
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Janhunen, Tomi; Niemelä, Ilkka
The Answer Set Programming Paradigm

Published in:
AI Magazine

DOI:
10.1609/aimag.v37i3.2671

Published: 01/01/2016

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Janhunen, T., & Niemelä, I. (2016). The Answer Set Programming Paradigm. AI Magazine, 37(3), 13-24.
https://doi.org/10.1609/aimag.v37i3.2671

https://doi.org/10.1609/aimag.v37i3.2671
https://doi.org/10.1609/aimag.v37i3.2671

The Answer Set Programming Paradigm

Tomi Janhunen and Ilkka Niemelä
Helsinki Institute for Information Technology HIIT

Aalto University School of Science
Department of Computer Science

PO Box 15400, FI-00076 Aalto, Finland

Abstract

In this paper, we give an overview of the answer set program-
ming paradigm, explain its strengths, and illustrate its main
features in terms of examples and an application problem.

Introduction
Answer set programming (ASP, for short) is a declarative
programming paradigm for solving search problems and
their optimization variants. In ASP a search problem is
modeled as a set of statements (a program) in a logic pro-
gramming type of a language in such a way that the an-
swer sets (models) of the program correspond to the solu-
tions of the problem. The paradigm was first formulated in
these terms by Marek and Truszczyński (1999) and Niemelä
(1999). The ASP paradigm has its roots in knowledge repre-
sentation and nonmonotonic logics research as described by
Marek et al. (2011) in a historic account on the development
of the paradigm. A more recent and more technical overview
of ASP has been contributed by Brewka et al. (2011).

The ASP paradigm is most widely used with the formal-
ism of logic programming under the semantics given by an-
swer sets (Gelfond and Lifschitz 1988; 1990). The term
answer sets was proposed by Gelfond and Lifschitz (1991)
for sets of literals, by which programs in an extended syn-
tax are to be interpreted where the classical negation op-
erator and disjunctions of literals are allowed in the heads
of program rules. Lifschitz’ article (2016) in this special
issue gives an introduction to the notion of an answer set
and the language of ASP, as well as a comparison to Pro-
log systems. An alternative approach to ASP has been to
use directly first-order logic as the basis and extend it with
inductive definitions. The details can be found in the arti-
cles by Denecker and Vennekens (2014), Denecker and Ter-
novska (2008), East and Truszczyński (2006), and the one
by Bruynooghe et al. (2016) in this special issue.

A main reason for the increasing interest in ASP is the
availability of fast software tools that makes it possible to
tackle problems of practical importance. Most of the cur-
rent software tools employ two steps commonly referred to
as grounding and solving, reflecting the definition of answer
sets for programs with variables (Lifschitz 2016). The idea

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is to separate concerns so that the grounding phase takes care
of the evaluation of more complicated data structures and
variable instantiations using logic programming and deduc-
tive database techniques, and then the solving phase focuses
on search for answer sets for a much simpler type of pro-
grams by employing advanced search methods. The papers
by Kaufmann et al. (2016) and by Gebser and Schaub (2016)
in this special issue provide more information on the solving
and grounding techniques.

There is a growing number of successful applications
of ASP including molecular biology (Gebser et al. 2010a;
2010b), decision support system for space shuttle controllers
(Balduccini, Gelfond, and Nogueira 2006), phylogenetic in-
ference (Erdem 2011; Koponen et al. 2015), product config-
uration (Soininen and Niemelä 1998; Finkel and O’Sullivan
2011) and repair of web-service work flows (Friedrich et al.
2010). Erdem et al. (2016) give an account of the applica-
tions of ASP in this special issue.

On the one hand, ASP is closely related to logic program-
ming and Prolog and, on the other hand, to constraint pro-
gramming (CP), propositional satisfiability (SAT), and lin-
ear/integer programming (LP/IP). Unlike Prolog-like logic
programming ASP is fully declarative and neither the order
of rules in a program nor the order of literals in the rules
matter. Moreover, Prolog systems are tailored to find proofs
or answer substitutions to individual queries whereas ASP
systems are finding answer sets corresponding to complete
solutions to a problem instance. The basic idea in ASP is
very close to the paradigm of CP, SAT, or LP/IP where prob-
lems are represented by constraints and where systems are
tailored to find satisfying variable assignments correspond-
ing to complete solutions.

However, there are significant differences. The ASP
paradigm allows for a very systematic approach to problem
representation through uniform encodings where the prob-
lem statement can be developed independently of data on a
particular instance. This leads to a large degree of elabora-
tion tolerance. The ASP approach enables structured repre-
sentation of problems where more complicated constraints
are composed of simpler ones using rules. On the other
hand, rules enable one to encode conditions that are chal-
lenging (like representing disjunctive constraints or other
basic relational operations on constraints) or not available
at all (like recursive constraints) when comparing to CP or

LP/IP paradigms. Because of these properties ASP allows
for incremental development of an application and supports
well rapid prototyping.

The goal of this paper is to provide an up-to-date overview
of the ASP paradigm and illustrate its usage with exam-
ples as well as a more comprehensive application problem.
We proceed as follows. In the next section, we explain the
fundamental ideas of the ASP paradigm. The use of the
paradigm and its main features are then illustrated by de-
veloping ASP encodings for an application problem step
by step. The application considered in this paper is about
designing a locking scheme for a building so that certain
safety requirements are met. Having introduced the ba-
sic paradigm, we briefly address main ways to implement
ASP—either using native answer-set solvers or translators
enabling the use of solver technology from neighboring dis-
ciplines. The paper ends with a summary and discussion
of future prospects. In addition, we illustrate the potential
computational hardness of our application problem by ex-
plaining its connection to the NP-complete decision problem
Exact-3-SAT.

