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ABSTRACT This paper presents an approach for distributed fault isolation in a generic system of systems.
The proposed approach is based on the principles of hyperdimensional computing. In particular, the recently
proposed method called Holographic Graph Neuron is used. We present a distributed version of Holographic
Graph Neuron and evaluate its performance on the problem of fault isolation in a complex power plant
model. Compared to conventional machine learning methods applied in the context of the same scenario
the proposed approach shows comparable performance while being distributed and requiring simple binary
operations, which allow for a fast and efficient implementation in hardware.

INDEX TERMS Vector symbolic architectures, Holographic Graph Neuron, distributed representation,
complex systems, distributed fault isolation, hyperdimensional computing, machine learning.

I. INTRODUCTION
Flattening the management pyramid by distributing the intel-
ligence across networked hardware devices and thus forming
Cyber-Physical Systems (CPS) is one of the main current
trends in the development of industrial automation towards
industrial processeswhich are intelligent and flexible. Several
standards and technologies currently empower the distribu-
tion of the intelligence on different levels.

Intelligent maintenance and condition monitoring of com-
plex industrial systems will be important functions of future
automation systems, with the growing usage of methods from
machine learning and artificial intelligence. Enabling inter-
pretation and on-line learning of heterogeneous data streams
is one of the main current trends in machine learning. The
main principle of on-line learning is a dynamic formation of a
process model through the observation of data streamed from
several sources (controllers, sensors, actuators, etc.) over
time. The model changes with the evolution of the modeled
process. Thus, the on-line learning addresses an important
challenge for the modern control systems, the obsolescence
of models of system processes. This should increase the
efficiency of automation of industrial systems.

Another challenge in CPS is a transformation of raw mea-
surements observed by heterogeneous sources into knowl-
edge. This knowledge has an ultimate importance for the

efficient decision support in CPS. The traditional approach
to this problem is centralized. Huge amounts of data are
normally aggregated in powerful computers where models
are built. The questions of distributed in-network processing
are so far given limited attention. This is due to a high
computational complexity and the centralized nature of the
processing algorithms not suitable for low-power and low-
performance devices. On the other hand, in-network process-
ing could dramatically increase the level of intelligence and
autonomy in industrial systems.

This article considers an important automation appli-
cation of fault management. In particular, a practically
implementable, supervised data-driven approach to dis-
tributed fault isolation in an industrial system using read-
ings from heterogeneous sensors is proposed. The proposed
approach is based on the principles of hyperdimensional
computing [1], [2], which operates with vectors of very high
dimension (i.e., vectors of several thousand elements) and
allows the implementation of sophisticated reasoning based
on very simple binary operations. Thus, the article demon-
strates the feasibility of implementing complex functionality
using simple operations on imprecisely encoded data.

Specifically, the recently proposed method called
Holographic Graph Neuron [3], [4], which first maps
low-dimensional data into the format suitable for the
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hyperdimensional computing, and then performs pattern pro-
cessing operations in a high-dimensional space. One of the
advantages of the applied approach is that it might implement
the on-line learning paradigm. The IEC 61499 distributed
automation architecture [5], which is increasingly used in
various distributed automation applications, is adopted to
support this paradigm. It provides an executable software
model of the implementation that is ready for a distributed
deployment. The distributed implementation of the proposed
approach will deploy an algorithm in each control node,
which learns from sensory data produced by the plant during
its faulty and/or stable operation modes. It is also notable that
in the proposed approach, models created in this way can
be kept up-to-date via the on-line learning as the industrial
system evolves.

The main contribution of this article is in the demonstrated
feasibility of hyperdimensional computing for the problem
of distributed fault isolation in a complex industrial sys-
tem where the system is exemplified on a generic model
of a Nuclear Power Plant. The results are compared with
the performance of conventional machine learning methods:
Artificial Neural Networks, k-nearest neighbors, decision
trees, and Sequential minimal optimization for the same
problem. The proposed approach demonstrates the accuracy
(up to 95%) comparable to the results of conventional meth-
ods. An additional advantage of hyperdimensional computing
is its feasibility of on-line learning as explained in Section IV.
The preliminary results of this work were presented in [6].

