize that this interpretation has its limits. First, quantifying social status is highly non-trivial, but
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it could be circumvented by making simple assumptions. Second, while profit is simply measured in
dollars (though the value of 1$ is quite different for a beggar or for a millionaire), estimating social
status has always a subjective component and it changes depending on the circumstances. Our purpose
with the agent based approach is to test to what extent people are willing to invest in enhancing their
social capital at the expense of their profits if their comparative position in the competition becomes
better as a result.

The original dictator game is a two player game, where one of the players, the dictator, is tasked
with dividing a fixed reward between the players at will [1, 3, 4]. It is different from the ultimatum
game introduced in [9], where the second player gets to either accept or reject the offer, such that the
rejection would result in neither player getting anything. Both games were constructed to demonstrate
the limitations of rational economic behaviour, but in this study we focus on the dictator game.

Assuming economic rationality (or profit maximisation) on the part of the dictators one would expect
them to keep the whole reward, and not give anything to the other player. However, in the hundreds of
dictator game experiments in the past few decades it has been shown that many players, in the role of
the dictator, actually do give out non-zero proportions of the reward to the other player (see e.g. the
meta-analyses in [4, 10, 11]), which naturally challenges the notion of humans as rational economic
actors. While there is a lot of variation in the results, the average offers to other player can reach as high
proportions as almost 40%, as can be seen in Table 1 for various studies, The effects of different social
influences on the behaviour of the dictators have been studied extensively, (see for example, [12] and
references therein), and especially those of social norms (see e.g. [13–15]). More recently, the effects
of social networks, the players are embedded in, has been studied in [16] for the dictator game and in
[17] for the ultimatum game.

From the theoretical point of view, the experimental results obtained with the dictator game and
similar games have been interpreted in terms of altruism [10, 18], fairness, in the sense of inequity
aversion [19–21], biological evolution [22–24], or even experimental artefacts [12, 25]. Here we study
the dictator game by means of agent based modelling in the context of coevolving social networks
populated by agents, who are driven by maximising their social status.

Study Type Focus Average offers
Engels 2011 meta-analysis general overview 28%
Cardenas & Carpenter 2008 meta-analysis development 34%
Camerer 2003 meta-analysis game theory v 20%
Zhao 2015 experiment politeness 39%
Forsythe et al 1994 experiment real rewards v 20%

Table 1. Some of the more signicant studies of the dictator game summarized.

The paper is organized as follows: In the next section we introduce the networked dictator game
model and explain the utility function we use for the evolution dynamics of the game, as well as the
model parameters. Section 3 contains the results, including the analysis of the network geometries as a
function of the parameters. In section 4 we draw conclusions.

2. The network dictator game model

Our dictator game model consists of a network of N agents that form and break social connections to
each other and play the dictator game repeatedly with the connected agents. The simulation proceeds
in cycles, in which each connected agent plays the dictator game with all the agents connected to it.
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Note that for each pair of linked agents the game is played twice in each game cycle with the agents
exchanging the roles of the dictator and the supplicant between these instances of the game.

Each agent i is characterised by the accumulated “winnings”, or wealth, denoted by vi. For every
transaction of the game an amount M of money is given to the agent acting as the dictator with its own
dictatorial division strategy, denoted by xi (0 6 xi 6 1) which is the proportion of M that it gives to the
other players. After each cycle is completed, an amount cM is subtracted from every agent’s wealth as
living cost. For the sake of simplicity we here assume that the proportion c is the same for all the agents
and for all times. If the wealth of an agent should go below zero, it is set to zero, meaning that the agent
is still in the game. In addition to their social connections, the agents also adjust their division strategies
during the simulation with a hill climbing algorithm,explained in more detail below.

When the agent i plays with agent j, with i being the dictator, the accumulated monetary reserves of
the agents i and j change by

vi(t1) = vi(t0)+(1− xi)M, (2.1)
v j(t1) = v j(t0)+ xiM, (2.2)

where t0 denotes the moment of time before the transaction and t1 moment of time after the transaction.
When one takes into account the reduction by cM, the full amount of accumulated wealth of the agent i
at cycle T1 is as follows

vi(T1) = max
(

vi(T0)+M
(
ki(1− xi)+ ∑

j∈mi(1)
x j− c

)
,0
)
, (2.3)

where ki is the number of neighbours of the agent i and T0 is the cycle preceding T1.
The social network of agents was initially set to be randomly connected the average degree 〈k〉,

but in the course of simulations there are no limitations on the degree of the agents. We deal with an
adaptive network [26, 27]: At the end of each cycle the network is let to reconfigure through rewiring
the connections in such a way that the agents keep track of how the other agents affect their status.
Here we assume that the agents compare themselves against their neighbours, which means that every
agent stores information not only what the other agents have given to it, but also what was given to
its neighbours and how well they have accumulated wealth in comparison to them. For the sake of
encouraging agents to renew their connections after negative experiences, we let their memories fade
over time.

The way the agent i determines the influence of agent j on its overall status is ultimately derived
according to the BTH change of utility ∆i of agent i. We assume that the agents only compare themselves
to their neighbours (or, in other words, that the agents only know the accumulated wealth of their
neighbours). Thus we can write the utility as follows

∆i(T1) = vi(T1)− vi(T0)+ ∑
l∈m1(i)

(vi(T1)− vl(T1))

− ∑
l∈m1(i)

(vi(T0)− vl(T0)). (2.4)

To see how the actions of agent j affect ∆i it is instructive to rearrange the terms of ∆i in the following
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way:

∆i(T1) = (ki(T0)+1)(vi(T1)− vi(T0))

− ∑
l∈m1(i)

(vl(T1)− vl(T0))

= (ki(T0)+1)(vi(T1)− vi(T0))

− ∑
l∈m1(i)/{ j}

(vl(T1)− vl(T0))

−(v j(T1)− v j(T0)), (2.5)

where ki is the degree of agent i. From Eq. 2.5 one can see that agent j can influence ∆i in three
ways: first by giving money to i, second by giving money to the other neighbours of i and third by
accumulating money itself. The amount of money given by agent j to all connected agents is x jM per
dictator game cycle. Thus, it is possible to define a cumulative utility matrix Ui j to describe how the
agent i has benefited from the actions of agent j at cycle T1 as