Basic ASP Paradigm
The conceptual model of the ASP paradigm is depicted in
Figure 1. We start by explaining how to understand search
problems at an abstract level and then illustrate how ASP
is typically employed to solve such problems using the ap-
proach illustrated in the figure. Finally, we address a number
of features and attractive properties of the paradigm.

Problem Solving. The ASP paradigm provides a general
purpose methodology for solving search and optimization
problems encountered in many real world applications. To
get started, the key step is to identify and formalize the prob-
lem to be solved, i.e., to work out a problem statement.
Typically this consists of clarifying what the potential solu-
tions of the problem are like and then setting the conditions
that solutions should satisfy. Solving the problem means that
given the data on an instance of the problem we should find
one or more solutions satisfying the given conditions (see
the topmost arrow in Figure 1). For illustration, we use the
task of finding a seating arrangement for a dinner as the first
simple example. The respective problem statement could
read as formulated below.

Example 1 (Seating Arrangement Problem)
A certain group of people, say persons p1, . . . , pn, are in-
vited for dinner. There are tables t1, . . . , tk with the re-
spective capacities c1, . . . , ck available for seating such that
c1 + · · · + ck ≥ n. The host has some prior knowledge
about the relationships of the guests: there are both friends
and enemies among the invitees. This information should be
taken into account when designing the arrangement. A so-
lution to this problem is a mapping s(pi) = tj of persons pi
to tables tj so that the mutual relationships are respected.

The problem statement above uses mathematical symbols
to abstract the details of the problem such as the number and
the identity of persons involved and the collection of tables

available for seating. This reflects an important methodolog-
ical feature, namely the separation of instance data from the
actual problem statement. The point is that the problem can
be stated without listing all details for a particular instance
of the problem. In case of the seating arrangement problem,
the instance data would consist of the names of invitees to-
gether with lists of tables and their capacities, and the pairs
of persons who are known to be either friends or enemies.
More concretely put, suppose that we have a group of 20
people: Alice, Bob, John, etc. There are four tables, seating
7, 6, 5, and 4 people, respectively. Moreover, we know that
Alice likes Bob, Bob likes John and so on. Given all such
pieces of information, the goal is

— to find at least one solution that fulfills the criteria set in
the problem statement of Example 1, or

— to show that no solution exists.

Given what we know so far, we can expect solutions where
Alice, Bob, and John are seated together at one of the four
tables available. However, if we state additionally that Alice
and John dislike each other, for instance, the seating problem
instance under consideration has no solutions.

ASP Encoding. But how do we achieve the goal stated
above using ASP and get the problem solved? As suggested
by Figure 1, we should formalize the problem statement by
writing down a (logic) program. Before we can really do
this, we should have a basic understanding of syntax, also
introduced in the article by Lifschitz (2016) in this issue. In
ASP, programs consist of rules, i.e., statements of the form

head :- body1, body2, ..., bodyn.

The intuitive reading of the rule above is that the head can
be inferred if (and only if) the body conditions body1,
body2, ..., bodyn have been inferred by any other
rules in the program. The conditions in the rule are either
atomic statements (a.k.a. atoms) like seat(a,1) for Alice
being seated at Table 1, or count-bounded sets of atoms

l { atom1; ...; atomk } u

where at least l but at most u atoms among atom1, ...,
atomk should be inferable. The cardinality constraint above
can also be expressed in terms of a counting aggregate

#count{atom1; ...; atomk}
where appropriate bounds can be incorporated using relation
symbols <, <=, >, >=, and =. Atoms can also be negated
using the operator not for default negation. A rule with
an empty body (n=0) stands for a fact whose head holds
unconditionally. As a further special case, a rule without a
head stands for a constraint whose body body1, body2,
..., bodyn must not be satisfied. In this article, we do
not consider extensions of rules by classical negation nor
disjunctions in rule heads (Gelfond and Lifschitz 1991).

We are now ready to describe typical steps in writing
down a program in ASP, resulting in an encoding1 given as

1The encodings presented in this paper are directly executable
using contemporary ASP grounders and solvers compatible with
the ASP-core-2 language specification (Calimeri et al. 2012).

2

Facts

Program

Evaluate
Instantiate

Ground
program

Search Answer
set(s)

Extract

Problem statement
Formalize Instance data

Filter

Solution(s)

Solve

Figure 1: Conceptual Model of the ASP Paradigm

Listing 1: Encoding the Seating Problem in ASP
1 % Instance
2 person(a). person(b). person(j).
3 likes(a,b). likes(b,j). ...
4 dislikes(a,j). dislikes(j,a). ...
5 tbl(1,7). tbl(2,6). tbl(3,5). tbl(4,4).
6
7 % Rules and constraints
8 1 { seat(P,T): tbl(T,_) } 1 :- person(P).
9 :- #count{seat(P,T): person(P)}>C, tbl(T,C).

10 :- likes(P1,P2), seat(P1,T1), seat(P2,T2),
11 person(P1), person(P2),
12 tbl(T1,_), tbl(T2,_), T1 != T2.
13 :- dislikes(P1,P2), seat(P1,T), seat(P2,T),
14 person(P1), person(P2), tbl(T,_).

Listing 1. First, we have to decide how to represent the in-
stance data. Sometimes this requires some form of filtering
in order to identify which pieces of information are relevant
in view of solving the problem. This is easy for the seat-
ing problem. The persons involved are listed in line 2 us-
ing predicate symbol person/1 and constant symbols a,
b, j, . . . as abbreviations for the names of persons in ques-
tion. Predicates likes/2 and dislikes/2 are used in
lines 3–4 to represent (potentially incomplete)2 information
concerning friendship and dislike, respectively. Finally, the
identities and capacities of tables are declared by the facts
listed in line 5 using predicate tbl/2. Overall, we have
obtained a set of facts as the representation of instance data.