The work there covers the centralized version of the proposed
approach and its comparison with the conventional machine
learning methods (4 out 5 methods used in this article, see
details in Section VI-G). Results reported in this article also
include the distributed version of the approach (Section IV)
and its performance for two different configurations in the
considered fault isolation scenario (Section VI-H).
The article is organized as follows. System model and

problem definition are described in Section II. Section III
overviews related approaches to fault diagnosis and isolation
as well as related works in the area of hyperdimensional com-
puting. Section IV outlines the encoding of sensory data as
well as the training and operational phases of the Holographic
Graph Neuron for the considered fault isolation application.
SectionV introduces the essentials of hyperdimensional com-
puting and presents the details of the Holographic Graph
Neuron approach in the context of fault isolation in industrial
systems. Section VI presents the case study scenario and
the results of the performance evaluation of the proposed
approaches and comparison with the conventional methods.
Section VII concludes the article.

II. SYSTEM MODEL AND PROBLEM DEFINITION
This section discusses the complications of the conventional
data-driven approaches to fault isolation as the main motiva-
tion for the proposed solution. Further, it describes the system
model, notations used throughout the article and formulates
the considered problem.

A. MOTIVATION FOR THE PROPOSED ARCHITECTURE:
CLASSIC DATA-DRIVEN APPROACH TO FAULT ISOLATION
AND ITS SHORTCOMINGS
The conventional supervised machine learning based data-
driven fault isolation approach consists of the following
phases: a collection of labeled training sensory data; train-
ing of a model for fault isolation using the labeled training
data; and the operational phase. In the operational phase,
it is necessary that a fault is first detected from the sensory
measurements by either the trained model or some additional
fault detection mechanism. Next, the trained model is pro-
vided with the sensory measurements in order to classify
(isolate) the detected fault. In such architecture, the fault
isolation layer observes the process ‘‘through the eyes’’ of the
distributed automation infrastructure and informs the latter of
possible faults. In the classic centralized approach, the fault
isolation is implemented at one dedicated computational
resource. An alternative to that is distributed implementation,
where the process can be decomposed into several compo-
nents deployed directly to the automation (control) nodes.

During the data collection phase, a training batch of sen-
sory measurements from different system components is
gathered and labeled, where a component can be a sensor,
an actuator, a controller, etc. Usually, raw sensory measure-
ments are used to extract features that are then used by
machine learning methods. Several features can be extracted
from a single sensory signal. For example, in the case study
below, three statistical features (mean, max, and min) were
extracted from a signal measured by each sensor over a prede-
fined time interval. Labels in the training batch associate set
of features extracted from the sensory measurements with the
corresponding state of the system, e.g., with the component,
which is faulty. The training batch can be created from either
system simulations or historical logs. During the training
phase a chosen machine learning algorithm is run on the
training batch labeled with the corresponding faults. Because
in many practical cases when working with complex systems
the interdependencies between different components are not
known or require sophisticated analysis, all available sensory
signals are used during the training phase for all the methods
except the distributed version of the proposed approach.

The choice of the use of measurements from all com-
ponents implies two main shortcomings. First, most of the
conventional machine learning methods have limitations on
the number of features in the data set. For example, when
the number of features is increasing linear methods such as
logistic regression demonstrate degraded convergence and
computational performance. In the knowledge-based and
specifically in the pattern matching based classification
approaches (e.g., Artificial Neural Networks (ANNs)) with
the increased number of features the size of the training
data set should be enlarged in order to avoid the overfitting
problem. The second shortcoming comes from the inher-
ent centralized nature of the conventional machine learning
methods. Indeed, in order to classify a previously unseen
input pattern of features (i.e., sensory measurements from
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different components), the method needs to be presented with
a full pattern. If only a partial pattern is presented, it will
substantially decrease the accuracy unless it was used during
the training phase.

B. SYSTEM MODEL AND PROBLEM FORMULATION
Consider a generic CPS (see Section VI for the model of
the system considered for the use-case). The distributed con-
trol and automation infrastructure consists of k components
equipped with various function-specific sensors and actua-
tors. An example of a component in an industrial system
could be an automated valve or a pressure sensor connected to
a Supervisory control and data acquisition (SCADA) system.
Importantly, some components are equipped only with actu-
ators and lack sensory outputs. Functional components with
sensors have a signal processing block, which performs initial
pre-processing of the raw signal (e.g., denoising, envelope
extraction) and extraction of statistical features (e.g., mean,
max, and min). Note that alternative feature extraction is
not the focus of this article but this part of the data set
preparation process is still a very important step and there
are methods which can be applied on the acquired input
time-series. For further discussion, it is assumed that each
of k functional components with sensors exposes n features.
Therefore, a system-wide state at time T is jointly charac-
terized by N = kn features. Further, each feature takes
values in a discrete range [1, Mi], where Mi is the number
of quantization levels for feature i. It is important to note that
the number of quantization levels and the quantization steps
can be different for different features. All N features act as
an input to a knowledge management system for modeling
system-level faults.