Ui j(T1) =Ui j(T0)+ai jU ′i j(T1)+ γi j(T0), (2.6)

where ai j is an element of the adjacency matrix:

ai j =

{
1, if agents i and j are linked
0, otherwise,

(2.7)

γi j is the matrix of memory parameters, nI is the amount of agents in I = m1(i)∩m1( j) and

U ′i j(T1) = (ki(T0)−nI +1)x j(T0)M

−(v j(T1)− v j(T0)) (2.8)

The memory parameter matrix γi j measures the speed at which the agents forget how they were treated,
and it is designed so as to reduce |Ui j| to zero in time. Thus, it can be written in the form

γi j(T0) =


γ0, if UT

i j (T0)> γ0,

− γ0, if UT
i j (T0)6−γ0

UT
i j (T0), if − γ0 6UT

i j (T0)6 0

−UT
i j (T0), if 0 6UT

i j (T0)6 γ0

(2.9)

where the memory parameter γ0 (assumed to be constant for the sake of simplicity) is the maximum
pace of forgetting and UT

i j (T0) =Ui j(T0)+ai jU ′i j(T1). For the sake of simplicity we also assume that the
agents have full knowledge where the accumulated wealth of the other agents is coming from, so, for
instance, the agent i can adjust Ui j even if the agent j is not connected to it.

After each cycle of the game, the agents form connections with the agents that have benefited them
and cut connections with agents that have not, in other words the agent i will form a connection with
the agent j if such a link is not already present and Ui j > 0, and cut an existing link with the agent j if
Ui j < 0.

The agents adjust their division strategies xi using a simple hill climbing algorithm. At first, the xi’s
are randomized, and changed by dx at every step. In the second step, dx is randomly chosen to be either
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−0.1 or 0.1. According to BTH, the change of status of the agent i in between game cycles is given
by Eq. (2.4), which determines the further evolution of xi: if ∆i > 0, the direction of dx is the same as
before, but if ∆i < 0, the direction of dx is changed. Inspired by the simulated annealing techniques, we
reduce |dx| linearly during the first 1000 time steps to a minimum of 0.01.

2.1 Motivation of the model parameters c and γ0

The main motivation for including the cost parameter c in the dictator game model is to test the effect of
mutual dependence on the social systems of the agents. The cost parameter is important from the BTH
(Better Than Hypothesis) perspective, because it can be interpreted to represent outside pressure to the
agents. Under the BTH assumption it is not immediately clear whether the status maximizing agents
would form social bonds of any type, let alone for the purpose of playing the dictator game. However, it
is conceivable that some common needs might force the agents to interact socially. Thus, reducing the
wealths of the agents by an amount controlled by the parameter c, introduces into the model an effect
that requires agents to cooperate in order to gain anything in the long run. This then allows us testing
whether mutual need enhances social interactions between the agents.

The potential range of the cost parameter c can in principle extend to be positive or negative without
limits, but will be limited for the purposes of this study by considering the effects of the parameter to
the wealths of the agents. In order for an agent to make profit in the model it needs to have a sufficient
number of neighbours that are willing to play the dictator game with them on good enough terms. When
c = 0, the agents retain all the wealth they manage to acquire from their dictator game interactions with
others for all time, while if c > 0, their wealths slowly decline if not replenished through the dictator
game. As a direct consequence of these facts the agents need more and more neighbours to be able to
cover their expenses as the parameter c is increased. If the agent i has only one neighbour, j, it can
generate profit from their relationship as long as c < 2, if it uses totally selfish strategy (xi = 0) and
its partner is totally generous (x j = 1). Of course, this arrangement is disadvantageous to the agent j,
and therefore not likely to happen, unless agent j happens to have a multitude of other more generous
neighbours. A pair of agents using similar division strategies can only make profit if c < 1, but when c
is increased, an agent needs at least dce neighbours with similar division strategy to cover the costs of
its living standard.

As can be seen, the theoretical maximum profit an agent can make from one relationship per simu-
lation cycle is 2M, while more realistically it can be expected to amount to about M. In any case, when
c is high enough, the agents cannot cover their costs anymore even if they form social links with every
other agent in the simulation. In a simulation with N agents this point can be expected to be reached
at the latest somewhere between c = N− 1 and c = 2(N− 1), depending on the configuration of the
social network of the agents and their division strategies. In this study we do not look into the effects of
“universal basic income”, i.e. the c < 0 case, and we limit our scrutiny of the cost parameter well below
the upper limit of 2(N−1).

The function of the memory parameter γ0 in the dictator game model is to allow the agents to
reform links that have once been broken, ensuring the continuation of the social dynamics. Without the
moderating influence of the memory mechanics in the model, the space of possible social connections
would steadily diminish during the model simulations, resulting in a very limited social network.

The interesting range of the memory parameter γ0 can be estimated using the same procedure as
the one used for the cost parameter c, i.e. by calculating the point at which the parameter’s influence
overwhelms everything else. Negative values for γ0 would make no sense in our context, so the lower
limit can be set to 0. The maximum limit can be estimated using Eq. (2.6), from which it can be seen
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that in the case of the memory parameter finding this limit amounts to finding the maximum value of
|U ′i j(T1)|, which γ0 would need to exceed. From the definition given in Eq. (2.8), we can see that U ′i j(T1)
depends in a rather complicated way on both the structure of the social network of the agents and their
division strategies, but thankfully there are only two terms to consider. Let us denote these terms as

a = (ki(T0)−nI +1)x j(T0)M (2.10)
b = v j(T1)− v j(T0), (2.11)

so that U ′i j(T1) = a−b. Since necessarily ki(T0)> nI , it follows that a > 0 always.
The term a attains its minimum value of 0 when x j(T0) = 0, and its maximum value of NM when

ki(T0) = N− 1, nI = 0 and x j(T0) = 1, i.e. when the agent i is connected to all other agents and the
agent j has no other connections and uses the most generous strategy possible in the dictator game.
Similarly, the term b has a minimum value of −cM when the agent j receives nothing from the other
agents, and a maximum value of (2(N− 1)− c)M when x j(T0) = 0 and xk(T0) = 1 for all k 6= j. As
can be seen, the maximum value for a can occur simultaneously with the minimum value of b and vice
versa, which means that the maximum value of |U ′i j(T1)| can be found either in the case where the term
a is at maximum and b at minimum or in the case where a is at minimum and b at maximum. The latter
of these cases yields the greater value for |U ′i j(T1)|, amounting to a total of (2(N− 1)− c)M. This is
therefore a sensible upper limit to γ0, since beyond that one would expect the social dynamics to settle.
As in the case of the cost parameter, we limit our study to relatively small values of γ0, so we do not
approach the upper limit (2(N−1)− c)M.