The second step concerns the actual program formalizing
the problem statement. Writing down the rules is of course
a creative activity, which one learns best by doing, but in
ASP one can concentrate on defining the relevant concepts
(relations) in terms of rules, as well as thinking about condi-
tions on which certain relations should hold. To understand
the outcome of the formalization in Listing 1, let us give the

2However, ASP builds on the closed world assumption (CWA):
the given information is treated as complete information and the
problem is solved under this assumption.

intuitive readings for the rules involved. The rule in line 8
stipulates that every person P must be seated at exactly one
table T. A few constraints follow. The capacities of tables
are enforced in line 9: it is unacceptable if more than C per-
sons are seated at table T which seats at most C persons.
Moreover, if person P1 likes person P2, they should not be
seated at different tables T1 and T2. This constraint is ex-
pressed in lines 10–12. The other way around, if P1 does
not like P2, then they should not be seated at the same ta-
ble T. The respective rule is given in lines 13–14. The rules
and constraints in lines 8–14 explained so far form a uniform
encoding of the seating problem, as the representation is in-
dependent of any problem instance described by facts of the
type in lines 2–5.

So far, we have demonstrated the modeling philosophy
of ASP in terms of a simple application. The later section
on locking design provides further insights into modeling
and typical design decisions made. Yet further information
is available in the articles of Bruynooghe et al. (2016) and
Gebser and Schaub (2016) in this special issue.

ASP Solving. It remains to explain how the encoding from
Listing 1 solves the problem instance in practice. First, the
rules of the program have to be instantiated and evaluated
with respect to the present facts. This means, e.g., that the
rule in line 8 yields an instance
1 { seat(a,1); seat(a,2);

seat(a,3); seat(a,4) } 1.

when P is replaced by a and T ranges over the available ta-
bles 1, 2, 3, and 4. This particular instance concerns the
seating of Alice. While instantiating the rules also some
evaluations take place. For example, when handling the rule
in line 9 for table 1 with capacity 7 the lower bound C of
the constraint is substituted by the value 7. The ground
program, also indicated in Figure 1, is typically generated
by running a dedicated tool, i.e., a grounder, on the input.
After that the search for answer sets can be performed by
invoking an answer set solver. Finally, the solution(s) of the
original problem instance are obtained by extracting rele-
vant part(s) from the answer set(s) found. For the encoding
under consideration, this means that whenever an occurrence
of seat(P,T) is contained in an answer set, then person P

3

is supposed to be seated at table T. Using the notions from
Example 1, we would have the required mapping s : P 7→ T
from persons to tables. If no answer set can be found, then a
problem instance has no solutions. This is actually the case
for the instance described by lines 2–5 in Listing 1, since
it is impossible to place Alice, Bob, and John at the same
table due to their relations. However, if the facts in line 4
are removed, obtaining answer sets is still feasible—the re-
lationships of other guests permitting.

Beyond Basic ASP. The basic paradigm illustrated in Fig-
ure 1 solves the problem at hand by eventually finding one
or more solutions to the problem, or by showing that no so-
lution exists. If there are multiple solutions to the problem,
then it may be desirable to select the best solution among
the alternatives using some criterion such as price, capacity,
etc. This turns the problem into an optimization problem. In
ASP, objective functions for such problems can be defined
in terms of optimization statements like

#minimize {w1,1:atom1; ...; wn,n:atomn }.

The statement above assigns weights w1, . . . , wn to atoms
atom1, . . . , atomn, respectively, and the goal is to min-
imize the sum of weights for atoms contained in an an-
swer set—when evaluated over all answer sets. As regards
the seating arrangement problem, the respective optimiza-
tion problem could deal with obviously inconsistent settings
like the one described above. Rather than satisfying all con-
straints resulting from the mutual relations of persons, the
goal would be to satisfy as many as possible. In the preced-
ing example, this would mean that either Alice is seated at
the same table as Bob, or Bob is seated with John, but Alice
and John are placed at different tables.

Besides the optimization of solutions, there are also other
reasoning modes of interest. It is sometimes interesting to
see how much the solutions are alike. In cautions reasoning,
the idea is to check whether a certain atom is present in all or
absent from some answer set. For instance, if seat(a,1)
is for some reason contained in all answer sets, then Alice
will be unconditionally seated at the first table and no op-
tions remain to this end. Cautious reasoning corresponds to
basic query evaluation over answer sets and it can be imple-
mented by adding a constraint to the program. In the case of
our example, the constraint would read :- seat(a,1).
indicating that we would like to find any counter-example,
i.e., an answer set not containing seat(a,1). Alterna-
tively, cautious reasoning can be implemented by solvers as
a special reasoning mode while searching for answer sets.
Brave reasoning is the dual of cautious reasoning and then
the presence in some or absence from all answer sets is re-
quired. Again, this can be implemented by adding a con-
straint or as a special reasoning mode.

It is also possible to enumerate answer sets and, hence,
count their number. For certain applications, the number
of solutions could actually be an interesting piece of infor-
mation. In product configuration (see, e.g., (Soininen and
Niemelä 1998)), this could be the number of variants that a
production line should be able to produce. There are also
complex use cases of ASP. In incremental solving, the idea

Listing 2: Examples of difference constraints
1 :- l(P)-e(P)<5, person(P).
2 :- l(P)-e(P)>90, person(P).
3 :- l(P1)-e(P2)>0, l(P2)-e(P1)>0,
4 dislikes(P1,P2), person(P1), person(P2),
5 seat(P1,T), seat(P2,T), tbl(T,_).

is to compute partial solutions to a problem (or show their
non-existence) by calling an ASP solver several times and
by extending the instance data on the fly. Various kinds of
planning problems (with an increasing plan length) typically
fall into this category. The latest developments even suggest
multi-shot solving (Gebser et al. 2014) where solver calls
are freely mixed and the ground programs used upon solver
calls may evolve in more complex ways.

