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Abstract—Tunable metasurfaces are ultra-thin, artificial elec-
tromagnetic components that provide engineered and externally
adjustable functionalities. The programmable metasurface, the
HyperSurFace, concept consists in integrating controllers within
the metasurface that interact locally and communicate globally
to obtain a given electromagnetic behaviour. Here, we address the
design constraints introduced by both functions accommodated
by the programmable metasurface, i.e., the desired metasurface
operation and the unit cells wireless communication enabling
such programmable functionality. The design process for meeting
both sets of specifications is thoroughly discussed. Two scenarios
for wireless intercell communication are proposed. The first
exploits the metasurface layer itself, while the second employs
a dedicated communication layer beneath the metasurface back-
plane. Complexity and performance trade-offs are highlighted.

I. INTRODUCTION

Metasurfaces are planar artificial structures which have
recently enabled the realization of novel, ultra-thin electro-
magnetic (EM) components with engineered response [1], [2].
An abundance of functionalities has been demonstrated [3],
[4], including perfect absorption or wavefront manipulation.
Obviously, tunability or reconfigurability are highly desirable
in this context. Initial studies revolved around achieving global
tunability by means of external stimuli (heat, voltage, light)
[3]. To add reconfigurability and the ability to host multiple
functionalities, recent works have integrated biased diodes
within each unit cell so that the response of each unit cell
can be tuned locally [5], [6].

A step further towards the compelling vision of intercon-
nectable, fully adaptive metasurfaces with multiple concurrent
functionalities is the concept of HyperSurFace (HSF) [7]. The
HSF paradigm builds upon the description of EM function-
alities in reusable software modules. Such software-defined
approach allows authorized users to easily change the behavior
of the metasurface by sending preset commands. To dissem-
inate, interpret, and apply those commands, a HSF requires
the integration of a network of miniaturized controllers within
the metamaterial structure. This poses several implementation
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Fig. 1. Area as a function of the data rate for state-of-the-art transceivers for
Wireless Personal Area Networks (WPAN) and chip-scale applications. Data
extracted from [15]–[38] and references therein.

and co-integration challenges [8], among which we highlight
and focus on the interconnection of the internal controllers.

Communication among the controllers of a HSF can be
either wired or wireless. A priori, wired means are preferable
as the interconnect will be most likely co-integrated with the
controllers within the same chip [8] and because knowledge
from similar scenarios like low-power embedded systems can
be reused [9], [10]. However, issues may appear when scaling
the HSF in size or in controller density: in the former case,
HSFs will contain multiple chips leading to complex layout
issues related to combining on-chip and off-chip interconnects;
in the latter case, HSFs will integrate very dense networks
leading to higher latency and power consumption if conven-
tional NoC topologies are used [11].

Wireless intercell communication becomes a compelling
alternative in either large or dense HSFs. The use of a shared
medium allows to reduce the latency and power of collective
and long-range communications used during command dis-
semination. Also, the lack of wiring between nodes facilitates
off-chip and even off-HSF communication. This approach
is possible due to recent advances in on-chip antennas in
mmWave and THz bands [12]–[14], as well as the constant
miniaturization of RF transceivers for short-range applications.
As shown in Fig. 1, transceivers with multi-Gbps speeds and
footprints as small as 0.1 mm2 have been demonstrated.

Before assessing the potential applicability of existing



transceivers, it is crucial to understand the EM propagation
within this new enclosed and monolithic scenario. Some works
have studied propagation in applications with metallic enclo-
sures, but provided little room for co-design [39]–[41]. Others
have investigated propagation within a computing package
[42]–[44], but the structure differed considerably from HSFs.

This paper performs, for the first time, a study towards
the characterization of the wireless channel within a software-
defined HSF. To this end, we describe two possible EM prop-
agation paths in Section II, namely, through the metasurface
layer or within a dedicated waveguide. We then analyze the
field distribution and coupling between mmWave antennas for
both cases in Sections III and IV. Finally, Section V concludes
the paper.