The distributed control and automation infrastructure inter-
acts with the process. It is enhanced with knowledge man-
agement abilities that allow learning and conceptualization
of new trends into knowledge and then using this knowl-
edge for decision making by distributed control nodes. The
IEC 61499 is used as software reference architecture to repre-
sent the entire system model. The proposed approach aims at
enforcing the emergent distributed automation infrastructures
with knowledge management and reasoning.

Formally, the problem is formulated as to isolate a system
fault, i.e., the type of the fault and its location, given that
the fault was already detected. Such formulation mainly con-
cerns faults in the components, which are not equipped with
sensors; therefore, fault isolation is based on the observed
system-wide state.

III. RELATED WORKS
This section contains a summary of the state-of-the-art in the
fault management and the relevant work in the hyperdimen-
sional computing.

A. SUMMARY OF THE STATE-OF-THE-ART IN
THE FAULT MANAGEMENT
This article adopts the generally accepted taxonomy, where
the fault diagnosis process consists of two steps: fault

detection and fault isolation. Fault detection indicates
whether there is a fault in the system. If the fault is detected,
fault isolation determines the type of the fault and its location.
The process of fault identification determines the size of the
fault and the time of onset of the fault.

In general, methods for fault diagnosis are divided into
data-driven (agnostic towards the topology of the target sys-
tem) and model-based methods (a method takes into account
information about the structure and/or behavior of the target
system). As this article proposes the data-driven approach,
this section mainly describes methods, which consider the
target system as a black box.

The efforts in this research domain are extensive, andmany
alternative fault diagnosis techniques and hybrid configura-
tions have been proposed.

The machine learning research domain focuses on the
development of algorithms, which enable computers to learn
from data. Even though, it has been an active research
area since the development of the first artificial intelligence
applications; the interest to it has been boosted due to the
increased computational resources and the development of
new machine learning methods [7] with many engineering
applications.

The plethora of research in the fault detection and isolation
domain has motivated survey papers overviewing the state
of the art. The trilogy of publications [8]–[10] contains a
summary of fault diagnosis and identification literature and
classifies the research efforts into three categories, depend-
ing on the algorithm that is used. The ‘‘quantitative model-
based’’ methods are based on system models. These models
analytically identify differences between the expected and the
actual behaviors. Decision rules are then applied to perform
fault detection and isolation [8]. The ‘‘qualitative models
and search strategies’’ category includes methods based on
qualitative system models, like topographic templates which
are created using the expert knowledge and fault-tree analy-
sis [9]. The last category of fault diagnosis and identification
methods is the ‘‘process history based methods’’ which do
not utilize any knowledge about the system’s structure but
rely on data sets of simulated or real process data as input
to quantitative (e.g., ANNs) or qualitative (e.g., expert sys-
tems) methods [10]. In [11] a literature review, which focuses
on model-based methods, is presented; the [12] contains an
overview of artificial intelligence based methods.

ANN-based systems were explored for the development
of quantitative fault diagnosis and identification systems as
well as for safety critical applications [13]. Especially in the
nuclear power generation domain, ANNs have been proposed
for: fault isolation, accident isolation, transient diagnosis, and
condition monitoring.

Hybrid systems involving ANNs and other methods have
also been suggested for fault isolation applications. An ANN
and an analytical method were combined into a hybrid diag-
nostic system applied on a nuclear power plant case study.
A dynamic neuro-fuzzy network and a dynamic ANN are
used in [14] to create an advisory system for the accident
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diagnosis of a nuclear power plant. Simple time-series and
data preprocessed with Fast Fourier Transformation are used
in [15] to train ANNs for the improved fault isolation and
tolerance against measurement drifts.

Another quantitative method used for fault diagnosis is
based on decision trees. Fault isolation systems, which use
decision trees, have been applied on AC transmission lines,
photovoltaic arrays, power systems [16]. Migration paths for
fault diagnosis and identification from fault-trees to decision
trees have been proposed for the International Space Station.

Dynamic case-based reasoning, Independent Component
Analysis, hidden Markov models, data-driven modeling [17],
optimized fuzzy clustering and residual space analysis were
also proposed for fault diagnosis and identification.