Constraints over Infinite Domains. Since grounding is
an inherent part of ASP work flow, the basic paradigm is
based on Boolean or finite-domain variables only. How-
ever, certain applications call for variables over infinite do-
mains such as integers and reals. For instance, there have
been proposals to extend ASP rules by linear inequalities
(Gebser, Ostrowski, and Schaub 2009; Liu, Janhunen, and
Niemelä 2012; Mellarkod, Gelfond, and Zhang 2008) as
well as difference constraints (Janhunen, Liu, and Niemelä
2011). From the modeling perspective, the goal of such ex-
tensions is to increase the expressive power of ASP suitably
so that new kinds of applications become feasible. For in-
stance, referring back to the seating problem in Listing 1,
we could refine the specification for each person P by in-
troducing integer variables e(P) and l(P) denoting the
points of time when P enters and leaves the table in ques-
tion. Using difference constraints, we could state a specifi-
cation given as Listing 2. Intuitively, the rules in lines 1 and
2 insist that person P stays at the table from 5 to 90 min-
utes. The constraint in lines 3–5 refines the last one from
Listing 1. It is not allowed that any two persons P1 and P2
who dislike each other are seated at the same table at the
same time. It is important to notice that when the constraint
in line 1 is instantiated for Alice, the resulting constraint is
:- l(a)-e(a)<5. Thus, the infinity of the underlying
domain is not reflected to the size of the resulting ground
program. Naturally, the interpretation of l(a) and e(a)
as integer variables must be dealt with by the implementa-
tion of such constraints.

Application: Locking Design
Having introduced the ASP paradigm on a general level, we
now illustrate its main features in terms of an application
problem where the goal is to design a locking scheme for a
building. This is to be understood comprehensively, i.e., we
are not just interested in locks but also anything else that can
affect accessibility in a building. For simplicity, we consider
a single floor. A sample floor plan of such a building is de-
picted in Figure 2. There are 12 rooms altogether, numbered
from 1 to 12 in the figure. Given this domain, our objectives

4

12

11

10

98

7

6

5

4

3

2

1

Figure 2: Floor plan for the rooms 1–12

are as follows. First, we describe the domain in a uniform
way by selecting adequate predicates for the representation
of domain information. Second, we take one concrete design
goal from this domain into consideration. To this end, we
concentrate on the configuration of locks installed on (po-
tential) doors between the rooms in such a way that certain
accessibility criteria are met. A particular safety require-
ment is that the floor can be effectively evacuated in case of
an emergency. The idea is to develop ASP encodings for a
design problem like this and, at the same time, illuminate
the basic line of thinking and typical primitives used when
modeling in ASP.

Uniform Encoding. The goal is to choose predicate sym-
bols and the respective relations that are needed to repre-
sent an instance of the application problem at hand. To ab-
stract the physical coordinates of the rooms, we rather repre-
sent the adjacency relation of rooms in terms of a predicate
adj/2. For simplicity, we also assume that this relation cap-
tures the potential of installing doors between any adjacent
rooms. The floor plan of Figure 2 can be represented by
constants 1..12 for the rooms and the following facts:

adj(1,2). adj(1,3). adj(2,3).
adj(2,4). . . . adj(11,12).

In total, there are 21 such facts and they are sufficient for the
purposes of our examples to describe the interconnections of
the rooms. For space efficiency, the adjacency information
is represented asymmetrically, i.e., adj(X,Y) is reported
only if X<Y. In addition, the rooms having exits are reported
using a unary predicate exit/1. For the running example
in Figure 2, this is captured by the fact exit(5). Now,
if the given floor plan were changed in one way or another,
or a completely different floor plan were taken into consid-
eration, this should be reflected in the facts describing the
problem instance. The other rules describing the application
problem are based on these two predicates, hence making
the encoding uniform. As typical in ASP encodings, some
subsidiary domain predicates are defined in order to make
the description of the actual problem easier. Some domain

Listing 3: Domain rules for locking design
1 room(R1) :- adj(R1,R2).
2 room(R2) :- adj(R1,R2).
3 pot(R1,R2) :- adj(R1,R2).
4 pot(R1,R2) :- adj(R2,R1).
5 otherexit :- exit(X), X>1.
6 exit(1) :- not otherexit.

rules for the locking design problem are collected in Listing
3 and explained below.

Relational Operations. The rules in lines 1–2 of Listing
3 are used to extract room information from the adjacency
information by a simple projection operation. As a result
room(R) is true for only those values of R that actually
appear in the adjacency information. In principle, a door be-
tween two rooms provides symmetric access from a room
to another. Thus, the adjacency relation is not well-suited
as such for the description of accessibility and we form the
union of the accessibility relation with its reverse relation
using rules in lines 3–4. The relation pot/2 stands for po-
tential access depending on instrumentation such as locks,
handles, press buttons, etc.

Defaults. To illustrate the use of defaults in encodings, we
have included the rules in lines 5–6 of Listing 3. The rule
in line 5 defines the condition otherexit/0 meaning that
some other room than the room 1 has an exit. The rule in
line 6 ensures that, by default, there is an exit at room 1.
This is to hold unless another exit has been declared for the
particular problem instance. There can be multiple exits.
For instance, if there are two exits at rooms 1 and 5, this can
be stated explicitly using facts exit(1) and exit(5).
Adding these facts overrules the default in line 6 because
otherexit can be inferred by the rule in line 5.