II. STRUCTURE, ENVIRONMENT DESCRIPTION AND
ELECTROMAGNETIC OPERATIONS

As a case study we consider the software-defined HSF
depicted in Fig. 2. The metasurface (MS) part consists of an
array of electromagnetically thin metallic patches placed over
a dielectric substrate back-plated by a metallic layer. To enable
the software-based MS control, the patches are connected to
a group of controller chips that lie below the metallic back
plane through vertical vias. The controllers adjust the electro-
magnetic behaviour of the metasurface fabric by attributing
additional local resistance and reactance at will [5], [6]. The
controller plane is decoupled from the MS thanks to the back
plane that separates the patches from the chips. We assume at
this point that each chip serves four metallic patches. Our case
study MS is designed for perfect absorption and anomalous
reflection operation in the microwave regime. For operation in
the microwave regime, the size of the metasurface is required
to be in the order of millimetres. Specifically the reference MS
structure under consideration is designed to operate at f = 5
GHz (λ0 = 60 mm). It consists of periodically arranged, four-
patch unit cells with xy size D ×D = 12 mm × 12 mm, as
seen in Fig. 2. The size of each patch is w × w = 4.2 mm
× 4.2 mm. The thickness of the substrate is h = 1.575 mm
and it is made of Rogers RT/Duroid 5880 with permittivity
εr = 2.2 and loss tangent tan δ = 9× 10−4.

The physical landscape of the software-defined HSF offers
several opportunities for the propagation of RF signals within
the structure to provide wireless connectivity between the
different controllers. The actual implementation depends on
the lateral dimensions of the tile and the targeted wavelength.
In this work we consider two distinct communication channels,
as presented in Fig. 2(d,e). The first channel is the space
between the MS patches and the back plane, referred to as the
MS layer (scenario A). A blind via fed form the chip serves
as the antenna, while the metallic patches and the metallic
back plane can act as a waveguide. The second channel is
a dedicated communication plane formed by adding extra
metallic plates below the chip (scenario B). Monopoles fed
from the chip are inserted in the parallel-plate waveguide and
would excite waves that propagate within this obstacle-free
environment.

To ensure that the electromagnetic response of the MS
and the wireless communication operation are decoupled, we
choose the communication frequency to be greater than 25
GHz. This decoupling is especially important in scenario A
where the metasurface layer hosts both the electromagnetic
waves for the MS operation as well as the communication
signals. This way we can accommodate both without EM
compatibility issues and co-implement the two operations.
Therefore, overall, we investigate the channel communication
in the range f = [25 GHz, 200 GHz]. The distance between
two neighbouring nodes equals D and is in the order of
5λ to 40λ, respectively; this means that the communication
takes place in the near and intermediate field regime. Thus,
unable to resort to simplified farfield manipulation, we use full
wave electromagnetic analysis for the numerical investigation.
For higher frequencies, i.e., for frequencies f > 1 THz
(D > 200λ) the full wave analysis becomes cumbersome and
we need to turn to simplified schemes such as ray tracing [45].
It is stressed that even though we perform the analysis for the
reference case dimensions, a direct scaling of the structure
along with the wavelengths of operation is possible as long as
the properties of the materials involved remain the same.
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Fig. 2. Perspective view of the software-defined HSF unit cell: (a) Top
view with relevant geometric parameters and (b) bottom view showing the
chip allowing for programmable operation. (c) MS operating at 5GHz under
oblique incidence. Side view of the unit-cell illustrating the two communi-
cation channels. (d) Scenario A: communication in the metasurface substrate
(e) Scenario B: communication inside a dedicated parallel-plate waveguide.

III. CELL TO CELL COMMUNICATION IN THE
METASURFACE LAYER

The MS layer communication channel of the software-
defined HSF is shown in Fig. 2(d). For efficient communica-
tion, the electromagnetic energy should be confined between
the periodic copper patches and the ground; the waves should
not leak to the free-space above. This leakage is a path loss
for the communication channel and should be minimized. Our
study will be focused on two neighbouring unit cells with
respect to the maximum power which can be transmitted from
one cell to the other one. The antenna is connected to the chip



and located under the center of one of the patches through a
cylindrical hole that isolates it form the back plane (ground).
The height of the probe antenna is L = 1.4 mm. Due to the
presence of the ground, this probe may operate as a quarter-
wavelength monopole antenna; however, the complex environ-
ment of the MS is expected to affect the antenna operation.
The corresponding frequency is f0 = c0/(4L

√
εr) ≈ 36 GHz.

Ideally, i.e., in the absence of the copper patches, an antenna
resonance (zero reactance) is expected at this frequency. The
waveguide port feeding this antenna was designed to match
the theoretical λ/4 monopole input impedance, without any
additional optimization for the actual structure.