3. Results

We initialise the dictator game model with N agents each having a random dictatorial strategy or pro-
portion of the total amount, xi, the agent gives to the other player. In the simulation run at each time
step each one of the N agents in turn acts as a dictator and we let the system to run for a fixed period of
10000 time steps. For M we use the value of 1. In this work we focused on investigating the following
characteristic network quantities, i.e. the average degree 〈k〉, the average shortest path 〈L〉, the local and
average clustering coefficients Ci and 〈C〉 , the mean number of second neighbours 〈n(2)〉, the average
assortativity coefficient 〈ra〉, and the average homophily coefficient 〈rh〉. In addition, we measure the
susceptibility 〈s〉, which is the second moment of the number of s sized clusters, ns:

〈s〉= ∑s nss2

∑s nss
. (3.1)

As in percolation theory, the contribution of the largest connected component of the network is neglected
when calculating the susceptibility (3.1). Furthermore, we investigated the assortativity and homophily
coefficients defined as the Pearson correlation coefficients of the degrees k and accumulated wealth v
of linked agents, respectively, as discussed in [28] and [7]. It should be noted that the assortativity
and homophily coefficients are ill defined if agents all have exactly the same amount of neighbours
and if they are all connected to agents with exactly the same amount of wealth, respectively. These
situations do rise in our simulations occasionally, and when they do, the results for the assortativity and
homophily coefficients are excluded from averages calculated. We also calculated the Gini coefficient as
a well known measure of inequality, first proposed by Gini in 1912 [29], using the following definition

G =
∑

N
i ∑

N
j |vi− v j|

2N ∑i vi
, (3.2)
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which basically measures the total difference between the accumulated wealths v of agents.

3.1 Time-evolution of the model

In order to obtain sufficiently good statistics for determining the averages of the quantities listed above
the simulations of the model were run for 100 realisations, and time averages over the latter half of the
time series were also taken. The reason for taking the time averages from the realisations was the very
fluctuating nature of the time-evolution of the model. At times, the entire social network may cease to
exist temporarily, although these moments only occur within certain ranges of the model parameters,
especially when large values of γ0 are involved.

In order to study the time-evolution of the properties of the agents and their social networks in our
model we performed two singular simulations with N = 100 and two different sets of parameter values,
the first set being γ0 = 0 and c = 5 (case A), and the second γ0 = 5 and c = 0 (case B). In addition to
determining the proper measure for the averages of simulation results, the main motivations for these
experiments were to test converge on the other hand, and to see how the model parameters influence the
temporal behaviour of the model on the other. For example, one could surmise from the very definition
that γ0 could potentially have major effects on the time-evolution of the social networks of the modeled
agents.

The results are illustrated in Fig. 1. The network properties seem to generally converge to some
constant values around which they fluctuate, but in case B these fluctuations are very strong. The
assortativity coefficient especially becomes almost meaningless as it can have both negative and positive
values in a very short period of time due to the fluctuations, implying that the agents have no clear
preference on whether to seek connections with those of same or different degree. In case A, in contrast,
while there are still relatively large fluctuations in the value of the assortativity coefficient, the overall
value of the coefficient is clearly positive. While the fluctuations of most network properties are very
rapid, the homophily coefficient in case A exhibits slowly varying behaviour.

In contrast to the network properties, the time evolution of the minimum, maximum and average
monetary reserves of agents in the simulations show no signs of fast fluctuations. Also, it turns out that
in this case it is the parameter c that has greater impact: While in case B the growth of all of the reserves
is almost linear, in case A the growth of the maximum and average reserves stall eventually and finally
start fluctuating slowly around constant values, while the minimum reserve stays stubbornly at 0. There
is thus a substantial difference in behaviour between cases A and B when it comes to relative differences
between the minimum, maximum and average monetary reserves of the agents. All the reserves reach
tens of thousands in value in case B, while in case A they do not rise above 300. Also, in case A the
maximum reserves are in the final stages of the simulation about four times the size of average reserves,
while in case B all the reserves are on relative terms very close to each other, only diverging very slowly.
These behavioural differences are reflected in the gini coefficient, as it tends to 0 in case A, and to a
value of little over 0.6 in case B, owing to the more unequal wealth distribution in the latter case.

3.2 General characteristics of the social networks produced by the model

The model parameters c and γ0 have a strong influence on the structure of the social network produced
by the model and the division strategies of the agents. The social networks produced by the agents in the
model can vary from very simple to very complex depending on the values chosen for these parameters.
For a reference, a final state of the social network with N = 100 agents, c = 5 and γ0 = 2 is shown in
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FIG. 1. The time-evolution of the agent and network properties when N = 100, with γ0 = 0 and c = 5 (above), or γ0 = 5 and c = 0
(below). The minimum, average and maximum wealths of agents are displayed in the panels on the left, while the right panels
show the hypergenerosity prevalence along with homophily, assortativity, clustering and gini coefficients.

Fig. 2. With these parameter values the social networks of the agents produced by the model acquire
their most complex form and exhibit clearly their most interesting features. Next we explain what kinds
of simpler forms the network may take and with what parameter values, and how the complex network
shown in Fig. 2 emerges from these simpler forms.

When the model parameters are c = γ0 = 0, the networks formed consist only of collections of pairs
or short chains of linked agents. The more agents a chain has, the rarer that chain is in the network.
The total amount of agents in a simulation also determines how long the chains can get: chains longer
than four agents seem to never occur in simulations of 100 agents, but the chains of even nine agents
can manifest when the total population in the simulation is increased to 300 agents. The strategies xi
employed by the linked agents are invariably most generous possible, that is xi = 1. This is most likely
due to lack of a reason for the agents to tolerate unfairness when c = 0, while the disconnected and
linear nature of the social networks formed by the agents is probably due to the unforgiving nature of
relation formation when γ0 = 0.