Defining the Search Space. Typical ASP encodings in-
clude a part where the solution candidates for the problem
being formalized are generated. This can be achieved by ex-
pressing a number of choices that aim at capturing the vary-
ing aspects of solutions. As regards syntax, such choices
can be expressed in terms of choice rules whose heads are
count-bounded sets of atoms. Bounds can also be omitted if
an arbitrary choice is of interest. As explained above, the ac-
cess from a room to another can be asymmetric due to phys-
ical constructions. In particular, this is true for emergency
situations where persons try to leave the building as soon
as possible but might have no keys to unlock any door. For
simplicity, we introduce a two-argument predicate evac/2
that is used to express the existence of an evacuation route
from a room to another. Given adjacent rooms R1 and R2,
such a design choice can be made in terms of a choice rule

{ evac(R1,R2) } :- pot(R1,R2).

The intuitive reading is that if pot(R1,R2) is true, then
the truth value of evac(R1,R2) is subject to a choice.
Hence, the selection of evacuation routes between rooms is
formalized. Note that the analogous normal rule

5

Listing 4: ASP Encoding of the Evacuation Plan
1 reach(R,R) :- room(R).
2 reach(R1,R2) :-
3 reach(R1,R3), evac(R3,R2),
4 room(R1), pot(R3,R2).
5
6 ok(R) :- room(R), reach(R,X), exit(X).
7 :- not ok(R), room(R).
8
9 #minimize{1,R1,R2: evac(R1,R2), pot(R1,R2)}.

evac(R1,R2) :- pot(R1,R2).

would falsify evac(R1,R2) by default if pot(R1,R2)
were false, e.g., rooms R1 and R2 were not adjacent.
Since the relation pot/2 is symmetric, this gives rise
to four different scenarios if pot(R1,R2) and thus also
pot(R2,R1) is true. Evacuation in one direction is pos-
sible if either evac(R1,R2) or evac(R2,R1) holds. If
they are both true, this allows for bidirectional evacuation
between R1 and R2. If such an option is not considered
safe, it is easy to introduce an integrity constraint to exclude
such a possibility in general:

:- evac(R1,R2), evac(R2,R1), pot(R1,R2).

If both evac(R1,R2) and evac(R1,R2) are false, then
there is no connection between rooms R1 and R2 in case
of an emergency. It remains to ensure that there exists an
overall evacuation plan, i.e., it is possible to reach at least
one exit of the building from every room.

Recursive Definitions. The existence of an evacuation
plan is governed by constraints that concern the mutual
reachability of rooms, to be formalized using a predicate
reach/2. The first two rules of Listing 4 give a recursive
definition for this predicate. Every room R is reachable from
itself: the corresponding base case is given in line 1. The
recursive case is formulated in lines 2–4: the reachability
of R2 from R1 builds on the reachability of an intermediate
room R3 from R1 and the condition that R3 can be evacu-
ated to R2 (cf. line 3).

Constraining Solutions. The essential constraint on the
evacuation plan is given in lines 6–7 of Listing 4. Any given
room R is considered to be OK, if some exit X is reachable
from it (line 6). The auxiliary predicate ok/1 is defined in
order to detect this aspect for each room. The actual con-
straint (line 7) excludes scenarios where some of the rooms
would not be OK. Last, we want to minimize the number
of evacuation connections by the objective function given in
line 9. Using the encoding devised so far and an ASP solver,
it is possible to check for the floor plan of Figure 2 that the
minimum number of connections is 11. This is clear since
there are 12 rooms in total each of which (except room 5)
must be connected to some other room for the purpose of
evacuation. But ASP solvers can find out more for our run-
ning example. For instance, it is possible to enumerate and
count all possible evacuation plans with 11 connections. In

Listing 5: Revised ASP Encoding of the Evacuation Plan
1 step(0..s).
2
3 reach(R,R,0) :- room(R).
4 reach(R1,R2,S+1) :-
5 reach(R1,R3,S), evac(R3,R2),
6 room(R1), pot(R3,R2), step(S), step(S+1).
7
8 ok(R) :- room(R), reach(R,X,S),
9 exit(X), step(S).

fact, there are 22 020 such plans and further constraints can
be introduced to identify the most suitable ones. It is indeed
the case that the current requirements allow for very long
evacuation routes through the building of Figure 2 such as
7→ 6→ 11→ 12→ 10→ 9→ 8→ 4→ 2→ 1→ 3→ 5.

Given this observation, the lengths of routes seem important.
Thus, we now pay special attention to the number of evacu-
ation steps, i.e., moves from a room to another, and from the
room perspective. The number of steps ought to be limited.

Elaboration Tolerance. It is straightforward to modify
the recursive encoding so that the number of steps is re-
flected. The revised encoding is presented as Listing 5. The
domain for steps is first declared by the rule in line 1 where
the maximum number of steps s is determined from the
command line of the grounder. The base case in line 3 sim-
ply states that each room R is reachable from itself in zero
steps. The main modification in the recursive case (lines 4–
5) concerns counting: the number of steps S is increased by
one to S+1 whenever a further step is made. However, since
both S and S+1must be members of the domain of steps, the
maximum value is effectively determined by the constant s
in line 1. Given the floor plan of Figure 2 and s=2, no evac-
uation plans can be found. By increasing s by one, solutions
with 11 connections are found again and there are only 152
plans where the number of evacuation steps is at most three.

In summary, we have now tackled one particular aspect of
locking design, i.e., ensuring that an evacuation plan exists
for a building. In reality further requirements are imposed on
evacuation plans making the problem computationally more
and more challenging. For instance, it can be shown that if
we incorporate conditions which can make rooms along an
evacuation route mutually exclusive, e.g., for certain secu-
rity reasons, it is unlikely that we are able to find a poly-
nomial time algorithm for solving the problem (mathemat-
ically expressed the problem becomes NP-complete). This
justifies well the use of powerful search methods like ASP
for tackling the problem. For readers interested in compu-
tational complexity, we sketch the justifications of computa-
tional hardness in the sidebar.

