
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Mehrabidavoodabadi, Abbas; Siekkinen, Matti; Ylä-Jääski, Antti
QoE-traffic Optimization Through Collaborative Edge Caching in Adaptive Mobile Video
Streaming

Published in:
IEEE Access

DOI:
10.1109/ACCESS.2018.2870855

Published: 01/09/2018

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Mehrabidavoodabadi, A., Siekkinen, M., & Ylä-Jääski, A. (2018). QoE-traffic Optimization Through Collaborative
Edge Caching in Adaptive Mobile Video Streaming. IEEE Access, 6, 52261-52276.
https://doi.org/10.1109/ACCESS.2018.2870855

https://doi.org/10.1109/ACCESS.2018.2870855
https://doi.org/10.1109/ACCESS.2018.2870855

Received August 15, 2018, accepted September 7, 2018, date of publication September 18, 2018, date of current version October 12, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2870855

QoE-Traffic Optimization Through Collaborative
Edge Caching in Adaptive Mobile Video Streaming
ABBAS MEHRABI , (Member, IEEE), MATTI SIEKKINEN , (Member, IEEE),
AND ANTTI YLÄ-JÄÄSKI , (Member, IEEE)
Department of Computer Science, Aalto University, FI-00076 Espoo, Finland

Corresponding author: Abbas Mehrabi (abbas.mehrabidavoodabadi@aalto.fi)

This work was supported in part by the Academy of Finland under Grant 278207 and Grant 297892, in part by the Tekes - the Finnish
Funding Agency for Innovation, and in part by the Nokia Center for Advanced Research.

ABSTRACT Multi-access edge computing has been proposed as a promising approach to localize the
access of mobile clients to the network edges, therefore, reducing significantly the traffic congestion on
the backhaul network. Due to time-varying wireless channel condition, the video caching at the mobile
edges for dynamic adaptive video streaming over HTTP (DASH) needs to be efficiently handled to alleviate
the high bandwidth demand on the backhaul network and improve the quality of experience (QoE) of end
users. We investigate the impact of collaborative mobile edge caching on joint QoE and backhaul data traffic
by proposing the joint QoE-traffic optimization with collaborative edge caching which introduces the BFTR
(backhaul/fronthaul traffic ratio) parameter adjustable by the mobile network operator.We then design a self-
tuned bitrate selection algorithm with low complexity to solve the optimization problem and further propose
an efficient cache replacement strategy called retention-based collaborative caching. Through simulation-
based evaluations, we show a noticeable gain in the percentage of cache miss and specify some threshold for
BFTR parameter after which the significant reduction in the data traffic with further improvement in average
video bitrate is obtained using collaborative caching. Our findings help mobile edge system developers
design an efficient collaborative caching mechanism for 5G networks.

INDEX TERMS Collaborative caching, dynamic adaptive video streaming over HTTP (DASH), fairness,
integer non-linear programming, multi-access edge computing (MEC), NP-hardness, quality of experience.

I. INTRODUCTION
According to statistics, the majority of Internet traffic is
generated by video streaming applications, such as Netflix,
YouTube etc. [37]. By 2019, about 70% of the traffic in the
Internet is expected to be from video streaming services [15].
In future 5G mobile networks, the low end-to-end communi-
cation delay and high available bandwidth enables the mobile
clients to watch the videos with high quality [21], [15].
Toward enabling this objective, Multi-access Edge Comput-
ing (MEC) has been proposed in conjunction with network
virtualization in which the video contents are localized at
the network edges within the radio access network (RAN),
therefore, reducing the delivery delay and alleviating the
traffic congestion on the backhaul network [17].

At the network edge within the RAN, the time varying
wireless channel quality and the clients’ mobility signifi-
cantly affects the video quality whenmultiple clients compete
for the shared bandwidth simultaneously. As a solution to

improve the quality of experience (QoE) of the viewers,
dynamic adaptive video streaming over HTTP (DASH) pro-
tocols [38] are implemented on the clients’ side which react
to the varying network conditions by adapting dynamically to
the most suitable video bitrate. Furthermore, with the advent
of MEC, video caching and delivery at the network edge
provides means for Internet service providers (ISPs) to econ-
omize by reducing backhaul and inter-ISP data traffic [19].

In dynamic adaptive video streaming, the video content
caching at the network edge is more challenging since for
each request from a mobile client, not only the requested
chunk but also its specific bitrate must be available in the
cache. To improve the cache hit rate, solutions based on joint
bitrate adaptation and edge caching have recently emerged.
Joint optimization of QoE and backhaul data traffic takes this
approach one step further. The key insight is that allowing
slight degradation in video quality may sometimes substan-
tially reduce the data traffic on the backhaul network. In other

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

52261

https://orcid.org/0000-0002-8758-0882
https://orcid.org/0000-0003-0423-1060
https://orcid.org/0000-0002-2069-1721

A. Mehrabi et al.: QoE-Traffic Optimization Through Collaborative Edge Caching in Adaptive Mobile Video Streaming

words, by fetching cached chunks with somewhat lower
bitrate than that sustainable by the network, we can reduce
backhaul traffic by avoiding the download of not (yet) cached
higher bitrate versions of the same chunks from the origin
server. Further noticeable reduction in the backhaul traffic
could be achieved when the neighborhood edge servers col-
laborate with each other to serve the requested chunks/bitrates
in the case of their unavailability in the local caches.

In this paper, we aim to quantify the achievable gain from
jointly optimizing the QoE of the clients with the network
data traffic in collaborative mobile edge caching environ-
ments. We further explore under which circumstances the
collaborative edge caching brings noticeable improvements
in QoE-traffic compared to non-collaborative strategies. Our
simulation results reveal that the network-assisted bitrate
adaptation combined with collaborative edge caching indeed
helps to improve the QoE of the clients and alleviate signifi-
cantly the network traffic burden compared to other collabo-
rative edge caching mechanisms.

A. CONTRIBUTIONS
Our main contributions are summarized as follows:

• We explore the potential of collaborative video caching
in joint QoE-traffic optimization for edge-assisted
DASH in MEC environments.

• We formulate the joint QoE-traffic optimization with
collaborative edge caching as an integer non-linear
programming (INLP) optimization problem which
also introduces the backhaul/fronthaul traffic ratio
(BFTR) parameter adjustable by mobile network
operator (MNO).

• An online network-assisted bitrate adaptation algorithm
with performance guarantee is designed for the opti-
mization problem which can be easily deployed by
MNOs. An efficient edge cache replacement heuristic
called retention-based collaborative caching (RBCC) is
also designed which takes into account not only the
retention of the clients toward different video requests
but also the inter-collaboration between the edge servers.

• The results of our simulation-based evaluation confirm
that the network-assisted bitrate adaptationwith collabo-
rative edge caching indeed helps to improve the average
bitrate of the clients with significant reduction in the
backhaul network traffic.

B. PAPER ORGANIZATION
The remaining parts of the paper are organized as follows:
Section II discusses the related works. In Section III, the sys-
tem design for collaborative edge caching adaptive video
streaming is introduced. The QoE and data traffic compo-
nents are also discussed in this section. The joint QoE-traffic
optimization problem is formulated in Section IV and the
proposed bitrate allocation algorithm, the cache replace-
ment heuristic and their complexity analysis are presented
in Section V. Section VI is devoted to the results of our

conducted simulations and finally, Section VII concludes the
paper.

II. RELATED WORK
High available bandwidth and low end-to-end communi-
cation latency are the primary objectives of future mobile
networks. Gupta and Jha [21] discuss in a comprehensive
survey the architecture of 5G mobile network, the funda-
mental requirements and emerging technologies involved.
Multi-access edge computing (MEC) proposed by European
Telecommunication Standard Institute (ETSI) is an emerging
solution to meet these requirements [15], [17]. In MEC, plac-
ing the content at the edge within the radio access network
(RAN) has been proved to reduce the end-to-end latency and
degrade the traffic on the backhaul network [19], [36]. A com-
prehensive survey on mobile edge computing, its advantages
and comparison with the centralized cloud-based architecture
are provided in [23] and [27].

In mobile video streaming, the bandwidth demand of the
clients is expected to increase dramatically in the next gen-
eration of mobile networks [15], [17]. In on-demand video
streaming, caching themost popular video contents with large
size at the network edge can help to reduce significantly
the high contention on the origin server [17]. In contrast
to static HTTP-based video streaming, the edge caching is
however more challenging in dynamic adaptive video stream-
ing since for each request from a mobile client, not only
the requested chunk but also its specific bitrate should be
efficiently cached [36]. Zhang et al. [35] have proposed
cooperative caching among mobile users with the help of
edge computing facilities. Lei et al. [34] discuss the existing
challenges in the practical implementation of mobile edge
caching.

Another aspect of mobile edge computing and caching is
designing solutions for enhancing the security for the mobile
users [29], [30], [33]. Roman et al. [29] provide a compre-
hensive survey on the security challenges in mobile edge
and fog computing environments. A jammer can interrupt
the radio communication between the mobile users and edge
servers and, therefore, prevent the clients from accessing the
cache [30], [33]. Xiao et al. [30] propose an efficient rein-
forcement learning algorithm to protect mobile clients from
jammer attacks in accessing the edge contents.

During the past years, several research efforts have been
proposed for improving the QoE of the mobile clients in
DASH video streaming [7], [8], [10], [13]. Seufert et al. [5]
provides a comprehensive study on DASH quality adaptation
and the major factors that both client and network have to
take into account. Majority of the works on QoE consider the
quality adaptation algorithms merely on the client side which
in turn causes the suboptimal bitrate allocation and the under-
utilization of the network resources when multiple streaming
clients compete on the shared bandwidth. Although some
research works have investigated the scalability of DASH
strategies [1]–[4], the client-based adaptation heuristics may
still lead to unfair bitrate allocation among the clients due

52262 VOLUME 6, 2018

A. Mehrabi et al.: QoE-Traffic Optimization Through Collaborative Edge Caching in Adaptive Mobile Video Streaming

to the lack of coordination among them in some situations
such as the interleaving of their arrival and departure times.
Furthermore, the major factors that directly impact the QoE
of the clients have not been considered in these works.