Increasing the parameter γ0 from the value of 0 causes the network structure to become gradually
more complicated.While the social networks of agents are generally disjointed at relatively small values
of γ0, the relatively short chains of agents lengthen as γ0 increases, and at large values of γ0 these
chains become tangled. As γ0 is increased further, this tangledness only increases, until the networks
closely resemble that shown in Fig. 2. At some point the agents start forming densely connected hubs
within the larger networks, which we name as “trade associations”. The agents in these associations
seem to have relatively coordinated strategies in comparison to the agents outside these associations,
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FIG. 2. An example of the final state of the social network produced by our model, when N = 100, c = 5 and γ0 = 2. The colours
of the nodes show the local clustering coefficients, while the colour of the edges show the proximity of the division strategies
employed by the agents linked by the edge, as indicated. The sizes of the nodes correspond to the accumulated wealths vi of the
agents, while the widths of the edges correspond to the strength of the connection between linked agents, i.e min({Ui j,U ji}).

which may be a result of different “grand strategies” utilized by these different types of agents. The
agents within the trade associations seek fair exchange with other agents in the same association, which
in the context of our model means having the same division strategies while the agents outside these
associations generally fall into two categories: those using relatively generous offerings to attract many
less generous partners, and those agents that in turn take advantage of the more generous agents, but have
few other social connections themselves. In a way, this arrangement is reminiscent of the patron-client
relationships, and as such we call the more loosely connected part of the main component ”patron-client
network”. As for the offering proportions xi, the agents generally adopt less generous strategies as the
memory parameter γ0 is increased, except for the trade associations, whose strategies may be more
flexible. In Fig. 2 the network has a trade association in its lower part, while the rest is composed of a
patron client network.

Features that emerge only occasionally in our simulations, but often enough to be noticeable, are
totally connected components that are completely disconnected from the main network, and whose
agents have totally convergent division strategies. Obviously, these formations are extreme cases of
trade associations, and as such we call them “cartels”. These cartels can be unstable in the sense that
they may periodically disband and reform, but they may also be very robust at times.

When the parameter c is increased when γ0 = 0, the strategies xi gradually become less generous,
while the general structure of the social network remains initially the same as in the c = γ0 = 0 case, i.e.
disjointed collections of small chains of agents. However, when c is increased sufficiently, the networks
finally become more complex. The network structure in the case of large c and no γ0 shows some
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similarities to the one shown in Fig. 2, such as clusters of densely connected agents reminiscent of trade
associations, but the distinction between these and the patron-client network is weaker. Furthermore,
in the case of large c the division strategies most often decline to zero for all linked agents. Thus, one
cannot say for sure if any strategy coordination is taking place. One needs to remember that, while γ0
has a direct effect on the relation formation behaviour of the agents, c only has an indirect effect through
the term f = −(v j(T1)− v j(T0)) in Eq. 2.8, and that while the former plays a role both in the forming
and breaking of relations, the effect of the latter turns out to be to purely discourage the breaking of the
relations. This is simply because c always contributes positively to the Ui j, since

f =


(c− k j(x j−1)− ∑

a∈m1( j)
xa)M, if c > ct ,

v j(T0), if c 6 ct ,

(3.3)

where
ct = v j(T0)+(k j(x j−1)+ ∑

a∈m1( j)
xa)M. (3.4)

Thus, with sufficiently large c and small average degrees Ui j will always remain positive, and no existing
relations are ever broken. Most likely the typical course of a simulation in γ0 = 0 case is that first the all
the agents in the simulation form a fully connected community at the first time step, and subsequently
most of the links between the agents will be cut until the degrees of all agents with any connections left
are below what are allowed by c, after which the network remains unchanged for the remainder of the
simulation.

The likely reason for the formation of chains of linked agents in the low c and γ0 cases is the
fact that any offerings by an agent to the neighbours of its its neighbours weaken the standing of the
said neighbours. The formation of the trade associations is probably connected to these associations
becoming socially acceptable when forgiveness (γ0) of agents allows, or when there is enough outside
pressure (c) to the agents, or a suitable combination of these effects. Generally it seems as though γ0 on
its own has a stronger effect on the network structure than c, which on its own seems to have a stronger
effect on the division strategies of agents than the network structure.

The most relevant parameter values are those that result in the agents having similar division strate-
gies to those found in the real world experiments on the dictator game. Since our model is too simple to
reproduce the results of the experiments one-to-one, we focus only on the most features of these results
that are most relevant in the context of our model. These features are the fact that, on one hand, sur-
prisingly large proportion of dictators give something to the other player (according to [11], only about
36% of dictators choose to give nothing, while the average giving rate is about 28%), and on the other
hand the fact that the distribution of giving rates is strongly skewed in favour of the dictator, with only
about 12% of dictators giving more than 50% of the reward to the other player according to [11]. In this
study we use the term hypergenerosity for the tendency of the agents to give more than 50%.

In order to find some values for the parameters with which our model is able to at least some extent
match the average division strategies and the prevalence of hypergenerosity, latter of which is denoted
here by gh, we performed simulations in which either c or γ0 was kept constant, and the other was varied.
The values tested were 0, 2.5, 5, 7.5 and 10 for both parameters. As for a definition for hypergenerosity
prevalence we simply adopt the proportion of agents with xi > 0.5 of all agents.