Computing Answer Sets
So far, we have concentrated on the conceptual model of
Figure 1 with an emphasis on the modeling side. As re-
gards the actual computation of answer sets, grounding and

6

solving were also identified as the main steps involved.
Grounders are implemented either as stand-alone tools, such
as the state-of-the-art grounder GRINGO3, or integrated as a
front-end of the solver. Native answer-set solvers are able
to handle ground logic programs directly and, hence, truly
implement the search step illustrated in the figure. Typi-
cally, this step is the most demanding one from the compu-
tational perspective. A number of answer-set solvers have
been developed in the history of ASP and we mention here
DLV4, CLASP3, and WASP5 since they are actively main-
tained and developed at the moment. The article by Kauf-
mann et al. (2016) in this special issue gives a more detailed
account of grounding and solving. If ASP is extended by
constraints which cannot be directly handled by the ASP
solver being used, the typical solution is to isolate exten-
sions from rules themselves and to treat them by appropriate
solvers externally. This leads to an architecture where two
or more solvers are cooperating and interacting in analogy
to SAT modulo theories (SMT) solvers. Then each sort of
constraints can be handled by native algorithms.

Translation-Based ASP. The other constraint-based dis-
ciplines discussed in the introduction offer similar solver
technology at the user’s disposal for handling, in particular,
the search phase. However, they cannot be used straight-
forwardly, as ground programs are not directly understood
by such solvers and certain kinds of transformations be-
come indispensable. The idea of translation-based ASP is
to translate (ground) logic programs into other formalisms
so that a variety of solvers can be harnessed to the task of
computing answer sets. Such an approach can be under-
stood as a refinement of the search step in Figure 1. There
are existing translations from ASP, e.g., to SAT (Janhunen
2004), and its extension as SMT (Niemelä 2008), and mixed
integer programming (MIP) (Liu, Janhunen, and Niemelä
2012). These translations indicate the realizability of ASP
in other formalisms and they have all been implemented by
translators in the ASPTOOLS6 collection. They offer another
way of implementing the search phase in ASP using off-the-
shelf solvers as black boxes. This approach is already com-
petitive in certain application problems and it can be seen
as an effort to combine the expressive power of the mod-
eling language offered by ASP with the high performance
of existing solvers. Translations are also useful when im-
plementing language extensions in a single target language.
For instance, the idea of (Janhunen, Liu, and Niemelä 2011)
is to translate programs enriched by difference constraints
into difference logic altogether. The strength is that a sin-
gle solver is sufficient for the search phase, but on the other
hand, the original structure of constraints may be lost.

Cross Translation. The translations mentioned above are
based on very similar technical ideas but yield representa-
tions of the ground program in completely different formats.

3potassco.sourceforge.net/
4www.dlvsystem.com/
5github.com/alviano/wasp.git
6research.ics.aalto.fi/software/asp/

Since the development of several translators brings about ex-
tra programming work, it would be highly desirable to inte-
grate the variety of translators in a single tool—having op-
tions for different back-end formats. This is not as simple as
that due to the wide variety of formats under consideration.
However, this issue is partly solved by a recent translation
from ASP to SAT modulo acyclicity (Gebser, Janhunen, and
Rintanen 2014) where graph-based constraints are intercon-
nected with ordinary logical constraints (i.e., clauses). The
translation can be implemented by instrumenting a ground
logic program with certain additional rules and meta infor-
mation formalizing the underlying recursion mechanism in
terms of the acyclicity constraint. This leads to a new im-
plementation strategy for translation-based ASP: the choice
of the target formalism can be postponed until the last step
of translation where the constraints are output in a particu-
lar solver format. This idea is analogous to cross compila-
tion in the context of compiling conventional programming
languages and hence we coin the term cross translation for
ASP. In the current implementation of this idea, a back-end
translator transforms the instrumented program into other
kinds of constraints understood by SMT, MIP, and pseudo-
Boolean (PB) solvers, for instance. Interestingly, by imple-
menting an additional acyclicity check inside a native ASP
solver, the instrumented program can also be processed di-
rectly by the solver (Bomanson et al. 2015), which offers yet
another approach to answer set computation.

Summary and Future Prospects
This paper provides an introduction to the ASP paradigm as
well as explains its main features—first generally, but also
in terms of examples. We also discuss the two mainstream
approaches to implementing the search for answer sets us-
ing either native solvers, or translators combined with solver
technology offered by neighboring disciplines.

Towards Universal Modeling. There is a clear trend in
the area of constraint-based modeling where methods and
techniques are being transferred from one discipline to an-
other. Various ideas from knowledge representation, logic
programming, databases, and Boolean satisfiability served
as a starting point for the ASP paradigm. But there are signs
of knowledge transfer in the other direction as well. For
instance, ASP solvers have been integrated into logic pro-
gramming systems such as XSB (Rao et al. 1997). Advanced
query evaluation mechanisms of ASP (Faber, Greco, and
Leone 2007) are also relevant for deductive databases. The
very idea of answer sets has been brought to the context of
CP by introducing so-called bound-founded variables (Aziz,
Chu, and Stuckey 2013). Quite recently, the algorithms for
projected answer set enumeration have been exported for
model counting in the context of SAT (Aziz et al. 2015).