Server and network assisted DASH (SAND-DASH) stan-
dard which has been recently published is a progress toward
the collaboration between the mobile clients, servers and
in-network elements [39]. The preliminary research works
on SAND-DASH [9], [11], [12] fail to provide a concrete
optimization framework for jointly maximizing the QoE of
the clients and the fair allocation of the wireless network
resources. Toward this step, Mehrabi et al. [18] design an
optimization problem for jointlymaximizing theQoE, the fair
bitrate allocation among the competing clients as well as
balancing the utilized resources amongmultiple edge servers.
However, the assumption of the availability of all variations
of the video chunks in all edge servers is not realistic in the
practical situations when the cache size is constrained.

For addressing the challenges posed on edge-assisted
DASH, the joint adaptive video streaming, caching and pro-
cessing at the edge servers has been recently suggested.
Pedersen and Dey [20] propose the joint optimization of
adaptive video streaming, backhaul resource allocation, and
video content caching at RAN. The proposed adaptive video
streaming and caching model in this work assumes that the
clients request to the chunks with lower bitrates may be
served from the cache by transcoding from the available
chunks with higher bitrates at the edges. Further reduction
in cache miss can be achieved by the collaboration among
the edge servers within a cluster [24], [22], [15]. Tran and
Pompili [24] propose Octopus, a cooperative hierarchical
caching for cloud radio access networks [24]. In addition to
the clients access to the cloud-cache in the case of miss in the
local cache, they utilize the potential of inter-communication
among the neighborhood edge servers to serve the requested
chunks in a collaborative manner. However, their system
model does not take into account the clients mobility and
it is assumed that the requested bitrates by the clients are
initialized in the caches using a random distribution.

None of the above-mentioned papers propose an in-
network adaptation solution that can guide the clients toward
a fair and optimal bitrate allocation by utilizing their radio
access link level information at the network edges. Further-
more, in contrast to the common least recently used (LRU)
cache replacement strategy, which has been utilized in some
of the prior work, the heuristics based on the statistical infor-
mation about the clients’ retention behavior can be designed
for the collaborative edge caching scenarios in order to further
improve the cache hit rate.

In scenarios with limited processing capabilities at the
edges and high bandwidth capacity on the backhaul network,
the encoding of the video chunks can be performed at the
origin server while the caching and clients information pro-
cessing are handled at the edges. With low access delay to
the cloud server using ultra-fast communication lines in next
generation of mobile networks [26], the joint optimization of

FIGURE 1. Collaborative caching at the network edges.

QoE and data traffic is a promising solution to address the
challenges of edge-assisted on-demand DASH video stream-
ing. According to the best of our knowledge, the impact of
collaborative edge caching on joint QoE-traffic optimization
for edge-assisted DASH has not been yet addressed. To this
end, we propose the joint QoE maximization, fairness among
the competing clients and the data traffic (backhaul and fron-
thaul) minimization in collaborative mobile edge-assisted
DASH video streaming scenarios. Using a self-tuning mech-
anism, we design an online greedy-based algorithm with per-
formance guarantee to solve the joint optimization problem.
Inspired by the research study in [32], we further propose an
efficient edge cache replacement heuristic which takes into
account not only the statistical information about the clients’
retention pattern but also the inter-collaboration among the
edge servers. Our simulation results show that the network-
assisted bitrate adaptation combined with retention-based
collaborative edge caching indeed helps to improve the QoE
of the clients while obtaining the significant reduction in the
network backhaul traffic.

III. MOBILE EDGE ASSISTED DASH WITH
COLLABORATIVE CACHING
A. SYSTEM OVERVIEW
Fig. 1 illustrates a schematic view of mobile edge assisted
adaptive video streaming with collaborative caching. Associ-
ated with the edge servers, the cellular base stations allocate
the available downlink radio resource blocks among the set
of local clients based on the proportional fair (PF) policy.
The clients radio access link level information and the video
content caching are handled at the network edges. The set of
neighborhood edge servers form the edge clusters in which
they collaborate with each other to serve the request of mobile
clients.We design in-network bitrate adaptation solution such
that with the instantaneous radio link level information of
the clients, the coordinators first resolve the clients to server
mapping based on per chunk signal-to-noise ratio (SNR)
values and then solve the joint QoE-traffic optimization prob-
lem according to the weighting adjustment by MNO. The
most sustainable bitrates are allocated to the clients at each
time slot based on the results of the optimization problem.

VOLUME 6, 2018 52263

A. Mehrabi et al.: QoE-Traffic Optimization Through Collaborative Edge Caching in Adaptive Mobile Video Streaming

The decision on bitrate allocation to each chunk is made
taking into account the existence of chunks in the caches
in a down-to-up hierarchical manner. In other words,
the chunk/bitrate of the client’s requested video is searched
in the cache of first the local and then the neighborhood
edge servers in the case that it does not exist in the local
cache. Upon the failure to find the chunk/bitrate in the edges,
then the possibility of transferring from the origin server is
investigated. The actual bitrate allocation is performed based
on the maximization of joint QoE-traffic utility objective.
After the bitrate allocation, the possibility of caching among
multiple served chunks/bitrates for future clients’ access is
then investigated.

It should be noted that the edge-assisted bitrate adaptation
is independent from the collaborative edge caching. In the
former, clients and edge servers coordinate with each other
in order to achieve optimal and fair bitrate allocation among
the clients. In the latter, the edge servers collaborate with
each other to improve the overall cache hit rate. In this
work, we do not address the mechanisms required to forward
clients’ requests to the chosen edge or origin server. We also
do not address security aspects of collaborative edge caching.

B. SYSTEM NOTATIONS
We consider the scheduling of S number of DASH mobile
clients during |T | time slots with the duration of each slot
of 1t seconds. The contents of multiple videos are initially
placed at the origin server such that each video is divided into
consecutive chunks with fixed size of each chunk equal to
C seconds and available in multiple discrete bitrates repre-
sented by setR.K edge servers are deployed in the system and
associated with each server, the base station (eNodeB) allo-
cates the downlink resource blocks to the subscribing clients
according to PF policy. The available downlink resource
blocks at edge server k in time slot t is represented by W (t)

k .
The arrival and departure times of client i are denoted by
respectively Ai and Di. Also, the media player of each client
contains a video buffer with maximum capacity of Bmaxi and
the amount of video data at the buffer of the client at time
slot t is represented by B(t)i . Depending on the client mobility,
the receivable signal to noise ratio (SNR) of client i from the
base station k at time slot t is denoted by SNR(t)ik . Furthermore,
r (t)ik represents the allocated bitrate to the current chunk of
client i assigned to server k at time slot t . The binary variable
a(t)ik is defined such that a(t)ik = 1 indicates the allocation of
client i to edge server k at time slot t .
In our system model, we assume that the server allocation

is decided at the beginning of each new chunk and the current
server remains unchanged if the client is downloading at the
middle of the chunk. At the beginning of the new chunk,
the client is first assigned to the base station from where it
receives the highest SNR and the edge server associated to
that BS. Then, the next video chunk delivered to the client
is fetched either from the cache of the local (the edge server
associated to the BS) or another edge server in the neighbor-
hood, or from the origin server. Regardless of which server

the content is fetched from, it passes through the edge server
of the BS the client is associated to and gets transmitted over
the air by that BS. In other words, that edge server acts as a
proxy to the client.

The fixed cache capacity at each edge server is denoted
by Q and the set of available chunks in the cache of edge
server k at time slot t is denoted by M (t)

k . Furthermore,
two binary decision variables dc(t)ik and de(t)ik are also defined
such that dc(t)ik = 1 indicates that the chunk/bitrate of the
video watching by client i assigned to server k at time t is
downloaded from the origin server. Similarly, de(t)ik = 1 states
that client i downloads the chunk/bitrate of its requested video
from the other edge servers else than server k at time slot t .
It is noted that at each time slot t , the equality dc(t)ik ·de

(t)
ik = 0

holds meaning that the client cannot download its requested
chunk simultaneously from the origin and the edge servers
at the same time slot. The notations BTi and FTi (in Mb)
denote the overall data traffic on respectively the origin server
and the fronthaul network resulted during the whole duration
of video streaming of client i. Furthermore, the parameter
BFTR (backhaul/fronthaul traffic ratio) is also defined which
takes a value between zero and one and is adjustable by
MNO. This parameter is included in the system to indicate the
significant of data traffic on the fronthaul network compared
to the traffic on the backhaul network from MNO point of
view. It enables to access the locality of the traffic and, hence,
the effectiveness of caching that happens at the edge of the
network.

The list of system parameters and their descriptions have
been summarized in Table 1.

C. QUALITY OF EXPERIENCE
In conventional video streaming systems, the quality of expe-
rience (QoE) of the clients is measured using the tradi-
tional subjective metrics such as the mean opinion score
(MOS) or the objective metrics such as peak signal-to-noise
ratio (PSNR). However, these metrics are not commonly used
nowadays by video providers because they are difficult to
measure in a large scale operational system, especially MOS
which requires explicit participation of the users. As pointed
out by several research works in DASH literature, the main
factors that affect the QoE in dynamic adaptive video stream-
ing are video stalling, video quality, bitrate switching and
initial playback buffering time known as initial/startup delay.

1) VIDEO QUALITY
The quality that clients perceive during the streaming session
is directly related with the streaming bitrate as the video
chunks are streamed with high bitrate, the watching quality
increases. We rely on the average bitrate that client i watches
the video during the whole time duration of its streaming
session which is given by the following equation:

AQi =
C

|Di − Ai|

∑
∀Ai≤t≤Di

∑
1≤k≤K

a(t)ik · r
(t)
ik (1)

52264 VOLUME 6, 2018

A. Mehrabi et al.: QoE-Traffic Optimization Through Collaborative Edge Caching in Adaptive Mobile Video Streaming

TABLE 1. System notations and their descriptions.