A decentralized approach to fault diagnosis based on the
usage of multiblock kernel partial least squares is presented
in [18]. Another distributed approach is described in [19].
It allocates the computationally demanding tasks between
different sensor nodes.

B. HYPERDIMENSIONAL COMPUTING
The hyperdimensional computing (it is also referred as Vec-
tor Symbolic Architectures, VSAs [20]) is widely used for
computer-based semantic reasoning and bio-inspired rep-
resentations of structured knowledge [1]. There are two
main components in the hyperdimensional computing. First,
it operates with vectors of very high dimension, which are
also referred as a distributed representation of data or HD vec-
tors. Second, there is a set of arithmetic operations that are
applied to distributed representations in order to create new
structures. The cognitive capabilities achievable using dis-
tributed representations and operations on them have been
exemplified by a system, which was solving problems in the
form of Raven’s progressive matrices [21], [22].

The development of VSAs was stimulated by studies on
brain activity that showed that the processing of even simple
mental events involves simultaneous activity in many dis-
persed neurons [1]. Information in VSAs is similarly repre-
sented in a distributed fashion: a single concept is associated
with a pattern of activation of many neurons. This is achieved
by using a vector with very large dimensions. Several differ-
ent types of VSAs have been introduced, each using different
representations (see [1]–[4] and references therein).

Recent years reveal a rising interest in applying the
principles of hyperdimensional computing to sensory
data of technical and biological systems. For example,
works [23], [24] are using VSAs for the modeling of statis-
tical dependencies in temporal sequences of heterogeneous
measurements. The proposed methods were exemplified
via applications in the following areas: a human activity
recognition using the accelerometer data and predictions
(e.g., the next app to be loaded) using real-life mobile
phone user data. Other applications of hyperdimensional
computing include natural language processing [25], and
numerous applications to classification tasks, for example,
gesture recognition [26], classification of EEG error-related

potentials [27], and modality classification of medical
images [28]. These results provide the empirical evidence
that hyperdimensional computing has a potential to become
a powerful tool for the analysis of complex dependencies
between a large number of features.

Different approaches to the encoding sensory data into a
high-dimensional space and further processing it there can be
found in [3], [4], and [29]. The distributed approach to fault
isolation presented in this article is based on the Holographic
Graph Neuron (HoloGN) method from [3].

IV. THE OUTLINE OF THE APPROACH
This section presents a high-level overview of the proposed
approach. The approach can be implemented either in a
centralized manner or in a distributed manner. Both ver-
sions are introduced where the centralized version is used
for benchmarking with the conventional methods. The high-
level principle of the proposed approach to fault isolation is
illustrated in Fig. 1.

FIGURE 1. Notations and a graphical representation of the principles
used when forming a partial pattern of system’s state using HoloGN
approach.

The organization and interconnection flow between the
important steps are illustrated in Fig. 2.

FIGURE 2. A high-level overview of the proposed approach.

Each cell in the grid in this model (Fig. 1) denotes a value
of the system’s feature, which is extracted from a particular
functional component. Because the HoloGN method applied
in this article requires a finite alphabet of symbols, each fea-
ture is quantized into a finite number of levels. A quantization
scheme can be unique for each feature, and a number of
possible states (symbols) per scheme can also be different.
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Thus, at the particular moment in time, the system is char-
acterized by a pattern of symbols, where a position in the
pattern corresponds to a particular feature while a symbol
in this position is an ordinal number of the current feature’s
value (i.e., 1, 2, · · · ,M ).
The proposed approach is designed bearing in mind a

distributed implementation deployed on top of a modular
distributed industrial automation system. Therefore, it is sup-
posed that each component is linked to the corresponding
control node observing and acting based on the component’s
behavior.

For performance benchmarking purposes a centralized
architecture is used where a central processing node, which
has its own central control node, is introduced. The cen-
tralized approach functions using the same phases as in the
conventional machine learning based fault isolation solu-
tions. The training phase could either be performed off-line,
using, e.g., facilities for system simulations, or through on-
line learning storing faulty situations in an interaction with a
SCADA system and a human operator. It should bementioned
that for the purpose of the fair comparison and demonstration
of the feasibility of the proposed approach, all results pre-
sented in this study were obtained for the case of the off-line
training. We kindly refer readers interested in details of an
on-line training of hyperdimensional computing methods to
the results in [4] and [26].