The results for average division strategies and hypergenerosity are shown in Fig. 3. Considering the
fact that our agents are driven by the motive of superiority maximization, hypergenerosity is surprisingly
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FIG. 3. The average division strategies (upper panels) and the prevalence of hypergenerosity (lower panels) as functions of c with
five constant values of γ0 (panels on the left) and γ0 with five constant values of c (panels on the right).

common in our simulations. Most notably, when one looks the lower left panel of Fig. 3, one sees that
for fixed values of 5.0, 7.5 and 10.0 for γ0, gh stays between values of approximately 0.2 and 0.35
for all values of c, which is considerably above the 12% proportion reported in [11]. Also, when γ0
is given value 2.5, gh only drops below 0.12 when either c . 1.5 or c & 8.0. The highest proportion
of overgenerous agents, or about 42%, occurs when γ0 = c = 0, but if c is increased while γ0 is kept
constant, this proportion declines fast to a value only little over zero, as could be expected from the
social network behaviours discussed above. While there is some rise with larger values of c, gh only
rises to about 5% at most in the very largest values of c tested. In general, from the lower left panel of
Fig. 3 one could draw the conclusion that the parameter γ0 for the most part enhances gh, an observation
that is broadly confirmed by the lower right panel of Fig. 3: For all the constant c values shown the
trends are growing, at least when γ0 . 1.5

As for the division strategies, it is interesting to note that when γ0 > 0 the parameter c has relatively
little influence to the strategies, which generally hover around or above values of 0.25, 0.30 or 0.35,
depending on the value of γ0 chosen. The value 0.30 happens to be relatively close to the value found in
[11], while 0.35 is closer to findings of [10]. Only in the γ0 = 0 case we can see the strong drop in the
generosity of the agents, a phenomenon already identified above in the context of the social networks.
As a function of γ0 the average division strategy tends to be generally increasing, except in the c = 0
case, in which it first declines from a high of almost 0.5 to about 0.25, stagnates there and then starts
increasing. In all other tested cases the increasing trends are rapid at first, but gradually slow down as
γ0 increases. The values of the average division strategies approximately stay between the 28% of [11]
and 34% of [10] when γ0 & 2 for the c = 5 case. The same holds for the c = 10 case when γ0 & 5, and
for the c = 2.5 and c = 7.5 cases when γ0 & 4.

Choosing the most realistic values for the model parameters, i.e. those that yield the average hyper-
genosity prevalence and division strategies closest to those observed, involves a careful consideration of
the effects of the parameter γ0. On the one hand, this parameter increases hypergenerosity prevalence,
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FIG. 4. An example of the social network, when N = 100 and c = 7.5 and γ0 = 2.0, shown in the upper panel. Colours, line
widths, etc as indicated in Fig. 2. A histogram of the resulting division strategies is shown in the lower panel.

so it should not be too high, but on the other hand it also increases average division strategies, so it
should not be too low either. While this dilemma places tight restraints on realistic parameter values,
Fig. 3 shows that with γ0 = 2 and c = 7.5 gh is close to 12% and an average division strategy is about
0.25, which are very close to the ones observed in [11], although the division strategy is a little bit lower.
Better match might be found with a more through sweep of the parameter space, but for our purposes
this result is close enough. Besides, as shown in Table 1 there is a great deal of variance between results
of different studies, with some of the older results being as low as 20%. So, it could be argued that
the 25% is clearly within the spectrum of acceptable results. Fig. 4 shows an example of the social
network generated with γ0 = 2 and c = 7.5, along with a histogram showing the frequency distribu-
tion of the division strategies. The network is somewhat to similar to the one shown in Fig. 2, with a
trade association and a patron-client network, and relatively dense interconnections between these two
components.
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FIG. 5. A social network resulting from a run of 400 agents with c = 7.5 and γ0 = 2.0. A scatterplot of local clustering coefficients
of linked agents are shown in the lower panel.

The histogram in Fig 4 shows a distribution of division strategies of a peculiar shape with at least
three local peaks. The peak at about xi = 0.5 corresponds to fair division, and such a peak has also
been observed in experiments [11]. The other two peaks at about xi = 0.15 and 0.3, however, have
no counterparts in the experiments, and there is no peak at xi = 0 (i.e. the point the agent playing
as dictator keeps everything to itself) as one would expect from the experimental studies. That our
simulated experiments do not correspond one to one to experimental observations is on one hand not
surprising, since our setup differs greatly from typical dictator game experiments, but on the other hand
the distribution of division strategies indicates that the special cases of totally fair (xi = 0.5) and unfair
(xi = 0) divisions have no intrinsic meaning to our agents, a situation which might change if the agents
were made to compete for social goodwill as well as accumulated wealths.

While the social networks of the agents belonging to trade associations tend to be fully connected,
those of patron-client networks are characterised by aversion to forming triangles. This can be seen
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by comparing the local clustering coefficients of linked agents, as in Fig. 5, in which we show an
example of a larger run with 400 agents, and in which c = 7.5 and γ0 = 2.0. The links shown in the
figure tend to concentrate in the upper right and lower left portions of the plot, which provides a visual
presentation of the different parts of the full social network: In the trade association the agents tend to be
all connected to each other, thus they all have high local clustering coefficients, and so the connections
between them show up in the upper right portion of Fig. 5. The agents of the patron-client network
have sparser connections and, therefore, lower local clustering coefficients, and since they also mostly
connect with each other, their connections populate the lower left proportion of the plot. The social
relations formed by the agents that connect these two communities are rarer, and show up outside these
areas. Especially strong are the sets of points running vertically and horizontally in straight lines in the
middle of the plot, which correspond to the links of the peripheral members of the trade association seen
in the network. Since this particular network contains many agents with only a single neighbour, for
whom local clustering coefficient is zero, and these particular agents tend to connect the more sparsely
connected part of the network, there are especially prominent concentrations of points on the lower parts
of the axes.

With the parameter values c= 7.5 and γ0 = 2.0, our model yields results for average hypergenerosity
prevalence and division strategies that very roughly correspond to those found experimentally. While
parameters producing a better match might be found by combing the parameter space more carefully,
it is also interesting to ask, what do these (or any other) values tell about the simulated society of the
agents, and what are their relevance to the real human societies?

In the case of the parameter c the answers to these questions are relatively straightforward: As noted
above, dce is the minimum number of social connections one needs in order to make profit in the game,
when similar division strategies are used. Thus c = 7.5 implies that maintenance of the life-style of a
single person requires co-operation with at least eight other people, which suggests a significant degree
of interdependence in the social system. The implications of the parameter γ0 are harder to quantify, but
in the simple system of only two agents i and j linked to each other γ0 = 2.0 would allow the agents to
continue interacting even in an extremely unfair setting, that is, for example, when xi = 1 and x j = 0.
This may seem to indicate rather radical levels of tolerance of unfairness on part of the agents, but in
the context of our simulations we had 100 agents instead of only two, and the average degree of the
agents was well in excess of eight. Since the components of the utility matrix Ui j of the agents change
much more rapidly in this situation, γ0 = 2.0 is really not that high. Take, for example, a fully connected
subgroup of nine members, where agent 1 has a selfish division strategy x1 = 0, while all the others have
hypergenerous strategy xi = 1. In this case, U ′1 j = −16 after one round, which cannot be canceled by
such a small γ0. Thus we can say that the effect of γ0 parameter is rather subtle in the context of our
illustration case c = 7.5 and γ0 = 2.0.