2) BITRATE SWITCHING
High bitrate switching also negatively impacts the satisfac-
tion of the mobile clients. The accumulated bitrate switching
(magnitude) of client i during its streaming session from the
arrival to departure is obtained as follows:

Ei =
|Di−Ai|/C∑

p=2

∑
∀1≤k≤K

(a(Ai+(p−1)·C)ik · r (p)ik

− a(Ai+(p−2)·C)ik · r (p−1)ik (2)

3) INITIAL BUFFER DELAY
Initial buffer delay denoted by L refers to the time duration
from the arrival time of the client until the time that the
data in the playback buffer reaches the maximum capacity.
As a trade-off, longer initial buffer delay helps to reduce
significantly the video stalling events during the streaming
session. Although long delay slightly impacts QoE, most of
the clients however tend to tolerate longer initial delay in
order to experience smoother video without interruption [6].
Since the impact of delay on the QoE is not significant as the
impact of video bitrate and switching, we ignore the buffer
delay in our analytical model for the sake of simplicity.

4) STALLING RATIO
Video stall event refers to the time when the client’s buffer
gets empty (playback freezes) due to streaming the video on
the player with high bitrates under low achievable through-
put. To quantitatively express the stalling in the optimization
problem, we need to derive first the relation for the buffer
filling level of the client at each time slot.

B(t)i =

{
B(t−1)i + ˆThr

(t)
ik ·1t, Ai ≤ t ≤ Ai + Li

B(t−1)i + (ˆThr
(t)
ik − r

(p)
ik) ·1t, Ai + Li < t ≤ Di

(3)

where 1t is the fixed duration of each time slot and ˆThr (t)ik
represents the effective (achievable) throughput by client i
allocated to server k at time slot t . It is noted that in the startup
phase which lasts for the time duration of initial buffer delay,
there is no video streaming on the client’s player. At a given
time slot, the effective throughput of each client is obtained
based on its theoretical throughput, Thr , and the number of
other simultaneous clients at that time slot.

In order to ensure that no stalling event happens during
the whole time duration of video streaming, the following
constraint should be satisfied at each time slot:

0 ≤ B(t)i ≤ B
max
i , ∀Ai ≤ t ≤ Di (4)

5) FAIRNESS
As mentioned earlier in the system model, the downlink
radio resources are allocated to the clients according to the
PF policy at the base station. The client-side adaptation
heuristics allocate the most sustainable bitrates to the clients
based on their share of throughput (wireless channel quality).
However, in some situations, the client-based solutions may
not fairly allocate the bitrates resulting in unfairness among
the competing clients. To avoid unfair situations, for each
current client, we strive to allocate the best sustainable bitrate
which has the least difference with the average of bitrates
allocated to the other simultaneous active clients at the same
server. More precisely, the objective of fair bitrate allocation
is to minimize the overall deviation of the allocated bitrates
to each client i from the average during its whole streaming
session given by the following summation:

Fi =
Di∑
t=Ai

∑
1≤k≤K

a(t)ik · |r
(t)
ik − r̄

(t)
| (5)

where r̄ (t) is the average bitrate of other simultaneous clients
at time slot t . The minimization of (5) should also sat-
isfy the instantaneous available resource blocks at the base
station.

D. BACKHAUL AND FRONTHAUL DATA TRAFFIC
As mentioned in the system model, the allocation of bitrates
are decided based on the existence of the chunk/bitrate of
the requested video in down-to-up hierarchical caches. If the
requested chunk is not available in the local cache, it is

VOLUME 6, 2018 52265

A. Mehrabi et al.: QoE-Traffic Optimization Through Collaborative Edge Caching in Adaptive Mobile Video Streaming

then searched in the cache of the neighborhood edges taking
into account the data traffic that it will add to the fronthaul
network within the edge cluster. If it is not also found in
the neighborhoods, then, transferring the chunk from the
cloud server with the cost of adding to the backhaul traffic
is investigated. Considering two decision variables dc(t)ik and
de(t)ik , the overall backhaul and fronthaul data traffic caused
during the video streaming of client i are therefore obtained
using the following summations:

BTi =
Di∑
t=Ai

∑
1≤k≤K

a(t)ik · dc
(t)
ik ·1t · r

(t)
ik (6)

FTi =
Di∑
t=Ai

∑
1≤k≤K

a(t)ik · de
(t)
ik ·1t · BFTR · r

(t)
ik (7)

And, the overall data traffic resulted from the video stream-
ing of client i is given by DTi = BTi + FTi. System
model assumes that there is no traffic incurred when the
requested chunks are retrieved from the local caches. It is
noted that there is no basically a trade-off between the back-
haul and fronthaul data traffics since reducing the traffic on
the backhaul network does not necessarily mean increasing
the data traffic on the fronthaul network. In fact, efficient opti-
mal heuristics can be designed for updating the cache con-
tents which minimize both the backhaul and fronthaul data
traffic.

IV. JOINT QoE-TRAFFIC OPTIMIZATION
In this section, we formulate the problem of jointly max-
imizing the QoE, fairness and minimizing the overall data
traffic for each individual client. The optimization problem
is formulated considering the discrete time slotted DASH
scheduling with fixed duration 1t for each time slot. Three
adjustable weighting parameters ρ, ω, γ are defined to con-
trol the importance of each component video quality, bitrate
switching and fairness in QoE term. The weighting parameter
α is defined for adjusting the balance between QoE of the
clients and the video data traffic (backhaul and fronthaul).
With the relations (1), (2), (4), (5), (6) and (7), the joint QoE-
traffic optimization in collaborative edge caching is defined
as the following integer non-linear programming (INLP) opti-
mization problem:

Maximize
dc,de,r

Ui = α(ρAQi − ωEi − γFi)1t − (1− α)DTi

(8)

Subject to:

∑
j∈S

a(t)jk · d
r (dt/Ce)jk

Thr (t)jk
e ≤ W (t)

k , ∀1 ≤ k ≤ K , ≤ t ≤ |T |

(9)

0 < B(t)i ≤ B
max
i , ∀Ai ≤ t ≤ Di (10)

dc(t)ik = I((vi, d(t − Ai)/Ce, r (t)ik) /∈ M
(t)
k ′ , ∀1 ≤ k

′
≤ K),

∀1 ≤ k ≤ K , Ai ≤ t ≤ Di (11)

de(t)ik = I((vi, d(t − Ai)/Ce, r (t)ik) /∈ M
(t)
k (12)

∧∃ 1 ≤ k ′ ≤ K 3 (vi, d(t − Ai)/Ce, r
(t)
ik) ∈ M

(t)
k ′),

∀1 ≤ k ≤ K , Ai ≤ t ≤ Di

a(t)ik · dc
(t)
ik · de

(t)
ik = 0, ∀1 ≤ k ≤ K , Ai ≤ t ≤ Di (13)

a(t)ik =

a(t−1)ik , t mod C 6= 1

1, t mod C = 1 ∧ k = arg max{SNR(t)ik }

0, Otherwise
(14)

r (p)ik ∈ R, dc(t)ik , de
(t)
ik ∈ {0, 1},

∀1 ≤ k ≤ K , Ai ≤ t ≤ Di, 1 ≤ p ≤ (Di − Ai)/C (15)

In the above optimization problem, variables r (t)ik and dc(t)ik
and de(t)ik are the integer and binary decision variables,
respectively, and, the values of other parameters are known
in advance. Constraint (9) ensures that at each time slot,
the available resource blocks at the BS are allocated to the
requested clients according to their wireless link quality.
Inequality (10) ensures avoiding the stalling at each time slot
as mentioned in the previous section and constraint (11) states
that the client downloads the chunk/bitrate of its video from
the origin server at time slot t if it is not available in the cache
of any local or neighborhood edge servers. Constraint (12)
states that the client downloads its chunk/bitrate from a neigh-
borhood edge server within the same cluster if its request
does not exist in the local cache. Constraint (13) ensures that
the client cannot download the requested chunk/bitrate of its
video from the origin and the edge server simultaneously
at the same time slot. Constraint (14) determines the edge
server to which the client is mapped at each time slot and
finally, the relations in (15) specify the range of decision
variables.

V. ONLINE SCHEDULING ALGORITHM
The existence of integer decision variables makes the
optimization problem (8)-(15) NP-hard and, therefore,
the exhaustive search strategies do not scale. Furthermore,
the problem (8-(15) is formulated in an offline manner
assuming that all the information about the clients and edge
servers are available in advance, which is not practically fea-
sible. We design an online greedy-based algorithm with low
computational complexity which also requires the minimum
need for parameter tuning making it suitable for practical
deployment. The proposed algorithm utilizes a self-tuned
bitrate selection procedure which allocates the most suitable
bitrates to each client and dynamically adjusts the weighting
parameters in QoE term of the objective function. However,
the flexibility of adjusting the weighting of QoE and data
traffic along with the setting of BFTR parameter are left to
the MNO itself depending on its desired operational point.
Pseudo-code of the algorithm called Collaborative Cache-
aware Bitrate Allocation Algorithm (CCBAA) is shown
in Algorithm 1.

52266 VOLUME 6, 2018

A. Mehrabi et al.: QoE-Traffic Optimization Through Collaborative Edge Caching in Adaptive Mobile Video Streaming

Algorithm 1 Collaborative Cache-Aware Bitrate Allocation
Algorithm (CCBAA) (Run by the Coordinators)
1: Input: |T |,K ,R : Number of scheduling time slots,

number of edge servers, set of available discrete
bitrates on the origin server.