During the training phase, the central control node takes the
training data set containing a collection of patterns of system-
wide states associated with specific faults; then it represents
all patterns into HD vectors using the HoloGN encoding
(see Section V for details). This forms a knowledge-base of
the central control node. In the operational phase, the central
control node first collects data from all components’ control
nodes in order to create the current pattern of the system.
Next, the pattern is encoded by HoloGN. Finally, the central
control node uses its knowledge-base to find the fault which
is the most similar to the current state of the system.

In the distributed version, the isolation of a fault is done in
two steps. At the first step, the isolation is done independently
by each component’s control node in a manner similar to
the centralized approach. For this, each control node collects
only a partial pattern of system’s state from several randomly
selected components. When the control node constructs its
partial pattern, it first gets the current values (i.e., at the
moment of the construction) of the features of its component.
Next, it also collects the current states from several neigh-
boring control nodes. Finally, the partial pattern is encoded
via HoloGN method as an HD vector. This encoding and
the associated reasoning based on the principles of hyper-
dimensional computing result in autonomous accurate fault
isolation. It makes the proposed approach novel and original.

Denote the number of neighboring control nodes by K .
Anchoring the behavior of a certain component to the behav-
ior of neighboring control nodes is a known technique,
which has biological roots [30] and currently used in the
context of intelligent swarms as well as in the bio-inspired

analysis of complex systems. The selection of neighboring
control nodes could be governed by the information about
the interconnection of the components of the system [31].
When such information is limited or unavailable as for
the system studied in this article, the random selection
of neighboring control nodes is adopted. The number of
neighboring control nodes is an adjustable parameter of the
approach.

During the training phase in the distributed version of
the approach, each control node should acquire its own
knowledge-base. In the simplest case control nodes have the
same knowledge-base, which is formed using all available
features, i.e., in the same way as for the centralized version.
Alternatively, each control node can form the knowledge-
based using only its own features and features of its neighbor-
ing control nodes. The operational phase in a control node is
the same as for the centralized version: the control node first
forms its current partial pattern. Next, the partial pattern is
encoded as an HD vector. Finally, the HD vector and control
node’s knowledge-base are used to find the most similar
fault.

At the second step of the operational phase of the dis-
tributed approach, control nodes should reach a consensus
using their local predictions of the system-level fault. In the
distributed version, the consensus is achieved using a major-
ity voting procedure.

V. DETAILS OF THE HOLOGN
This section introduces the principles of hyperdimensional
computing and in a concise form provides the algorithmic
steps of the HoloGN method in the context of fault isolation.
A detailed description of the method and its theoretical char-
acteristics are described in [3].

A. THEORETICAL PRELIMINARIES
Vector Symbolic Architectures are a class of connectionist
models that use high-dimensional vectors to encode struc-
tured information as distributed or holographic representa-
tion. A distributed representation of data structures is an
approach actively used in the area of cognitive comput-
ing for representing and reasoning upon semantically bound
information [1], [2]. In the distributed representation, all
entities are represented by HD vectors. In particular, binary
HD vectors are utilized in this article. High-dimensionality
refers to the fact that in HD vectors, several thousand posi-
tions (of binary numbers) are used for representing a single
entity; Kanerva [1] theoretically motivated the use of vectors
of 10, 000 binary elements. Such entities have the following
useful properties.

1) RANDOMNESS
Randomness means that the values at each position of a
HD vector are independent of each other, and 0 and 1 com-
ponents are equally probable. In very high dimensions,
the distances from any arbitrary chosen HD vector to more
than 99.99% of all other vectors in the representation
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space are concentrated around 0.5 normalized Hamming
distance.

2) SIMILARITY METRIC
The similarity between two binary representations (A and B)
is characterized by Hamming distance δH (A,B normalized
to the dimensionality (denoted as d) of the HD vectors.
Hamming distance (for two vectors) measures the number of
positions in which they differ.

3) GENERATION OF HD VECTORS
Binary HD vectors with the described properties can be
obtained from one such vector via the cyclic shift opera-
tion [32]. Using this operation, a sequence of R vectors,
which are dissimilar to a given initial random HD vector A
(i.e., the normalized Hamming distance between them equals
approximately 0.5), can be generated by cyclically shifting A
by i positions, where 1 ≤ i ≤ R < d . The operation is
denoted as Sh(A, i).