We foresee that the exchange and incorporation of ideas
and technologies in this way is gradually leading towards
a universal approach where the user may rather freely pick
the right language for expressing constraints of his or her in-
terest. The underlying reasoning system is then supposed
to (i) take care of required translations transparently and
(ii) forward the resulting constraints for a solver architec-

7

ture that can realize the search for answers. The first at-
tempts to define a modular framework for multi-language
modeling have already been made (Järvisalo et al. 2009;
Lierler and Truszczyński 2014; Tasharrofi and Ternovska
2011). However, a lot of work remains to be done in order
to realize the universal modeling scenario. Our experience
from integrating various kinds of tools suggests that finding
a universal format for the constraints of interest is one of
the key issues for tool interoperability. There are existing
formats such as the DIMACS format in SAT, the Smodels
format in ASP, and the FlatZinc format in CP, that can be
used as starting points for designing the universal format.

Acknowledgments. The support from the Finnish Centre
of Excellence in Computational Inference Research (COIN)
funded by the Academy of Finland (under grant #251170) is
gratefully acknowledged. The authors thank Martin Gebser,
Michael Gelfond, Torsten Schaub, and Mirek Truszczyński
for their comments on a preliminary draft of this article.

References
Aziz, R.; Chu, G.; Muise, C.; and Stuckey, P. 2015. #∃SAT:
Projected model counting. In Proceedings of SAT 2015,
121–137.
Aziz, R.; Chu, G.; and Stuckey, P. 2013. Stable model
semantics for founded bounds. TPLP 13(4-5):517–532.
Balduccini, M.; Gelfond, M.; and Nogueira, M. 2006. An-
swer set based design of knowledge systems. Annals of
Mathematics and Artificial Intelligence 47(1-2):183–219.
Bomanson, J.; Gebser, M.; Janhunen, T.; Kaufmann, B.; and
Schaub, T. 2015. Answer set programming modulo acyclic-
ity. In Proceedings of LPNMR 2015, 143–150.
Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. Communications of the ACM
54(12):92–103.
Bruynooghe, M.; Denecker, M.; and Truszczyński, M. 2016.
First order logic with inductive definitions for model-based
problem solving. AI Magazine (this number).
Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski,
R.; Krennwallner, T.; Leone, N.; Ricca, F.; and Schaub, T.
2012. ASP-CORE-2 input language format.
Denecker, M., and Ternovska, E. 2008. A logic of non-
monotone inductive definitions. ACM Trans. Comput. Log.
9(2).
Denecker, M., and Vennekens, J. 2014. The well-founded
semantics is the principle of inductive definition, revisited.
In Proceedings of KR 2014.
East, D., and Truszczyński, M. 2006. Predicate-calculus-
based logics for modeling and solving search problems.
ACM Trans. Comput. Log. 7(1):38–83.
Erdem, E.; Gelfond, M.; and Leone, N. 2016. Applications
of ASP. AI Magazine (this number).
Erdem, E. 2011. Applications of answer set programming
in phylogenetic systematics. In Logic Programming, Knowl-
edge Representation, and Nonmonotonic Reasoning - Es-

says Dedicated to Michael Gelfond on the Occasion of His
65th Birthday, volume 6565 of LNCS, 415–431.
Faber, W.; Greco, G.; and Leone, N. 2007. Magic sets and
their application to data integration. J. Comput. Syst. Sci.
73(4):584–609.
Finkel, R., and O’Sullivan, B. 2011. Reasoning about condi-
tional constraint specification problems and feature models.
AI EDAM 25(2):163–174.
Friedrich, G.; Fugini, M.; Mussi, E.; Pernici, B.; and Tagni,
G. 2010. Exception handling for repair in service-based
processes. IEEE Trans. Software Eng. 36(2):198–215.
Gebser, M., and Schaub, T. 2016. Modeling and language
extensions. AI Magazine (this number).
Gebser, M.; Guziolowski, C.; Ivanchev, M.; Schaub, T.;
Siegel, A.; Thiele, S.; and Veber, P. 2010a. Repair and pre-
diction (under inconsistency) in large biological networks
with answer set programming. In Proceedings of KR 2010.
Gebser, M.; König, A.; Schaub, T.; Thiele, S.; and Veber,
P. 2010b. The BioASP library: ASP solutions for systems
biology. In Proceedings of ICTAI 2010, 383–389.
Gebser, M.; Kaminski, R.; Obermeier, P.; and Schaub, T.
2014. Ricochet robots reloaded: A case-study in multi-shot
ASP solving. In Advances in Knowledge Representation,
Logic Programming, and Abstract Argumentation - Essays
Dedicated to Gerhard Brewka on the Occasion of His 60th
Birthday, 17–32.
Gebser, M.; Janhunen, T.; and Rintanen, J. 2014. Answer
set programming as SAT modulo acyclicity. In Proceedings
of ECAI 2014, 351–356. IOS Press.
Gebser, M.; Ostrowski, M.; and Schaub, T. 2009. Constraint
answer set solving. In Proceedings of ICLP 2009, 235–249.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Proceedings of the 6th
International Conference on Logic Programming, ICLP’88,
1070–1080.
Gelfond, M., and Lifschitz, V. 1990. Logic programs with
classical negation. In Proceedings of ICLP’90, 579–597.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9:365–385.
Janhunen, T.; Liu, G.; and Niemelä, I. 2011. Tight integra-
tion of non-ground answer set programming and satisfiabil-
ity modulo theories. In Proceedings of the First Workshop on
Grounding and Transformation for Theories with Variables,
GTTV 2011, 1–14.
Janhunen, T. 2004. Representing normal programs with
clauses. In Proceedings of ECAI’04, 358–362.
Järvisalo, M.; Oikarinen, E.; Janhunen, T.; and Niemelä, T.
2009. A module-based framework for multi-language con-
straint modeling. In Proceedings of LPNMR 2009, 155–168.
Kaufmann, B.; Leone, N.; Perri, S.; and Schaub, T. 2016.
Grounding and solving in answer set programming. AI Mag-
azine (this number).
Koponen, L.; Oikarinen, E.; Janhunen, T.; and Säilä, L.