2: Output: Binary allocation dc(t)ik , de
(t)
ik and integer

bitrate allocation r (t)ik for each client i, edge server
1 ≤ k ≤ K and time slot 1 ≤ t ≤ |T |, totalUtility,
totalTraffic

3: M (t)
k = ∅ ∀1 ≤ k ≤ K ,∀1 ≤ t ≤ |T |;

4: for each time slot 1 ≤ t ≤ |T | do
5: for each client i such that Ai ≤ t ≤ Di do
6: Allocate client i to server 1 ≤ k ≤ K

according to (14)
7: if t = Ai then
8: Initialize BufferStatus, DTi and Li
9: if (t − Ai) mod C 6= 1 then
10: Allocate client i to the same server and

with the same bitrate as with time slot t − 1;
11: Update B(t)i , DTi;
12: if BufferStatus = False And

B(t)i = Bmaxi then
13: BuffetrStatus = True;Li = t − Ai;
14: if (t − Ai) mod C = 1 then
15: Call Subroutine Self-tuned Bitrate Selection;

16: if t = Di then
17: totalUtility = totalUtility+ Ui
18: totalTraffic = totalTraffic+ DTi
19: Return totalUtility,totalTraffic;

A. COLLABORATIVE CACHE-AWARE BITRATE
ALLOCATION ALGORITHM
In discrete time slotted scheduling, the CCBAA algorithm
first resolves the clients to servers mapping at each time slot
using the relation (14) (line 6). At each time slot, a client is
mapped to the server (base station) with maximum receivable
downlink SNR value if the client is about to download a new
chunk and it remains allocated to the same server as in the
previous time slot if a chunk download is in progress. Buffer
status of the client is also initialized if the client arrives to
the system at the current time slot (lines 7-8). Then, the same
bitrate as the bitrate of the previous time slot is allocated if
the client is currently downloading a chunk. Otherwise, if a
new chunk download is about to start, the self-tuned bitrate
selection procedure (Subroutine 1) is called to determine the
best possible bitrate for the new chunk (lines 9-15).

1) SELF-TUNED BITRATE SELECTION
As part of the algorithm, the self-tuned bitrate selection pro-
cedure is executed if the client is about to download the new
chunk and hence, the most suitable bitrate should be decided
for the new chunk.

As demonstrated in Subroutine 1, it first chooses the high-
est available bitrate if the client is downloading the first chunk
of the video (lines 1-3). For the consecutive chunks, the pro-
cedure chooses the largest sustainable bitrate (in decreasing
order of set R) that results in fewer bitrate switches and higher
fairness than observed with the previous chunk. In other
words, the chosen bitrate for the current chunk should result
in a switching less than some threshold δS and a fairness value
greater than or equal to the given threshold δF . Switching
threshold δS is derived (line 4) knowing the fact that the
highest bitrate switchings between the chunks happen when
the bitrates are allocated merely based on the buffer status
of the client [18] and fairness threshold δF is given at the
deployment phase.

Among those bitrates that satisfy the base station resource
allocation constraint (9) and both switching and fairness
thresholds (lines 5-7), the one which maximizes the utility
value (8) is chosen as the bitrate for the current chunk of
the client. Note that for each bitrate, the evaluation of utility
objective (8) is based on the availability of the chunk/bitrate
in down-to-top hierarchical caches as well as the weighting
parameters in the objective function (lines 8-17). If there is
no available bitrate in set R which satisfies both thresholds,
the availability of those bitrates which satisfy the switching
threshold δS is investigated. Among those eligible bitrates,
the one which maximizes the utility objective is selected
as the bitrate for the current chunk (lines 18-22). Finally,
if no such bitrate is available, the best sustainable bitrate
that maximizes the utility value is chosen as the bitrate for
the current chunk (lines 23-26). In this way, the bitrates
are allocated to the client such that they satisfy the switch-
ing and fairness thresholds while maximizing the client
utility.

Afterwards, the values of the weighting parameters in QoE
term are automatically computed at the current time slot
(line 27). More precisely, the weight of the video quality
(ρ) is determined based on how far is the selected bitrate
from the highest available one in set R. The switching
weight (ω) is determined based on how far is the selected
bitrate from the one which results in no switching with
the bitrate of the previous chunk. Similarly, the fairness
weight (γ) is determined based on the distance between
the selected bitrate with the average bitrate of other simul-
taneous clients. The utility value of the client, its buffer
status and the associated backhaul/fronthaul data traffic are
also accordingly updated (lines 28-35). After the bitrates
are allocated to the chunks, the cache replacement heuris-
tic is executed by the edge servers in the current time
slot if some of the allocated chunks/bitrates are down-
loaded from either the origin or the neighborhood edge
servers.

It is noteworthy to mention that although the cache replace-
ment heuristic is executed by the edge servers, the chunk
eviction at the edge cache implicitly impacts the performance
of CCBAA algorithm in terms of resulting QoE-traffic as we
show later in simulation results.

VOLUME 6, 2018 52267

A. Mehrabi et al.: QoE-Traffic Optimization Through Collaborative Edge Caching in Adaptive Mobile Video Streaming

Subroutine 1 Self-tuned Bitrate Selection
1: if t − Ai ≤ C then
2: Allocate the highest available bitrate;
3: Update BufferStatus, B(t)i , DTi
4: Compute estThr and threshold δS ; maxUtility = −∞;
5: for each bitrate r ∈ R in decreasing order do
6: if allocation of r satisfy (9) AND

r ≤ max(estThr, ˆThr
(t)
ik ,B

(t)
i) then

7: if |r − r (t−1)ik | ≤ δS AND
1− |r − r̄|/(Rmax − Rmin) >= δF then

8: Data = 0;
9: if (vi, d t−AiC e, r) /∈ M

(t)
k ′ ,∀1 ≤ k

′
≤ K then

10: Data = 1t · r ;
11: if (vi, d t−AiC e, r) /∈ M

(t)
k AND

12: ∃1 ≤ k ′ ≤ K 3 (vi, d
t−Ai
C e, r) ∈ M

(t)
k ′

13: then Data = BFTR ·1t · r ;
14: Compute weightings ρ, ω and γ ;
15: QE = ρr − ω|r − r (t−1)ik | − γ |r − r̄|;
16: if βQE − (1− β)Data > maxUtility then
17: maxUtility = βQE−(1−β)Data; r (t)ik = r ;

18: if r (t)ik = 0 then
19: for each bitrate r ∈ R in decreasing order do
20: if allocation of r satisfy (9) AND

r≤max(estThr, ˆThr
(t)
ik ,B

(t)
i) then

21: if |r − r (t−1)ik | ≤ δS then Data = 0;
22: Perform the same operations as in lines (9)-

(17);
23: if r (t)ik = 0 then
24: for each bitrate r ∈ R in decreasing order do
25: if allocation of r satisfy (9) AND

r ≤ max(estThr, ˆThr
(t)
ik ,B

(t)
i) then Data = 0;

26: Perform the same operations as in lines (9)-
(17);

27: Update weighting parameters ρ, ω γ at time slot t;
28: Compute AQi, Ei, Fi and Ui up to time slot t accord-

ing to respectively (1), (2), (5) and (8); Update B(t)i
29: if B(t)i = Bmaxi AND BufferStatus = False then
30: BufferStatus = True; Li = t − Ai;
31: if (vi, d(t − Ai)/Ce, r

(t)
ik) /∈ M

(t)
k ′ ,∀1 ≤ k

′
≤ K then

32: dc(t)ik = 1; BTi = BTi +1t · r
(t)
ik ;

33: if (vi, d(t − Ai)/Ce, r
(t)
ik) /∈ M

(t)
k AND

∃1 ≤ k ′ ≤ K 3 (vi, d(t − Ai)/Ce, r
(t)
ik) ∈ M (t)

k ′
then

34: de(t)ik = 1; FTi = FTi +1t · r
(t)
ik ;

35: DTi = BTi + BFTR · FTi;
36: Return Ui,DTi;

B. RETENTION-BASED COLLABORATIVE CACHING (RBCC)
HEURISTIC
Varying wireless link quality and the bitrates request during
different time periods makes the proactive cache updating

more challenging [25]. Since the future arrival/departure or the
requested chunks by the clients are not known in advance,
we design a probabilistic collaborative heuristic that relies
on two separate sources of information: 1) Video viewing
statistics 2) current clients’ bitrate allocation history. To
efficiently utilize the limited cache size, the retention of
the clients helps to have some prior knowledge on their
viewing behavior. The clients’ bitrate history is also used
to prioritize between different representations of specific
segments. Each time there is need for cache replacement,
the proposed cache updating strategy in this work computes a
probability value when not only the local clients but also the
clients associated to the neighborhood edge servers request a
specific video chunk using these two sources of information.
The pseudo-code of the proposed cache replacement heuris-
tic called retention-based collaborative caching (RBCC) is
in Subroutine 2.

We do not address the challenge of efficient computing
of per-video retention but instead expect it to be handled by
the video service provider who has access to all the view-
ing statistics (e.g., YouTube provides audience retention).
We note that the accuracy of RBCC heuristic is dependent
on how well the retention really reflects user behavior, which
in turn is affected by the number of samples. Hence, the larger
number of views a computed retention is based on, the more
accurate predictor of future viewer’s behavior we can expect
it to be. Some results on the effect of number of views with
such a predictor, although for a slightly different problem, are
presented in [32]. The authors conclude that performance is
fairly good already after 50 views and after 100 views the
performance improvements are marginal.

Once the cache update procedure is executed at each edge
server, the heuristic computesweight and value for each set of
chunk/bitrate of different requested videos at the current time
slot. The weight (occupied space in the cache) of video chunk
is equal to the multiplication of chunk size and its allocated
bitrate. The value of a chunk is a unitless quantity describing
the probability that it will be requested in the future. This
value is computed considering all those clients streaming
from either the same edge server (lines 4-10) or from other
edge servers (lines 11-17) and are currently downloading
earlier chunks of the same video. In other words, these clients
will request the chunk in question, or another one with same
index but different bitrate, unless they abandon viewing the
video before that point of time. The calculation needs to con-
sider both the index of chunk as well as its bitrate: For each
of those clients, the heuristic first computes the likelihood
that client will be still active in its streaming session when it
reaches the point of video corresponding to the chunk whose
value is being computed. Second, it measures how frequently
the bitrate of that chunk has been accessed by each of these
other clients during the past.