4) BUNDLING OF HD VECTORS
Joining several entities into one structure is done with the
bundling operation. Bundling is implemented via a majority
sum of the HD vectors representing the entries. A bitwise
majority sum of n vectors issues 0when n/2 ormore operands
are 0, and 1 otherwise. In the case of an even number in
sum, ties are broken at random, which is equivalent to adding
an extra random HD vector. The operation is denoted as
[A + B + C]. The majority sum operation possesses the
following properties:
• For any number of operands, the result is an HD vector,
with the number of 1 components being approximately
equal to the number of 0 components.

• All components included in the sum are similar to the
result;

• The more HD vectors that are involved in a majority
operation, the closer the normalized Hamming distance
between the resultant HD vector and any HD vector
component is to 0.5.

B. HOLOGRAPHIC GRAPH NEURON
HoloGN [3] is an approach for pattern recognition andmatch-
ing. It is based on a one-shot learning associative memory.
The approach is an abstract model memorizing patterns of
heterogeneous sensory data for later similarity analysis. In the
context of this article HoloGN encodes patterns of system
states.

Then the HD index for the current state of the feature i is
derived as: EHD(i,j) = Sh(IV i, j).

Let N be the number of features in the system. When
HoloGN is exposed to a pattern characterizing the system,
the distributed representation of the pattern is formed as:
PHD = [

∑N
i=1 E

HD
(i,j)], where E

HD
(i,j) is the HD index of the

current state (with ordinal number j) of feature i; the square
brackets [∗] denote the majority sum operation which is used
on the HD indices.

VI. PERFORMANCE BENCHMARKING WITH
CONVENTIONAL MACHINE LEARNING METHODS
A. FORMATION OF THE KNOWLEDGE-BASE BY
ENCODING (PARTIAL) SYSTEM’S STATE WITH HOLOGN
In the training phase HoloGN encodes the training data set in
order to create the knowledge-base, which is used for the fault
isolation, inside a control node. First, referring to Fig. 1, each
feature i is assigned a unique initialization HD vector IV i.
There are different possible configurations of the knowledge-
base; in this article a matrix DHD is formed. The matrix has
d columns and s rows, where s is the number of entries
(i.e., patterns of system-wide states) in the training data set.
Each row of the matrix is associated with the particular fault.
The matrix is populated with the distributed representations
of the patterns from the training data set, which are formed
by HoloGN as defined above using IV i.

B. FAULT ISOLATION IN THE PROPOSED APPROACH
The process of fault isolation is based on the mathematics the
random HD vectors, which are used to encode the patterns of
the system-wide state, and the similarity preserving property
of the bundling operation (see [33] for a theoretical analysis
of the bundling operation).

The fault isolation is, therefore, performed by estimating
the similarity of the distributed representation of the cur-
rently observed pattern PHDcurrent to all possible faults using
the knowledge-base. The similarity to fault x is calculated
as the average Hamming distance 1x between PHDcurrent and
all g entries in the knowledge-based corresponding to fault
x: 1x =

∑g
i=1 δH (P

HD
current ,D

HD
ix )/g, where DHDix is the dis-

tributed representation of a pattern corresponding to fault x
in the knowledge-base. The closer 1x to 0.5 for the fault x
the smaller is the likelihood that the current faulty situation
was caused by fault x.

The purpose of the case study is to demonstrate the feasi-
bility of the proposed fault isolation approach and to compare
it with other state-of-the-art data-driven methods. The case
study is performed using an accurate generic nuclear power
plant model (Fig. 3) provided by the industrial partner Fortum
Power and Heat, a power utility with nuclear power plant
operation license in Finland. Themodel is run using theApros
6 process simulator. Apros 6 is a dynamic process simulator
owned by the VTT Technical Research Centre of Finland and
Fortum. The power is generated using the nuclear energy.
The main process includes two loops: the primary and the
secondary circuits.

The primary circuit (Fig. 3) contains the reactor vessel
(the central part in Fig. 3) and the nuclear fission within
the fuel that generates thermal energy. The generated energy
heats the water in the vessel. The coolant pumps (the central
part in Fig. 3) in the primary circuit circulate water through
the steam generators (the left and the right parts in Fig. 3) and
the reactor vessel. In this way, thermal energy is transferred
from the primary to the secondary circuit. The pressurizer
(the upper part in Fig. 3) is also a part of the primary circuit.
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FIGURE 3. Generic nuclear power plant model (for the primary circuit) in the industrial grade simulation environment.