We evaluate the neighbouring nodes communication by cal-
culating the corresponding scattering matrix. To ensure that the
MS and the communication operations are electromagnetically
decoupled, we assume that the frequency is greater than 30
GHz (the MS resonance is at 5 GHz). To minimize the free-
space leakage, the gap between the patches, wgap, should
be electromagnetically small. In our case study the gap is
equal to wgap = 1.8 mm, therefore the absolute upper bound
in the studied frequency range should not exceed 100 GHz
(λ0 =3 mm). Hence, we simulate our structure within the
frequency range f=[30 GHz,100 GHz]. We employ ANSYS
HFSS, a commercial, 3D full-wave simulator based on the
finite element method (FEM). To evaluate the communication
between the antennas we calculate the transmission coefficient
S21 which corresponds to the power fraction collected by the
receiver. In addition, we calculate the reflection S11 coefficient
which reveals the power fraction reflected back to the emitter.
For optimum operation the magnitude of the S11 should be
low, meaning negligible reflection, and the magnitude of S21

should be high. Since S11 can be improved by employing an
external matching circuit we focus here mainly on S21.
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Fig. 3. (a) Scattering components S11 and S21. The dashed and solid
curves correspond to the initial and optimized structure, respectively. Ez field
component at (b) f =100 GHz and (c) f = 38 GHz for the optimized
structure.

Figure 3(a) presents the transmission and reflection coeffi-
cients for the present structure under study (dashed lines). As
observed, |S21| is smaller than -20 dB after 45 GHz. However,
around the frequency of 40 GHz, it is larger than -20 dB
which is acceptable from the point of view of communication.
|S11| has local minima at approximately 40 GHz, 75 GHz
and 95 GHz. However, the transmission coefficient |S21| is
maximum at 40 GHz. Thus, we adopt this frequency for
wireless intercell communication. Since the low reflection co-
efficient does not necessarily correspond to a high transmission

coefficient, we focus on the environment effect and the free-
space leakage. This can be seen in Fig. 3 by comparing the
S-parameters at 40 GHz and, at 75 GHz and 95 GHz. At
the high frequencies, 75 GHz and 95 GHz, the low-reflected
wave radiates into the free space rather than coupling to the
receiving antenna.

To improve the communication between the transmitting
and receiving antennas, we optimize the geometry parameters
of the structure. We keep in mind that any geometrical
modification is going to affect the MS operation, shifting
the resonance frequency at higher or lower values. However,
if the modifications are moderate, we can readjust the MS
resonance at 5 GHz by tuning the resistance and reactance
values of the chip. The way to minimize the free-space
leakage is by decreasing the gap between the patches wgap.
Additionally we can increase the substrate thickness. After a
number of simulations we select the modified parameters that
optimize the communication operation; the optimum patch gap
is wopt

gap = 1 mm and the optimum thickness is hopt = 2.6 mm.
The corresponding S-parameters are shown in Fig. 3(a). As can
be seen, |S21| is significantly improved in the range f =[30
GHz, 40 GHz] (the local maximum is now -15 dB). Notice
that at the same frequency range the reflection coefficient is
also improved compared to the initial structure. Above 40 GHz
the communication efficiency decreases, similarly to the initial
structure, but remains, on average, higher than before. The
distribution of the electric field Ez is shown in Fig. 3(b) and
Fig. 3(c) at frequencies f = 100 GHz and f = 38 GHz,
respectively. At f = 100 GHz there is significant leakage
whereas at f = 38 GHz the field is confined within the
MS layer. This agrees with the increased |S21| coefficient at
f = 38 GHz.

IV. COMMUNICATION IN A DEDICATED PARALLEL PLATE
WAVEGUIDE

In this scenario we consider that the communication in the
software-defined HSF is enabled by an additional channel,
dedicated solely to transferring the signals between the com-
munication nodes, Fig. 2(e). The channel is created by intro-
ducing an additional metallic plate behind the chip backplane
at a distance that, as explained, is specified by the desired
frequency of operation. We assume that the space between the
two metallic plates is empty (air). The two metallic plates and
the uniform dielectric space between them, form a parallel-
plate waveguide. Each node consists of a probe antenna
connected to the chip through a vertical small hole in the
ground plane, as seen in Fig. 2(e). The communication channel
is totally electromagnetically isolated form the MS layer, thus
all coupling is excluded. Moreover, the parallel plates create
a closed space where no energy leakage is allowed (the holes
are electromagnetically small). For these reasons, this option
offers robustness and design flexibility.