Mathematically speaking, consider updating the cache
contents at edge server 1 ≤ k ≤ K . For every client i
allocated to server k at time slot t (a(t)ik = 1), to compute

52268 VOLUME 6, 2018

A. Mehrabi et al.: QoE-Traffic Optimization Through Collaborative Edge Caching in Adaptive Mobile Video Streaming

Subroutine 2 Retention-Based Collaborative Caching
(RBCC) Heuristic (Run by the Edge Server)
1: for each edge server 1 ≤ k ≤ K do
2: if dc(t)ik = 1 or de(t)ik = 1, for at least one client
i : a(t)ik = 1 then

3: Set V , I ,W ,P = Lists of respectively the
videos, chunk indexes, the weights and the
updated values of the existing chunks in cache;

4: for each each client i such that a(t)ik = 1 do
5: if vi /∈ V OR d(t − Ai)/Ce /∈ I

OR r (t)ik · C /∈ W then
6: Create set SL from (16);
7: Compute PLreach(j, i, k, t) and

PLacc(j, i, k, t)
from (19) and (20) for each client j∈SL ;

8: Compute PLcache(i, k, t) value for
client i

according to relation (17);
9: Append video vi, chunk index

d(t − Ai)/Ce and its weight C · r
(t)
ik

to lists respectively V , I and W ;
10: Append PLcache(i, k, t) value to P
11: for each each client i′ such that a(t)ik ′ = 1(k ′ 6= k)

do
12: if (vi′ /∈ V OR d(t − Ai′)/Ce /∈ I

OR r (t)i′k ′ · C /∈ W) AND
(vi′ , d(t−Ai′)/Ce, r

(t)
i′k ′) /∈M

(t)
s)(∀s 6=K ′) then

13: Create set SN from (22);
14: Compute PNreach(j, i′, k ′, t) and

PNacc(j, i′, k ′, t) for each client j ∈ SN ;
15: Compute PNcache(i′, k ′, t) value

client i′ according to relation (23);
16: Append video vi′ , chunk index

d(t − Ai′)/Ce and its weight C · r
(t)
i′k ′

to lists respectively V , I and W ;
17: Append PNcache(i′, k ′, t) value to P
18: Sort list P and accordingly lists V , I ,W in

decreasing order of caching values;
19: sum_of _weights = 0;
20: for index = 1 to size(P) do
21: sum_of _weights =

sum_of _weights+W (index);
22: if sum_of _weights > Q then
23: Break;
24: M (t)

k = M (t)
k ∪

(V (index), I (index),R(index));

the value of its current chunk with index d t−AiC e, the heuristic
first creates the following list of potential clients which are
allocated to the same server as client i and streaming the
earlier chunks of the same video:

SL = {j|a
(t)
jk = 1, vj = vi, d

t − Aj
C
e ≤ d

t − Ai
C
e} (16)

The likelihood of caching the chunk of client i allocated to
server k at time slot t , PLcache(i, k, t), is then computed using
the following union probability:

PLcache(i, k, t)=P((∪L(j,i,k,t) ∀j ∈ SL) ∪ L(new,i,k,t)) (17)

where for each client j ∈ SL at time slot t , the notation
L(j,i,k,t) denotes the event that client j has perceived the bitrate
of client i’s chunk during the past time slots and will be
still active in its session until it reaches the client i’s chunk.
In order to consider the effect of clients’ arrival/departure
interleaving, we also take into account the arrival of a new
client in the caching probability computation. The similar
event L(new,i,k,t) is also considered for the new arrival. The
probability of the corresponding event for each client j ∈ SL
is derived using the following multiplication:

P(L(j,i,k,t)) = PLreach(j, i, k, t)× PLacc(j, i, k, t) (18)

where the first term, PLreach(j, i, k, t), is the probability that
the client j ∈ SL will not abandon the stream before reaching
the chunk of client i. The second term, PLacc(j, i, k, t), states
how frequently the bitrate of considered chunk of client i has
been accessed by client j during the past time slots.

We note that in the computation of the caching probability,
we assume that all clients in set SL stream the video con-
tinuously without interruption, however, our methodology
can be easily adapted to the case when some of the clients
may jump form one part of the video to the later parts. This
adaptation can be achieved by dynamically updating the set
of clients in SL at each time slot and computing the caching
value, accordingly. Assuming that the retention function Pact ,
which specifies the probability of a newly arrived client to
view different parts of the video, is known and provided by
the origin video server, the probability PLreach(j, i, k, t) is
therefore estimated using the following relation:

PLreach(j, i, k, t) ≈ 1− (Pact (d
t − Aj
C
e)− Pact (d

t − Ai
C
e))

(19)

If a given client is currently downloading a chunk of video
before the chunk index of client i, it is evident that the closer
it is to the chunk index of client i the higher probability that
client jwill request that other chunk in the future. The second
term in (18) is obtained as follows:

PLacc(j, i, k, t) =

∑t
t ′=Aj a

(t ′)
jk · I(r

(t ′)
jk = r (t)ik)∑t

t ′=Aj a
(t ′)
jk

(20)

where the identity function I(r (t
′)

jk = r (t)ik) = 1 if the allocated
bitrate to client j on server k at time slot t ′ is equal to the
bitrate of client i at time slot t and I(r (t

′)
jk = r (t)ik) = 0,

otherwise.
Similarly, the likelihood that the new arrival reaches the

current chunk of client i is given by:

PLreach(new, i, k, t) = 1− (1− Pact (d(t − Ai)/Ce)) (21)

VOLUME 6, 2018 52269

A. Mehrabi et al.: QoE-Traffic Optimization Through Collaborative Edge Caching in Adaptive Mobile Video Streaming

Since a new arrival has not yet started the video streaming,
we estimate the probability that the new arrival has accessed
the same bitrate as client i during the past time slots with the
equal probability PLacc(new, i, k, t) ≈ 1/|R|, where R is the
set of available bitrates at the origin server.

Now, to consider the effect of collaboration among the
edge servers in the cache updating heuristic (the operations in
lines 11-17), similarly, for every client i′ allocated to edge
server k ′ 6= k , the following list of clients is first created:

SN = {j|a
(t)
jk ′(k ′ 6=k) = 1, vj = vi′ , d

t − Aj
C
e ≤ d

t − Ai′

C
e}

(22)

The likelihood of caching the chunk of client i′ allocated
to server k ′(k ′ 6= k) at time slot t , PNcache(i′, k ′, t), is then
computed using the following union probability:

PNcache(i′, k ′, t) = P((∪N(j,i′,k ′,t) ∀j ∈ SN)

∪ N(new,i′,k ′,t)) (23)

Since the existence of any chunk/bitrate in the neighborhood
caches helps to reduce the backhaul data traffic by the factor
of BFTR, therefore, this weighting value is considered in the
computation of P(Nj,i′,k ′,t) and P(N(new, i′, k ′, t)) as follows:

P(N(j,i′,k ′,t)) = BFTR× PNreach(j, i′, k ′, t)

×PNacc(j, i′, k ′, t) (24)

P(N(new,i′,k ′,t)) = BFTR× PNreach(new, i′, k ′, t)

×PNacc(new, i′, k ′, t) (25)

Quantities PNreach and PNacc for each client j ∈ SN and the
new arrival are computed in a similar manner as for the clients
j ∈ SL given in relations (19), (20) and (21).
We assume the events L(j,i,k,t) and L(new,i,k,t) in rela-

tion (17) and similarly the events N(j,i′,k ′,t) and N(new,i′,k ′,t) in
relation (23) to be independent ignoring the complex inter-
dependencies among the clients for the sake of analytical
simplicity. At each edge server, the heuristic then sorts the
current chunks in decreasing order of their computed caching
values PLcache and PNcache (line 18). In the sorted order,
the chunks are then inserted into the cache until the sum of
the weights of the chunks exceeds the cache capacity (19-24).

It is noteworthy to mention that although the for loop in
Subroutine 2 is taken over the edge servers, it does not imply
that the edge servers update their cache contents independent
from each other. In other words, they exchange explicitly the
information about the status of neighborhood clients when
making the caching decisions.

C. COMPLEXITY ANALYSIS
In this section, we derive the worst case time complexity
of algorithm CCBAA and the cache replacement heuristic
RBCC, separately. At each time slot and for each client,
the client to server mapping part in Algorithm 1 takes worst
case time of O(K), where K is the number of edge servers.
Obviously, the most computational tasks in Algorithm 1 is
taken by running the subroutine Self-tuned Bitrate Selection

at each time slot. In the following, we analyze the worst time
complexity of Subroutine 1 in one time slot.

The computation of estimated throughput estThr during
one previous chunk (with size C seconds) results in the worst
case complexity of O(C · S), where S is the number of clients
in the system. Also, the estimation of switching threshold
δS demands for O(|R|) time where, |R| is the size of avail-
able bitrates at the origin server. For every available bitrate,
the assignment of data traffic variable Data according to the
cache status of the local and the neighborhood edge servers
leads to the worst case time complexity of order O(K) and
computing each of the weighting parameters in the QoE term
(ρ, ω, γ) requires O(|R|) time. Updating the QoE weighting
parameters at the current time slot (line 43) again requires
O(|R|) time in the worst case. Finally, updating the data traffic
values and the corresponding binary variables (lines 47-50)
takes the computation time ofO(K) in the worst case. Putting
the above complexities together results in the following worst
case time complexity for running the Subroutine 1 at each
time slot:

TSubroutine1 = O(C · S + |R| + |R|(K + |R|)+ |R| + K)

= O(C · S + |R| + (|R| + 1)(K + |R|)) (26)

Now, within |T | time slots and with S number of clients,
the execution of Algorithm 1 including the clients to server
mapping results in the following worst case time complexity:

TCCBAA = O(|T | · S · (K + TSubroutine1))

= O(|T | · S · (K + C · S + |R|

+ (|R| + 1)(K + |R|))) (27)

In the following, we derive the worst case complexity of
running RBCC heuristic at one edge server. In the worst
case, the cache replacement is performed at |T | time slots.
At each time slot, the heuristic first updates the caching value
of the current existing chunks in the local cache. In the worst
case, the maximum number of available chunks in the cache
is Q

C ·Rmin
, where Q is the fixed cache size and Rmin is the

smallest available bitrate in set R. For each of these chunks,
the computation of PLcache takes O(S(|T | + 1)) time in the
worst case. This is because for S clients, the estimation of
PLreach requires O(1) time when the retention function Pact is
known in advance, and, the computation of PLacc takesO(|T |)
time in the worst case.