3.3 The properties of the network and wealth distribution

In order to get more detailed picture on how our model behaves as functions of its parameters, we
performed simulations to determine the averaged network properties mentioned above. Fig. 6 shows
these averaged network properties as functions of the parameter c, for γ0 = 0,2.5,5,7.5,10. One of
the most noticeable features seen in the Figure is that in the γ0 = 0 case the behaviour of the network
properties is in most cases very different to those of other γ0 values, which tend to behave similarly to
each other. Only the average numbers of first and second neighbours and clustering coefficient exhibit
somewhat similar behaviours for all γ0 values.
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FIG. 6. The network properties as functions of c. The linestyles indicate, which of the five constant values of γ0 is being shown.

The behaviours discussed in the context of Fig. 2 are readily apparent in the Fig. 6, especially in the
γ0 = 0 case. The steep decline in the number of clusters and the increases in the average and maximum
cluster sizes in this case are the most obvious indication of the transition from the collections of short
chains of agents to the more connected networks as c increases, which is also evident in the steadily
increasing average clustering coefficient. Average susceptibility and path length give interesting insight
into the intermediate stages of this transition, as they both spike at c = 2, which is due to the main
component of the social network becoming a one long chain or a loop. It would seem that at this point
the amount of agents belonging to clusters outside the main component reaches a maximum, as does the
length of the chains of agents in the main component.

As stated above, the results for the network properties generally follow the same trends for all the
other values of γ0 tested. However, for all γ0 the average numbers of first and second neighbours and
the average clustering coefficient rise as c increases, implying that the parameter c has a universally
enhancing effect on the connectedness of the agents. Especially the rising average clustering coefficient
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might be an indication of growing trade associations. As for the number of clusters and maximum
cluster size, the results obtained using γ0 values other than zero follow the trends expected from earlier
analysis, as the former declines and latter increases, although these trends are not nearly as clear as in
the γ0 = 0 case, and for γ0 = 7.5 and γ0 = 10 the maximum cluster size is almost constant. Also, when
γ0 6= 0 the average cluster size increases monotonically as a function of c, while for c . 3.5 and γ0 = 0
it actually starts decreasing from its maximum value after a sharp increase, suggesting re-emergence
of clusters outside the main component of the network. Unlike the γ0 = 0 case, the susceptibility and
the average path length do not exhibit drastic changes as functions of c for other values of γ0, although
there may be slight increasing trend in the case of the former and decreasing trend in the case of the
latter. This near constancy may possibly be due to the fact that the social networks of agents can already
be quite complex at c = 0 when γ0 is large enough, meaning that there is no clear transition from one
type of a network to another when c is increased in this case, at least no transition that shows up in the
susceptibility and path lengths.

As noted above, the assortativity and homophily coefficients tend to fluctuate very strongly in time as
the simulations progress, often changing even signs. Nevertheless, taking averages over these quantities
reveals some interesting details on their behaviour as functions of the model parameters. For example,
both the homophily and assortativity coefficients have increasing trends as functions of c when γ0 = 0
and generally decreasing trends otherwise, with only slight exceptions. The values of assortativity
coefficient are limited approximately to the interval between−0.2 and 0.2 when γ0 6= 0, and rise to little
over 0.5 when γ0 = 0. In contrast, the values of the homophily coefficient stay mostly positive for all
values of c and γ0, except for a point at c = 0.5, when γ0 = 0. Thus one can draw the conclusion that,
while the agents do not have a clear preference on whether to connect to similarly connected agents
or not in the most cases studied, they do slightly favour forming connections to agents with similar
accumulated monetary reserves.

Other than the γ0 = 0 case, Fig. 6 contains relatively little information on the effects of the parameter
γ0. While quantitative differences between results obtained using different nonzero values for γ0 exist,
they tend to be small. Some systematic trends can be discerned, however. For example, the results for
maximum cluster size and average numbers of clusters start at similar levels for all nonzero values of
γ0, but they tend to drift apart as c increases. The most striking effects, however, are seen in the average
numbers of neighbours and clustering coefficient, both of which clearly increase as functions of both
γ0 and c, a trend that is almost linear for the former quantity. It is remarkable that for c = 0, average
number of neighbours seems to follow the value of γ0 almost precisely.

In order to study the effects of the γ0 parameter more closely, we repeated the same exercise as we
did for parameter c, and calculated the averaged network properties as functions of the parameter γ0, for
c = 0,2.5,5,7.5,10. The results are shown in Fig. 7. Just by looking at the figure we can see similar
general issues as noted in the case of Fig. 6, i.e. the c = 0 case often behaves differently to the others,
while the results obtained with other values of c often resemble each other qualitatively, with relatively
small quantitative differences. In the cases of the average numbers of clusters, maximum cluster size
and path length, for instance, the results tend to converge to very similar values and trends for all c as
γ0 is sufficiently high, about 6 in the case of the average numbers of clusters and maximum cluster size,
and about 2 in the case of the average path length. Even below these thresholds the results tend to match
for c > 5, while the c = 0 and c = 2.5 cases tend to deviate from the others.