The parallel-plate waveguide sustains the propagation of
TEM (Transverse ElectroMagnetic) waves in which both the
electric and magnetic fields are perpendicular to the propa-
gation direction. The TEM mode can be excited from zero



frequency (DC) and is the only propagation mode supported
by the waveguide up to the cut-off frequency of the first
higher-order mode: f < c0/(2d). The probe acts as an omni-
directional antenna that transmits or receives electromagnetic
energy isotopically in the horizontal plane xy. In the vertical
direction, the radiation is confined by the metallic plates.
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Fig. 4. (a) Schematic of the TEM parallel waveguide 2D approximation, node
no.17 radiates and node no.8 receives. (b) and (c) Electromagnetic energy
distribution at f = 25GHz, f = 60 GHz and f = 180 GHz when the emitter
is no.1 and no.13 respectively. (d) Power received at the node M when node
N radiates, PMN , over the frequency range f =[25 GHz, 200 GHz]. Six
cases of MN node pairs are schematically depicted in the insets.

Since the EM energy is carried by the single TEM mode, the
waveguide is naturally impedance matched with free-space;
this allows the following approximation: We consider that the
propagation in the 3D waveguide can be approximated by a
2D analogue where the monopoles are replaced by finite-size
conducting scatterers, placed at the vertical positions of the
antenna probes. Each scatterer radiates 2D cylindrical waves
in the surrounding space and diffracts the energy coming from
the environment. The field radiated from the emitter and the
diffracted field from the scatterers interfere creating destructive
or constructive patterns in the waveguide. By performing a
full-wave numerical analysis we calculated the total field in
each position and frequency. The 2D approximation allows us
to solve for large areas and frequency spans in a relatively
short time and provides us with a qualitative evaluation of
the propagation properties in a multiscattering environment.
A priori, we assume that the antennas are impedance matched
in all the spectrum of interest and that only the TEM mode
is excited, both effectively controlled by the height of the
structure.

We investigate the system of 25×25 nodes depicted in
Fig. 4(a). Each antenna (scatterer) is a finite size copper
cylinder of radius R = 0.12 mm. In this approximation

we do not take into account the impedance characteristics
of the antennas. The emitter is simulated as a field source
that radiates omnidirectional electromagnetic waves. All the
surrounding scatterers reflect the incoming wave. In this way
we estimate the energy profile of the propagating waves in
the presence of the reflecting obstacles. Fig. 4(b,c) present the
profile of the total energy at frequency f = 25 GHz, f = 60
GHz and f = 180 GHz when the emitter is no.1 and no.13,
respectively. Evidently, the electromagnetic waves interfere
either destructively or constructively producing patterns of
high or low energy corresponding to the dark and bright
spots. In the position of the receiver we also estimate the
power captured by the multipath propagation coming from
all directions. The total power accumulated in the position
of the receiver M when N emits, PMN , is normalized by
the total radiated power from the emitter P0. The system
is reciprocal, that is, PMN = PNM . Fig. 4(d) presents the
power received in the position M transmitted from emitter N
over the frequency range of f =[25 GHz, 200 GHz] for node
pairs schematically depicted in the insets. As observed in all
cases, the received power remains on average the same for
each pair in the entire frequency span. However, for nearly
all cases, there are some frequency points where the received
power drops. For example, for the case of the pair no7-no.17
(panel vi) there appear three dips in the received power at
around f = 45 GHz, f = 80 GHz and f = 115 GHz. These
points correspond to destructive wave interference. Moreover
we can observe the general tendency of the decreased received
power with respect to the node-pair distance,i.e., for the pair
no.1-no.21 (panel i) the average received power is -15 dB
whereas for the pair no.1-no.6 (panel ii), the received power
is on average -8 dB. Using this 2D qualitative analysis as a
guideline, we can select the operation frequency for the actual
3D implementation of the wireless communication channel in
the software-defined HSF.

V. CONCLUSION

In conclusion, we have addressed the issue of intercell
wireless communication in the complex environment of a
functional, software-defined metasurface. We have focused
on two different scenarios with the communication taking
place either in the metasurface plane or inside a dedicated
channel. In both cases, we have assessed the performance
by evaluating the electromagnetic field in the structure and
calculating the scattering parameters between transmitting and
receiving antennas. After careful design, we have obtained a
transmission efficiency of -15dB and -8dB for scenarios A and
B, respectively. We have thus demonstrated efficient wireless
intercell connectivity without interfering with the metasurface
operation taking an essential step towards realizing adaptive
hypersurfaces with fully reconfigurable functionalities.
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