The heuristic then computes the caching value for all the
clients allocated to the local and the neighborhood edge
servers. In the worst case with overall S clients, this process
takes O(S · S · (|T | + 1)) time. Also, there are Q

C ·Rmin
chunks

already in the cache in the worst case and, with S number of
other chunks (number of clients), the sorting process takes
thereforeO((Q

C ·Rmin
+S)log(Q

C ·Rmin
+S)) time. Further, insert-

ing the sorted chunks in the cache demands for the time of
orderO(Q

C ·Rmin
+S). Now, putting the above time complexities

all together within |T | time slots results in the following worst

52270 VOLUME 6, 2018

A. Mehrabi et al.: QoE-Traffic Optimization Through Collaborative Edge Caching in Adaptive Mobile Video Streaming

case time complexity for RBCC heuristic:

TRBCC = O(|T |((
Q

C · Rmin
+ S)(S(|T | + 1)

+ log(
Q

C · Rmin
+ S)+ 1))) (28)

VI. SIMULATION RESULTS
In this section, we present simulation results conducted for
evaluating the performance of the proposed system. Our
objectives are the following: 1) To compare our bitrate
adaptation combined with collaborative edge caching solu-
tion against another network-assisted and collaborative edge
caching approach in terms of both QoE and data traffic,
2) to evaluate the performance of the proposed RBCC cache
replacement heuristic through comparison with other existing
methods, and 3) evaluate the impact of BFTR parameter in
collaborative caching on both average video bitrate and data
traffic with respect to non-collaborative caching.

A. SIMULATION SETUP
The simulations are conducted with a network setup in
SimuLTE simulator [40] using the radio access link level
traces of 100 UEs (mobile clients) and 10 eNodeBs
(base stations). The edge servers associated with these
base stations form one single edge cluster i.e. each edge
server has all the other servers as its neighborhood. With
time slot duration of 1t = 1s, the total time dura-
tion of 300s (time slots) is considered for the simula-
tion. All the clients have the constant speed of 8.33 m/s
adopted from [16] with linear mobility and their downlink
SNR values during different time slots are obtained accord-
ing to LTE downlink throughput specifications reported
in [41]. The chunks of four videos with different popular-
ities are available initially at the origin server in ten dif-
ferent bitrates [15, 17, 22, 26, 30, 35, 38, 43, 45, 50 Mbps].
Each video lasts for 270s (time duration of the video) while
each chunk is 5s. Unless explicitly mentioned, the mobile
clients arrival time is a random value chosen from the uniform
interval [1, 30s] and also, the linear curve is used to represent
the clients retention toward different videos.

Constant buffer size of 250Mb is considered for all the
clients and the cache size at each edge server is fixed at
Q = 2Gb. With total of 5MHz available bandwidth at each
time slot, the number of 28 downlink LTE resource blocks
are available per slot at each base station. Theweighting value
α = 0.5 is considered in joint QoE-traffic optimization and
unless explicitly mentioned, the value of parameter BFTR is
set to 1/3. Furthermore, the fairness threshold of δF = 0.5
is considered in the simulations. At each simulation part,
the average of the results taken over 20 runs of simulation
with confidence interval of 95% is presented.

B. QoE-TRAFFIC COMPARISON
1) COMPARISON TO NON-COLLABORATIVE CACHING
We first compare the collaborative and non-collaborative
edge caching strategies in terms of QoE metrics and the

FIGURE 2. Comparison between collaborative and non-collaborative
edge caching in terms of (a) average video bitrate (b) average data traffic.

backhaul/fronthaul data traffic. For each client, the resulting
average video bitrate and data traffic are plotted in Fig. 2a
to Fig. 2b. Fig. 2a shows that mobile clients perceive higher
video bitrate with collaborative caching by exploring not only
the local but also the neighborhood caches. Although the
collaborative edge caching adds some traffic to the fronthaul
network, it also reduces significantly the backhaul traffic
(Fig. 2b), as intended. An average improvement of 12% in
video bitrate and the reduction of 53% in backhaul data traffic
is achieved with collaborative edge caching compared to non-
collaborative strategy. We conclude that with this param-
eterization, the collaborative edge caching is more effec-
tive in reducing backhaul data traffic than increasing video
bitrate.

We note that the collaborative edge caching causes slightly
more bitrate switching compared to non-collaborative
caching. The reason is that in some situations, the clients
download the chunks from the neighborhood edges in order
to substantially reduce the backhaul traffic although it leads
to slightly increased bitrate switching.

2) COMPARISON TO ANOTHER SAND-DASH SOLUTION
We have also compared the proposed edge-assisted adapta-
tion algorithm CCBAA with another SAND-DASH solution
which was adapted from [9]. The network-assisted solution in
this work solves a QoE-driven utility maximization problem
subject to the limited available bandwidth to determine the
allocated bitrates to the set of competing clients. For the
purpose of fair comparison, we adapt this solution using
the same objective function (8) with α = 0.5 and the
equal weighting values ρ = ω = γ = 1/3 in the QoE
term. A simple greedy algorithm is then employed to deter-
mine the allocated bitrate to each client at each time slot.
Cache updating procedure RBCC is also used for updating
the cache contents at the edge servers.

The results of the comparison of CCBAA to the other
SAND-DASH solution are shown in Fig. 3. As Fig. 3a
shows, our algorithm yields roughly 85% higher average
video bitrate than the other algorithm, which is due to the fact
that our algorithm uses a self-tuningmechanismwhich strives
to allocate the highest bitrates at each time slot in the best pos-
sible way of satisfying the switching and fairness thresholds.
However, using our algorithm leads to about 16% (in average)

VOLUME 6, 2018 52271

A. Mehrabi et al.: QoE-Traffic Optimization Through Collaborative Edge Caching in Adaptive Mobile Video Streaming

FIGURE 3. Comparison between CCBAA algorithm and another
SAND-DASH solution. (a) Average bitrate. (b) BFTR value.

increase in the backhaul/fronthaul traffic ratio per client as
shown in Fig. 3b. Taking into account the QoE-traffic trade-
off, the significant improvement obtained in average video
bitrate compared to the smaller increase in BFTR however
confirms the superiority of our algorithm with respect to the
other network-assisted solution.

It is worth pointing out that our solution can be parame-
terized such that it generates smaller BFTR values compared
to the other SAND-DASH solution, while sacrificing slightly
the average video bitrate per client.

We have shown in [18] that the network-assisted bitrate
adaptation part of the solution outperforms client-based
DASH reference heuristics rate based adaptation (RBA) and
buffer based adaptation (BBA). We expect that the collabo-
rative edge-assisted bitrate adaptation and caching solution
proposed in this work brings the noticeable improvement
in average bitrate with small increase in BFTR value when
compared to strategies that combine client-based adaptation
heuristics with non-collaborative edge caching.

3) COMPARISON TO ANOTHER COLLABORATIVE
CACHING SOLUTION
Next, we compare our solution to the hierarchical collabora-
tive edge caching algorithm called Octopus presented in [24].
Octopus uses a client-based heuristic for the bitrate selection
among the clients and the requested chunk/bitrate of the
clients can be fetched from the neighborhood caches when
it is not available in the local cache. Furthermore, the cache
contents at the edge servers are dynamically updated using the
LRU policy without considering collaboration between the
edge servers in the caching process. To have a fair comparison
under the same setup, we adapt the bitrate allocation of Octo-
pus to our network-assisted bitrate adaptation solution while
using the same cache replacement heuristic LRU without
edge collaboration.

The comparison in terms of backhaul and fronthaul data
traffics is shown in Fig. 4a and 4b, respectively. Incorpo-
rating RBCC cache replacement heuristic in our solution
indeed helps to reduce the backhaul and fronthaul data traffic
in average about respectively 42% and 20% compared to
Octopus. Considering the QoE-traffic trade-off, our algo-
rithm yields almost the same average video bitrates than
Octopus.

FIGURE 4. Comparison between the proposed collaborative caching and
Octopus in terms of backhaul/fronthaul traffic. (a) Average backhaul
data. (b) Average fronthaul data.

C. PERFORMANCE EVALUATION OF RBCC HEURISTIC
Next, we evaluate the performance of the proposed cache
replacement heuristic and compare it to other cache updating
strategies. The heuristics are compared in term of the percent-
age of cache miss per client chunk, i.e., the ratio between the
number of times that the allocated chunks/bitrates to the all
clients are fetched from the origin server and the overall num-
ber of allocated chunks/bitrates. We evaluate the following
four different cache replacement strategies (the optimal ones
are obviously impossible to implement for real systems).
• Non-collaborative Retention-based Caching (RBC):
This strategy uses the same retention-based cache
updating logic as in this work but without the inter-
collaboration between the edge servers in the caching
process. Also, the clients fetch the chunk/bitrates from
either the local edge or the origin server.

• Non-collaborative Optimal: Without collaboration
among the edge servers in caching and content fetching,
the optimal approach assumes the availability of one
time slot ahead clients status at each slot in an offline
manner. More precisely, at each time slot, the opti-
mal approach caches the best chunks/bitrates which are
immediately requested by the clients in next time slot.

• Retention-based Collaborative Caching (RBCC):
The proposed cache replacement strategy in this work
which accounts for the possibility of collaborative con-
tent fetching and, also takes into account the values of
the requested chunks from the neighborhood clients for
caching at each local edge server.

• CollaborativeOptimal: Collaborative optimal approach
caches the best possible chunks/bitrates at each time
slot assuming the availability of one time slot ahead
information about the requests of not only the local but
also the neighborhood clients.

1) IMPACT OF ARRIVAL TIME
The results of comparing the heuristics in term of cache miss
percentage for different arrival intervals of the clients are
plotted in Fig. 5a. For different arrival intervals, the collab-
orative caching performs better than all the non-collaborative
ones, even the offline optimal. On average, the proposed
heuristic reduces cache misses by 55% and 38% compared
to Non-collaborative_RBC and Non-collaborative_Optimal,

52272 VOLUME 6, 2018

A. Mehrabi et al.: QoE-Traffic Optimization Through Collaborative Edge Caching in Adaptive Mobile Video Streaming

FIGURE 5. Comparison between cache replacement heuristics in term of
percentage of cache miss per chunk for different (a) Clients arrival time
interval (b) Retention curves.

respectively. Optimal collaborative caching further reduces
the cache miss by average about 77% compared to our
heuristic. The gap between the optimal collaborative and
our heuristic in term of cache miss tends to be bigger
than the gap between the Non-collaborative_RBC and Non-
Collaborative_Optimal. This in turn reveals the interesting
fact that relying on the statistical information for caching is
more accurate with respect to the optimal one when there is
no collaboration among the edge servers. In fact, the con-
sideration of the requests from neighborhood clients when
updating the cache contents at the local edge server may lead
to the replacement of some of the chunks which will be most
likely requested by the local clients in the future time slots.
This in turn causes higher percentage of cache miss under the
collaborative cache updating due to under/over estimation of
the future bitrates request.