8

2015. Optimizing phylogenetic supertrees using answer set
programming. TPLP 15(4-5):604–619.
Lierler, Y., and Truszczyński, M. 2014. Abstract modu-
lar inference systems and solvers. In Proceedings of PADL
2014, 49–64.
Lifschitz, V. 2016. Answer sets and the language of answer
set programming. AI Magazine (this number).
Liu, G.; Janhunen, T.; and Niemelä, I. 2012. Answer set pro-
gramming via mixed integer programming. In Proceedings
of KR 2012, 32–42.
Marek, V., and Truszczyński, M. 1999. Stable models and
an alternative logic programming paradigm. In The Logic
Programming Paradigm: a 25-Year Perspective. Springer.
375–398.
Marek, V.; Niemelä, I.; and Truszczyński, M. 2011. Origins
of answer-set programming - some background and two per-
sonal accounts. In Nonmonotonic Reasoning: Essays Cel-
ebrating its 30th Anniversary. College Publications. 233–
258. Also available as CoRR abs/1108.3281.
Mellarkod, V.; Gelfond, M.; and Zhang, Y. 2008. Integrating
answer set programming and constraint logic programming.
Annals of Math. and AI 53(1-4):251–287.
Niemelä, I. 1999. Logic programming with stable model
semantics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence 25(3-4):241–273.
Niemelä, I. 2008. Stable models and difference logic. An-
nals of Mathematics and Artificial Intelligence 53(1-4):313–
329.
Papadimitriou, C. 1994. Computational Complexity.
Addison-Wesley.
Rao, P.; Sagonas, K.; Swift, T.; Warren, D.; and Freire, J.
1997. XSB: A system for effciently computing WFS. In
Proceedings of LPNMR’97, 431–441.
Soininen, T., and Niemelä, I. 1998. Developing a declarative
rule language for applications in product configuration. In
Proceedings of PADL’99, 305–319.
Tasharrofi, S., and Ternovska, E. 2011. A semantic account
for modularity in multi-language modelling of search prob-
lems. In Proceedings of FroCoS 2011, 259–274.

Sidebar: Locking Design Can Be
Computationally Challenging

It is not surprising that finding a locking scheme satisfying
given conditions can become computationally challenging
when more involved conditions need to be satisfied. Here we
consider the problem of finding a locking scheme that allows
an evacuation plan such that for each room there is exactly
one evacuation direction and the evacuation routes respect
a given set of room conflicts, i.e., a set of pairs of rooms
(R1, R2) such that when following the evacuation routes if
you enter room R1, then you cannot enter room R2. We
show that this locking design problem is NP-complete in-
dicating that it is unlikely that a polynomial time algorithm
for solving this problem can be found. See, for example,
(Papadimitriou 1994) for an introduction to computational
complexity and the required concepts used below.

...

...

...

...

? ? ?

? ? ?

? ? ?

?

?

?

C1

C2

Cn+1

R1,1 R1,2 R1,3

R2,1 R2,2 R2,3

Rn,1 Rn,2 Rn,3

Figure 3: Floor Plan and Evacuation Routes for the NP
Completeness Proof

Technically, the NP-completeness of a problem can be
shown by establishing a reduction computable in polyno-
mial time from a known NP-complete problem to the prob-
lem and showing that it can be checked in polynomial time
that a potential solution satisfies the required conditions for
the problem. As such a known NP-complete problem we use
the Exact-3-SAT problem where we are given a conjunction
of 3-literal clauses and the problem is to find a truth assign-
ment that satisfies exactly one literal in each of the clauses.

Reduction from Exact-3-SAT. Any given 3-SAT instance
C1∧ . . .∧Cn can be transformed into a floor plan illustrated
in Figure 3. For each 3-literal clause Ci = li,1∨li,2∨li,3, we
introduce a corridor Ci connected to rooms Ri,1, Ri,2, and
Ri,3 that are connected to corridor Ci+1. Moreover, rooms
Ri,1, Ri,2, and Ri,3 do not have doors in-between. The
(only) exit is located next to corridor Cn+1 which means
that all corridors and rooms must be eventually evacuated
through it. Moreover, each room Ri,j is labeled by the re-
spective literal li,j , the idea being that li,j is satisfied if Ci

is evacuated via the room Ri,j . Consequently, if there are
two rooms labeled by complementary literals (i.e., a Boolean
variable x and its negation ¬x), then those rooms are in con-
flict. This means that evacuation routes involving any pair of
conflicting rooms are not feasible. It is also easy to see that
the floor plan in Figure 3 and the associated set of conflicts
can be computed in polynomial time.

It can be shown that a 3-SAT instance C1 ∧ . . . ∧ Cn has

9

a satisfying truth assignment such that each clause has ex-
actly one literal satisfied if and only if for the corresponding
floor plan there is a locking scheme that allows an evacu-
ation plan such that (i) for each room there is exactly one
evacuation direction and (ii) the evacuation routes respect
the set of room conflicts arising from the complementary lit-
erals. The key observation is that for the corresponding floor
plan evacuation is possible only if there is a route from C1 to
Cn+1 such that for each i = 1, . . . , n the route visits exactly
one of the rooms Ri,1, Ri,2, and Ri,3 and all room conflicts
are respected. A satisfying truth assignment such that each
clause has exactly one literal satisfied gives directly such a
route and if such a route is available, it gives directly an ap-
propriate truth assignment where literals corresponding to
the visited rooms in the route are satisfied.

Moreover, it is clear that given a locking scheme with
exactly one evacuation direction for each room, it can be
checked in polynomial time that evacuation is possible and
that all room conflicts are respected.

10