The general trends are slowly decreasing for the path length and the maximum cluster size, while
the average number of clusters has a generally slowly increasing trend. The results for the c = 0 case
show trends opposite to those of the other cases for low values of γ0, and the changes tend to be more



18 of 24

0

50

number of clusters nc
c=  0.0 2.5 5.0 7.5 10.0

0

100maximum cluster si e ⟨smax⟩

0

10

degree ⟨k⟩

0.0

0.5
clustering ⟨C⟩

1
2
3

susceptibility ⟨s⟩

2.5
5.0

shortest path ⟨L⟩

0

50
number of second neighbours ⟨n⟨2⟩⟩

0

50

cluster si e ⟨sc⟩

0 5 10
memory γ0

0.0

0.5
assortativity ⟨ra⟩

0 5 10
memory γ0

0.0

0.5

homophily ⟨rh⟩

FIG. 7. The network properties as functions of γ0. The linestyles indicate, which of the five constant values of c is being shown.

drastic. It is interesting to note that, while the numbers of clusters creeps up and the maximum cluster
size creeps down, the average cluster sizes become almost constant for all c values tested, when γ0 is
sufficiently large. Overall, it seems that the parameter γ0 encourages the formation of small splinter
groups outside the main component of the social network, thus the results on the cluster numbers and
their maximum sizes.

The results for the susceptibility and path length shown in Fig. 7 exhibit a similar feature identified
in Fig. 6, that is, a spiking behaviour at γ0 = 1 when c = 0, which is related to the formation of the long
chains of agents and their linking together, as discussed earlier. A key difference is that the spikes in the
susceptibility and path length are not nearly as prominent as functions of γ0 as they are as functions of
c. Other than the spike, the results for susceptibility tend to acquire rather similar values for all c and γ0,
although the they drift apart somewhat as c becomes large. The general trend is increasing, reflecting
the increasing numbers of separate clusters as γ0 rises.

The average numbers of neighbours and the clustering coefficient behave rather similarly as func-
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tions of γ0 as they do as functions of c. The general trends are increasing, in the case of the former
almost linearly so, with the exception of very low values of γ0 and high values of c. The reason for sim-
ilar behaviour is again almost surely related to growing trade associations. In the results on the average
numbers of second neighbours, however, one can see a clear difference of behaviour between the two
cases. While the number of second neighbours tends to increase as a function of c, as a function of γ0 it
is only rising almost monotonically when c = 0. For all the other values of c tested it first rises to some
maximum point and then starts decreasing ever more slowly, eventually becoming essentially constant.
The steepness of the increase and the decrease, along with the point where the maximum are obtained,
depend on the value of c tested: For example, for c = 7.5 and c = 10 the rise is very steep, the maximum
occurs at γ0 = 0.5 and the decline is also relatively rapid. For c = 2.5 and c = 5.0, in contrast, the
rise is rather slow, the maximums occur at γ0 = 6 and at γ0 = 3, respectively, and the decline is almost
imperceptible. The reason limiting the rise of the number of second neighbours may be related to the
proliferation of splinter clusters, especially of cartels, since they tend to be fully connected.

The behaviours of the average assortativity and homophily coefficients as functions of γ0 is charac-
terised by relatively slow changes, with the exception of the c = 0 case. While the total change over the
full range of γ0 can be significant in some cases, minimal changes from a neighbouring value of γ0 are
the rule. Overall, the assortativity and homophily coefficients acquire similar values as functions of γ0
as they do as functions of c, and therefore similar conclusions apply.

0 5 10
cost c

10−2

10−1

100

Gi
ni
 c
oe

ffi
cie

nt
 G

memory γ0
0.0
2.5

5.0
7.5

10.0

0 5 10
memory γ0

cost c
0.0
2.5

5.0
7.5

10.0

FIG. 8. Gini coefficient G as function of c (left panel) and γ0 (right panel). The linestyles indicate, which of the five constant
values of γ0 or c is being shown.

The wealth distribution, as measured by the gini coefficient, is shown in Fig. 8. Generally, the gini
coefficient decreases as function of γ0 and increases as a function of c, except in the γ0 = 0 case, which is
characterised by sharp fluctuations as a function of c. Also, in when c = 0 or c = 2.5, the gini coefficient
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starts slowly rising after steep decrease as a function of γ0, contrary to the general trend. When γ0 6= 0,
one sees that smaller the γ0, the greater the speed of the rise of the gini coefficient is as a function of c.
Conversely, the greater the value of c, the slower the decline of the gini coefficient will be as a function
of γ0. It can be thus concluded that the parameter c generally increases wealth disparities between the
agents, while γ0 tends to decrease them for a most part, at least to a point.

3.4 The effects of the population number
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Most of the simulations in this paper have only had 100 agents due to time and computational con-
straints. To test the behaviour of our model with different numbers of agents, we performed simulations
with N = 50,100,150,200,250,300,350 and N = 400 agents, with parameter values c = 7.5 and γ0 = 2,
which were chosen for their ability to bring the average division strategies and hypergenerosity preva-
lence close to those observed at N = 100, as shown above. The results are shown in Fig. 9. One of the
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more striking revelations from this Figure is that the population number seems to have relatively little
effect on many of the results of the model, especially the average number of neighbours, path length and
susceptibility, which only show very slight increasing trends. The gini coefficient also changes little as
a function of the population number, although its general trend is a very slowly decreasing.

Most important of the results not affected much by the population numbers are the average division
strategies and hypergenerosity prevalence. The average division strategy show a very slight growing
trend when N . 150, after which there is a slow decreasing trend until N = 400, at which point the divi-
sion strategies have fallen slightly below 0.2 on average. Hypergenerosity prevalence follows generally
the very same pattern, peaking at a value of about 0.2 when N = 150 and slowly decreasing afterwards to
a value of less than 0.1 at N = 400. While the average division strategy and hypergenerosity prevalence
obtained from the simulations clearly correspond to the observations best at N = 100, which is the point
at which the calibration of the model parameters was made, the fact that they stay relatively close to the
observations raises hopes for the general applicability of the model. In this study we do not, however,
venture beyond N = 400 in our investigations, so we cannot say exactly how the system behaves at very
large population numbers.

Of the network properties shown Fig. 9 the maximum cluster size, average number of clusters, and
assortativity coefficient exhibit the greatest changes and most systematic trends, all of which happen to
be increasing, while the average clustering coefficient has a general decreasing trend, which is rapid at
first but slows down considerably when N > 100. In the upper panel of Fig. 9 we see an interesting
linkage between the average numbers of clusters and maximum and average cluster sizes. While the
increase in maximum cluster size as a function of the population number is a matter of course, the
simultaneous strong rise in the average number of clusters drags the cluster sizes down. This effect
is seen both in the maximum and average cluster sizes: Although the maximum cluster size is very
close to N when N . 150, the relative gap between N and the maximum cluster size gradually widen
as N increases, and so at N = 400 the maximum cluster size is only about 250. The average cluster
size, however, shows a near consistent downward trend, which is necessarily due to the large number of
clusters generated by the model at ever larger population numbers.