2) ROBUSTNESS
We further study the performance of Collaborative_RBCC
heuristic from the robustness point of view. To measure
its robustness when the clients show different retentions
toward the requested videos, we generate randomly dif-
ferent retention curves (RCs) and then compare the four
above-mentioned cache replacement scenarios in term of
cache miss. RCs are generated using the polynomial func-
tion P(t) = at2 + bt + c by changing the curvature of
the polynomial and determining the corresponding coeffi-
cients a, b and c. Here, P(t) specifies the probability that
the client leaves its session at time slot t . The results
for five different retention curves (RC1-RC5) are shown
in Fig. 5b. It is noted that the sharpness of the polyno-
mial gets larger as the curve index increases, for instance,
the probability that the clients depart from their streaming
session is higher under the retention curve RC5 than the
curve RC4.

The results are qualitatively similar to those where arrival
time was varied. On average, our heuristic reduces the cache
miss by 44% and 27% compared to Non-collaborative_RBC
and Non-collaborative_Optimal, respectively. The optimal
collaborative strategy further reduces the cache miss by 84%
compared to our heuristic.

3) QoE-TRAFFIC BAG PLOT VISUALIZATION
We now visualize the resulting QoE and backhaul data
traffic for four different caching strategies using Bag

FIGURE 6. Comparison between non-collaborative and collaborative
cache replacement in term of QoE/traffic using Bag plot with half space
Tukey’s median representation. (a) Non-collaborative_RBC.
(b) N-collaborative_Optimal. (c) Collaborative_RBCC.
(d) Collaborative_Optimal.

plots [42] with Tukey’s half-space median representa-
tion. Matlab libraries LIBRA [43] are used to draw the
plots shown in Fig. 6a–6b. The bag of the collabora-
tive_RBCC is narrower, which shows that the video stream-
ing of the majority of the clients generates less data traf-
fic on the origin server compared to non-collaborative
caching (Fig. 6a). Improvement in average video bitrate
with collaborative caching is also confirmed from the
plots.

D. REMARKS ON THE OPTIMALITY
As mentioned in Subsection V, the optimization
problem (8)-(15) belongs to the class of NP-hard problems
and therefore, the proposed edge-assisted adaptation algo-
rithm CCBAA is a suboptimal solution for the problem.
As our simulation results in [18] show the proposed edge-
assisted adaptation solution provides an approximation factor
of about 1.2 in terms of average bitrate with respect to
the optimal solution under the assumption that every edge
server holds all the video chunks/bitrates (unlimited size fully
populated edge caches).

Furthermore, the results in Subsection VI-C show that
our RBCC cache replacement heuristic updates the cache
contents such that the percentage of cache miss is in
average about three times worse than the percentage of
cache miss when using the optimal collaborative solu-
tion. This in turn implies that our algorithm provides an
approximation factor of about 3 in term of data traffic
minimization.

VOLUME 6, 2018 52273

A. Mehrabi et al.: QoE-Traffic Optimization Through Collaborative Edge Caching in Adaptive Mobile Video Streaming

FIGURE 7. Impact of BFTR parameter on (a) Average video bitrate and
(b) Average data traffic for different arrival intervals and (c) Average video
bitrate and (d) Average data traffic for different retention curves.

E. BFTR THRESHOLD EVALUATION
In this part, we study the impact of the BFTR parameter value
on both average video bitrate and the data traffic for different
arrival intervals and retention curves. We plot the average
video bitrate and data traffic for five different arrival intervals
and for BFTR ranging from 1/2 to 1/10 in Fig. 7a and 7b.
Similarly, for different BFTR values, the average of video
bitrate and data traffic for five retention curves are shown
in Fig. 7c and Fig. 7d, respectively.

As confirmed from the results, the collaborative edge
caching yields the improvement in average video bitrate
for different values of BFTR as well as under the varying
arrival intervals and clients’ retention pattern. As mentioned
in subsection VI-B, the reason is due to the possibility of
exploring the chunk/bitrate of the requested video in the
cache of not only the local but also the neighborhood edge
servers with the collaborative caching. Further improvement
is obtained with optimal collaborative strategy in which
the knowledge about the future request of the clients is
available in advance. As observed from Fig. 7a for differ-
ent arrival intervals, the average of about 14% and 24%
improvement in video bitrate is obtained with respectively
collaborative and optimal collaborative caching compared to
non-collaborative strategy. Considering different retention
curves, as it is noticed form Fig. 7c, the average of about
12% and 20% improvement in video bitrate is achieved
using respectively the collaborative and optimal collaborative
caching compared to non-collaborative. The improvement in
average bitrate using collaborative strategies under varying
system parameters (clients’ arrival, retention, BFTR parame-
ter) obviously reveals the generality of the results.

On the other side, although the collaboration among
the edge servers reduces the data traffic on origin server,

it however adds to the data traffic on the fronthaul network.
Depending on the BFTR value set by MNO, the average data
traffic caused by collaborative caching may become worse
than non-collaborative in some situations. For each value of
BFTR parameter, the average data traffic per client time slot
is obtained as (1/S)

∑S
i=1 DTi/|Di − Ai|, where S is the total

number of clients. As the results in figures 7b and 7d show,
there is a threshold on BFTR value after which the average
data traffic per client time slot (for different arrival interval
and retention curves) gets below the average data traffic
caused by non-collaborative caching. As observed from the
result, this average BFTR threshold value is very close to
1/2 for the case of different arrival intervals and is very close
to 1/3 when different retention curves are considered. There-
fore, the average BFTR threshold value of min{1/2, 1/3} =
1/3 is suggested such that after this threshold, the significant
reduction in data traffic with further improvement in aver-
age video bitrate is guaranteed. This threshold value indeed
helps the edge caching designers to judge about the effec-
tiveness of collaborative caching in DASH video streaming
scenarios.

It should be noted that this threshold value depends on
parameters such as the weighting values in joint QoE-traffic
optimization problem or even the size of the cache at the
edge server. The reason is that as long as the volume of the
created data traffic on the fronthaul network increases due
to the frequency of cache misses at the local edge servers
(by varying these impacting parameters), the BFTR threshold
value is expected to decrease.

VII. CONCLUSION
In this paper, we investigated the impact of collaborative
caching on joint QoE-traffic optimization in edge-assisted
dynamic adaptive video streaming over HTTP (DASH) for
particularly mobile edge computing (MEC) environments.
To this end, we formulated the joint maximization of QoE and
bitrate fairness andminimization of data traffic (backhaul and
fronthaul) as an integer non-linear programming (INLP) opti-
mization problem which introduces the backhaul/fronthaul
traffic ratio (BFTR) parameter adjustable by mobile network
operator (MNO). Due to NP-hardness of the problem for-
mulation, we then design an online performance guaran-
teed algorithm with low complexity and minimum need for
parameter tuning to solve the joint optimization problem.
The algorithm utilizes a self-tuning mechanism for adjusting
the weighting parameters in the optimization problem which
in turn makes it easy for practical deployment by MNOs.
We also design an efficient edge cache replacement heuristic
which takes into account not only the retention behavior of
the mobile clients toward different video request but also the
collaboration among the edge servers.

Through simulations using the radio access link level traces
of mobile clients, we show that our network-assisted bitrate
adaptation and collaborative edge caching solution indeed
helps to improve the QoE of the clients and reduce sig-
nificantly the backhaul traffic compared to other network-

52274 VOLUME 6, 2018

A. Mehrabi et al.: QoE-Traffic Optimization Through Collaborative Edge Caching in Adaptive Mobile Video Streaming

assisted and collaborative edge caching mechanisms. Our
simulation results also suggest the existence of some thresh-
olds on BFTR parameter after which the significant improve-
ment in average video bitrate and network data traffic are
obtained using the collaborative edge caching. This thresh-
old can help the edge-assisted DASH system developers to
design efficient collaborative edge caching mechanisms for
5G mobile networks.

REFERENCES
[1] S. Petrangeli, J. Famaey, M. Claeys, S. Latré, and F. De Turck,

‘‘QoE-driven rate adaptation heuristic for fair adaptive video streaming,’’
ACM Trans. Multimedia Comput. Commun. Appl., vol. 12, no. 2, pp. 1–15,
Oct. 2015.

[2] D. Bethanabhotla, G. Caire, and M. J. Neely, ‘‘Adaptive video streaming
for wireless networks with multiple users and helpers,’’ IEEE Trans. Com-
mun., vol. 63, no. 1, pp. 268–285, Jan. 2015.

[3] N. Bouten, S. Latre, J. Famaey, W. Van Leekwijck, and F. De Turck,
‘‘In-network quality optimization for adaptive video streaming ser-
vices,’’ IEEE Trans. Multimedia, vol. 16, no. 8, pp. 2281–2293,
Dec. 2014.

[4] J. Chen, R. Mahindra, M. A. Khojastepour, S. Rangarajan, and
M. Chiang, ‘‘A scheduling framework for adaptive video delivery over
cellular networks,’’ in Proc. ACM MobiCom, Sep. 2013, pp. 389–400.

[5] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia,
‘‘A survey on quality of experience of HTTP adaptive streaming,’’ IEEE
Commun. Surveys Tuts., vol. 17, no. 1, pp. 469–492, 1st Quart., 2015.

[6] T. Hoßfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and C. Lorentzen,
‘‘Initial delay vs. interruptions: Between the devil and the deep blue
sea,’’ in Proc. IEEE Int. Workshop Quality Multimedia Exper. (QoMEX),
Aug. 2012, pp. 1–6.

[7] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson,
‘‘A buffer-based approach to rate adaptation: Evidence from a large
video streaming service,’’ in Proc. ACM Conf. SIGCOMM, Aug. 2014,
pp. 187–198.

[8] T. Mangla, N. Theera-Ampornpunt, M. Ammar, E. Zegura, and S. Bagchi,
‘‘Video through a crystal ball: Effect of bandwidth prediction quality
on adaptive streaming in mobile environments,’’ in Proc. 8th ACM Int.
Workshop Mobile Video, May 2016, pp. 1–6.

[9] Z. Li, S. Zhao, D. Medhi, and I. Bouazizi, ‘‘Wireless video traffic bottle-
neck coordination with a DASH SAND framework,’’ in Proc. IEEE Vis.
Commun. Image Process., Nov. 2016, pp. 1–4.

[10] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, ‘‘BOLA: Near-optimal
bitrate adaptation for online videos,’’ in Proc. 35th Annu. IEEE Int. Conf.
Comput. Commun. (INFOCOM), Apr. 2016, pp. 1–9.

[11] G. Cofano, L. De Cicco, T. Zinner, A. Nguyen-Ngoc, P. Tran-Gia, and
S. Mascolo, ‘‘Design and experimental evaluation of network-assisted
strategies for HTTP adaptive streaming,’’ in Proc. 7th ACM Int. Conf.
Multimedia Syst. (MMSys), May 2016, pp. 1–12.

[12] E. Thomas, M. O. van Deventer, T. Stockhammer, A. C. Begen,
M.-L. Champel, and O. Oyman, ‘‘Applications and deployments of server
and network assisted DASH (SAND),’’ in Proc. Int. Broadcast. Conv.
(IBC), 2016, pp. 1–8.

[13] C. Wang, A. Rizk, and M. Zink, ‘‘SQUAD: A spectrum-based quality
adaptation for dynamic adaptive streaming over HTTP,’’ in Proc. 7th ACM
Int. Conf. Multimedia Syst. (MMSys), May 2016, pp. 1–12.

[14] W. Zhang, Y. Wen, Z. Chen, and A. Khisti, ‘‘QoE-driven cache manage-
ment for HTTP adaptive bit rate streaming over wireless networks,’’ IEEE
Trans. Multimedia, vol. 15, no. 6, pp. 1435–1445, Oct. 2013.

[15] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, ‘‘Collaborative mobile
edge computing in 5G networks: New paradigms, scenarios, and chal-
lenges,’’ IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61, Apr. 2017.

[16] A. E. Essaili, Z. Wang, E. Steinbach, and L. Zhou, ‘‘QoE-based cross-
layer optimization for uplink video transmission,’’ACMTrans. Multimedia
Comput. Commun., vol. 12, no. 1, pp. 1–22, Aug. 2015.

[17] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
‘‘On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,’’ IEEE Commun. Surveys Tuts.,
vol. 19, no. 3, pp. 1657–1681, 3rd Quart., 2017.

[18] A. Mehrabi, M. Siekkinen, and A. Ylä-Jääski, ‘‘Edge computing assisted
adaptive mobile video streaming,’’ IEEE Trans. Mobile Comput., pp. 1–17,
Jun. 2018, doi: 10.1109/TMC.2018.2850026.

[19] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung,
‘‘Cache in the air: Exploiting content caching and delivery techniques
for 5G systems,’’ IEEE Commun. Mag., vol. 52, no. 2, pp. 131–139,
Feb. 2014.

[20] H. A. Pedersen and S. Dey, ‘‘Enhancing mobile video capacity and quality
using rate adaptation, RAN caching and processing,’’ ACM/IEEE Trans.
Netw., vol. 24, no. 2, pp. 996–1010, Apr. 2016.

[21] A. Gupta and E. R. K. Jha, ‘‘A survey of 5G network: Architec-
ture and emerging technologies,’’ IEEE Access, vol. 3, pp. 1206–1232,
Jul. 2015.

[22] Q. Ding, H. Pang, and L. Sun, ‘‘SAM: Cache space allocation in collab-
orative edge-caching network,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
May 2017, pp. 1–6.

[23] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on
mobile edge computing: The communication perspective,’’ IEEECommun.
Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[24] T. Tran and D. Pompili, ‘‘Octopus: A cooperative hierarchical caching
strategy for cloud radio access networks,’’ in Proc. IEEE Int. Conf. Mobile
Ad Hoc Sensor Syst. (MASS), Oct. 2016, pp. 154–162.

[25] D. Liu, B. Chen, C. Yang, and A. F. Molisch, ‘‘Caching at the wireless
edge: Design aspects, challenges, and future directions,’’ IEEE Commun.
Mag., vol. 54, no. 9, pp. 22–28, Sep. 2016.

[26] X. Chen, L. Jiao, W. Li, and X. Fu, ‘‘Efficient multi-user computation
offloading for mobile-edge cloud computing,’’ IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[27] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang,
‘‘A survey on mobile edge networks: Convergence of computing, caching
and communications,’’ IEEE Access, vol. 5, pp. 6757–6779, Mar. 2017.

[28] H. Ahlehagh and S. Dey, ‘‘Video-aware scheduling and caching in
the radio access network,’’ IEEE/ACM Trans. Netw., vol. 22, no. 5,
pp. 1444–1462, Oct. 2014.

[29] R. Roman, J. Lopez, and M. Mambo, ‘‘Mobile edge computing, Fog et al.:
A survey and analysis of security threats and challenges,’’ Future Gener.
Comput. Syst., vol. 78, pp. 680–698, Jan. 2018.

[30] L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, and M. Guizani, ‘‘Security in
mobile edge caching with reinforcement learning,’’ IEEE Wireless Com-
mun., vol. 25, no. 3, pp. 116–122, Jun. 2018.

[31] S. Almajali, H. B. Salameh, M. Ayyash, and H. Elgala, ‘‘A framework for
efficient and secured mobility of IoT devices in mobile edge computing,’’
in Proc. IEEE Int. Conf. Fog Mobile Edge Comput. (FMEC), Apr. 2018,
pp. 58–62.

[32] M. Siekkinen, M. A. Hoque, and J. K. Nurminen, ‘‘Using view-
ing statistics to control energy and traffic overhead in mobile video
streaming,’’ IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1489–1503,
Jun. 2016.

[33] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, ‘‘Mobile edge com-
puting: A survey,’’ IEEE Internet Things J., vol. 5, no. 1, pp. 450–465,
Feb. 2018.

[34] L. Lei, X. Xiong, L. Hou, and K. Zheng, ‘‘Collaborative edge caching
through service function chaining: Architecture and challenges,’’ IEEE
Wireless Commun., vol. 25, no. 3, pp. 94–102, Jun. 2018.

[35] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, ‘‘Cooperative
content caching in 5G networks with mobile edge computing,’’ IEEE
Wireless Commun., vol. 25, no. 3, pp. 80–87, Jun. 2018.

[36] C. Ge, N. Wang, S. Skillman, G. Foster, and Y. Cao, ‘‘QoE-driven DASH
video caching and adaptation at 5G mobile edge,’’ in Proc. ACM Conf.
Inf.-Centric Netw. (ICN), Sep. 2016, pp. 237–242.

[37] (2016). Sandvine: Global Internet Phenomena Report. [Online]. Available:
https://www.sandvine.com/trends/global-internet-phenomena/

[38] Dynamic Adaptive Streaming Over HTTP (DASH), document ISO/IEC
23009, 2017.

[39] Dynamic Adaptive Streaming Over HTTP (DASH)—Part 5: Server and
Network Assisted DASH (SAND), document ISO/IEC 23009-5, 2017.

[40] (2015). SimuLTE Simulator. [Online]. Available: http://simulte.com/
[41] (2009). LTE Guideline. [Online]. Available: http://www.etsi.org/deliv

er/etsi_tr/136900_136999/136942/08.02.00_60/tr_136942v080200p.pdf
[42] (2018). BagPlot Description. [Online]. Available: https://en.wikipedia.

org/wiki/Bagplot
[43] (2010). LIBRA Libraries Manual. [Online]. Available: https://wis.

kuleuven.be/stat/robust/papers/2010/HubertVerboven_LIBRA_WIRE_
2010.pdf

VOLUME 6, 2018 52275

http://dx.doi.org/10.1109/TMC.2018.2850026

A. Mehrabi et al.: QoE-Traffic Optimization Through Collaborative Edge Caching in Adaptive Mobile Video Streaming

ABBAS MEHRABI received the B.Sc. degree in
computer engineering from the Shahid Bahonar
University of Kerman, Iran, in 2008, the M.Sc.
degree in computer engineering from Azad Uni-
versity, South Tehran, in 2010, and the Ph.D.
degree from the School of Electrical Engineer-
ing and Computer Science, Gwangju Institute of
Science and Technology, Gwangju, South Korea,
in 2017. He is currently a Post-Doctoral Fellow
at the Department of Computer Science, Aalto

University, Espoo, Finland. His main research interests include quality of
experience optimization and resource allocation for multimedia services in
mobile edge computing environments, energy efficient mobile computing,
and scheduling/planning problems in smart grids. He was one of the recipi-
ents of the Ph.D. Graduation Award from the Gwangju Institute of Science
and Technology.

MATTI SIEKKINEN received the M.Sc. degree in
computer science from the Helsinki University of
Technology in 2003, and the Ph.D. degree from the
EURECOM/University of Nice Sophia-Antipolis
in 2006. He is currently a Senior Researcher
with the University of Helsinki and Aalto Uni-
versity. His research on multimedia systems com-
bines techniques from multimedia signal process-
ing, mobile networking, cloud computing, system
analysis, machine learning, and HCI.

ANTTI YLÄ-JÄÄSKI received the Ph.D. degree
from ETH Zurich in 1993. From 1994 to 2009, he
was with Nokia in several research and research
management positions, with a focus on future
Internet, mobile networks, applications, services,
and service architectures. Since 2004, he has
been a tenured Professor with the Department of
Computer Science, Aalto University. His current
research interests include mobile cloud comput-
ing, mobile multimedia systems, pervasive com-

puting and communications, indoor positioning and navigation, energy effi-
cient communications and computing, and Internet of Things.

52276 VOLUME 6, 2018