The rising trend in the assortativity coefficient reveals the changing preferences of the modeled
agents in regarding relation formation. While the social networks are dissociative at N = 50, they
become increasingly more associative at higher population numbers. The homophily coefficient does not
share such a straightforward trend, as it is at times increasing and at other times decreasing, but always
positive, meaning that the agents will always favour forging or keeping ties to other agents with similar
accumulated wealths. It should be emphasized, however, that both these coefficients, and especially the
assortativity coefficient, are subject to very strong temporal fluctuations during the simulations, so these
effects are only present in the average sense.

In summary it could be said that the results on the cluster sizes and numbers shown in Fig. 9 indicate
that the model produces ever greater amounts of ever smaller clusters that splinter off the main com-
ponent as population numbers increase, while the decreasing clustering coefficient and the increasing
assortativity coefficient indicate that the size of the patron-client networks grows relative to the size of
the trade associations. It should be noted, however, that these results have been obtained using only one
set of model parameters calibrated at N = 100 to replicate the observed results. We do not delve deeper
into the interaction of the model parameters and the population number in this study.
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4. Conclusions and Discussion

In this study we have investigated the behaviour of a network of agents seeking to maximize their
relative standings, according to better than hypothesis (BTH). The agents are embedded in a co-evolving
network, in which the linked agents repeatedly play the dictator game with each other for evolving their
social relations, while their status is measured by the amount of wealth they thus acquire. The main
motivation of this research is to test, whether the agents driven by BTH would form any connections or
endow anything to their network partners. In evolving their social relations the agents in this network
game keep track of how the other agents treat them forming social relations but also cutting them as
punishment of selfish behaviour, and ”forget” their treatment as well as spend a fixed portion of their
earnings for paying their living costs once per game cycle. The cost of living and the rate at which the
agents “forget” their treatment by the other agents are parameters of our model, and we have studied
their influence to the behaviour of the system of agents.

Our simulation results show that agents acting along the BTH do, indeed, form social connections
for the purpose of playing the dictator game and that the dictators in these games often give non-zero
amounts of money to the other players. That the agents would give each other anything at all in a
game such as the dictator game is not a self-evident conclusion, a priori. The agents can use either
very generous or very stingy strategies depending on the model parameters and their position in the
co-evolving network.

Generally speaking, the structures of the social networks produced by the model vary strongly
according to the model parameters, and can be described as follows. For small values of the model
parameters the system networks reduce to collections of short chains of agents, which become longer
as either model parameter is increased. Ultimately these chains start fusing together at high values of
the parameters. The cost parameter alone does not seem to have as dramatic effect on the structure of
the networks as the memory parameter, but it makes the agents form more connections, especially in
conjunction of non-zero memory parameter, thereby making the network denser.

When the parameters are sufficiently large new substructures, which we name ”trade associations”
and ”patron-client networks” start emerging. The former are fully connected subgroups of agents that
use relatively similar division strategies, while the latter are composed of agents that have diverse divi-
sion strategies and relatively sparse social connections, with generous agents generally connecting to
many stingier agents that in turn do not form many connections, and virtually none with each other. The
emergence of these substructures demonstrates on one hand that the agents driven by BTH are capable
of forming complex social structures using diverse strategies, and on the other hand that they can at
some level form social norms. Especially the fact that the members of trade associations coordinate
their division strategies, indicates some appreciation of fairness in part of the agents.

The results of our dictator game of networked agents are in agreement with the empirically findings
of altruistic behaviour by humans in the role of the dictator, which provides credence to the BTH (Better
Than Hypothesis). We find it very interesting that, based on rather simple assumptions about the com-
petition for superior social positions, the dynamics generates complex network structures indicating that
this component of human behaviour may have an important role in producing the empirically observed
structures in real societies. It is also notable that with suitable parameter values our model produces
average hyper-generosity prevalence and division strategies that are reasonably in line with the ones
observed in earlier research. That BTH could mimic these observational facts, on top of being capable
of facilitating formation of complex social structures even at such a simplistic level, is encouraging when
considering possible future uses of the BTH framework. However, it should be emphasised that as such
our model parameters do not correspond to anything directly observable. In the future work, parameters



23 of 24

akin to the memory parameter could, for example, be replaced with more detailed social mechanisms
such as giving social relationships a value of their own, and letting simulated agents compete over them.

Funding

This work was supported by Niilo Helander’s foundation grant No. 160095 (J.E.S.), the Academy of
Finland Research project (COSDYN) No. 276439 and EU HORIZON 2020 FET Open RIA project
(IBSEN) No. 662725 (K.K.), and Conacyt projects 799616 and 28327 (R.A.B.). R.A.B is also grateful
for a sabbatical grant from PASPA, DGAPA, UNAM, Mexico.

Acknowledgments

Computational resources provided by the Aalto Science-IT project have been utilised in this work. G.I.
and J.K. thank Aalto University for hospitality.

REFERENCES

[1] D. Kahneman, J. L. Knetsch, and R. H. Thaler. Fairness and the assumptions of economics. The Journal of
Business, 59(4):285–300, 1986.

[2] Herbert Simon. Bounded rationality and organizational learning. Organization Science, 2(1):125–134, 1991.
[3] R. Forsythe, J. Horowitz, N. E. Savin, and M. Sefton. Fairness in simple bargaining experiments. Games and

Economic Behavior, 6:347–369, 1994.
[4] C. Camerer. Behavioral Game Theory: Experiments in Strategic Interaction. The Roundtable Series in

Behavioral Economics. Princeton University Press, 2003.
[5] Henrich J., R. Boyd, S. Bowles, C. Camerer, E. Fehr, and H. Gintis. Foundations of Human Sociality:

Economic Experiments and Ethnographic Evidence from Fifteen Small-Scale Societies. Oxford University
Press, 2004.

[6] A. Adler. The Practice and Theory of Individual Psychology. Routledge, Trench and Trubner & Co, Ltd,
1924. Reprint. Abingdon: Routledge (1999).
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