It is a vessel partially filled with water. Its main purpose is to
regulate the pressure via heaters and water-sprays.

The secondary circuit (not depicted in Fig. 3) is connected
to the primary one through steam generators. The heat from
the primary circuit converts the water, flowing into the sec-
ondary parts of steam generators, into steam. Turbines use
this high-pressure steam flow to drive electric generators.
Condensers are placed next to turbines to convert the low-
pressure steam back to water.

C. DATA SOURCES AND PREPROCESSING
116 automation components as the potential sources of hard-
ware faults in the nuclear power plant model were analyzed
with the functional failure identification and propagation
framework [34] . Valve actuators and pumps were the most
common types among these components. Three failuremodes
were chosen for each type of the automation component. For
example, a valve actuator can be set to ‘‘failed open’’, ‘‘failed
closed’’ or ‘‘no electric supply’’ failure modes which will
respectively result in opening, closing or stopping to control
the valve. In the context of this case study, a component fail-
ure mode pair (e.g., ‘‘Valve IDvalve’’ ‘‘failed open’’) defines
a fault, which should be identified during the fault isolation
process. Out of 348 potential faults (116 by 3), only 92 faults
have actually changed the steady-state operation mode of
the model. Therefore, these faults could be detected by data-
driven fault isolation approaches.

During the data collection the model was executed for
eleven power production levels in the range 90% to 100%
in order to acquire a larger data set for faulty operation
conditions. The 92 faults, which are detectable in the steady-
state of the model, were simulated for each power level.
Thus, the total number of simulations is 1012 (92 faults
by 11 levels). Training and testing data sets used for the

performance evaluation of different approaches were created
from the results of simulations. The simulations were split
so that data for six power production levels (54.5% of the
dataset) was used for training while the data for other five
power production levels (45.5% of the dataset) was used for
testing. The separation was kept fixed for all experiments
reported below. Each simulation includes signals traces logs
for 180 seconds since the moment when a fault was intro-
duced in the model. The model simulates monitoring signals
for 37 sensors deployed all over the power plant. Because
all methods considered in this article require a fixed set of
features as an input, three statistical features (mean, max,
and min) were extracted from each sensory signal leading
to 111 features per simulation (37 signals by 3 features).
Thus, the data set contains 1012 entries. Each entry consists
of 111 features (extracted from 37 recorded signals). All
entries are labeled with the corresponding fault (component-
failure mode pair).

All features in the data set were normalized because
not all methods can handle non-normalized data equally
well. The normalization range [-1,1] was used. Addition-
ally, as HoloGN requires a discrete range of data, all fea-
tures were quantized in even intervals (only for HoloGN)
using a single hyperparameter – the number of quantiza-
tion levels (Mi). Given Mi, the quantization of a feature i
normalized in the range [-1,1] is done as follows: iq =
biMi/2e, where iq denotes the quantized feature i and b∗e
denotes the nearest integer function. The optimal number
of quantization levels was estimated using the training data.
No intelligent analytics (e.g., fuzzy) were involved in the
quantization process. Note that due to restrictions imposed by
Facility owner, the data set is not available for an unrestricted
access, but interested readers can contact authors in order to
access it.
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D. REFERENCE METHODS AND TOOLS FOR
BENCHMARKING
The performance of the centralized and distributed HoloGN
approaches was compared to the performance of several
conventional classification methods: a multilayer perceptron
ANN, a decision tree, a random forest, a Sequential minimal
optimization (SMO), which is a fast algorithm for training
Support Vector Machines, and a k-nearest-neighbors (kNN).
The ANN and SMO were chosen as well-known machine
learning algorithms, the decision tree as an algorithm which
produces human-readable models and has shown in previous
research to be better in fault isolation on the case study of
this article [34]. The Random forest is an ensemble method
using decision trees. The kNN was chosen because it is
also a metric based method as the proposed approach. The
performance of methods was assessed using MATLAB1 and
WEKA2 tools. During the assessment ANN, decision tree,
random forest, and SMO implemented in WEKA were used,
while kNN and the proposed HoloGN methods are available
fromMATLAB.MATLAB implementation of the centralized
HoloGN is available online (see [3]). For a given input, a sin-
gle prediction is produced by a decision tree whilst ranked
lists of possible alternatives are issues by the HoloGN and
kNN. Faults in the ranked list are sorted in the ascending order
according to their distances resembling the similarity to the
provided input features. ANN and SMO could also provide
a ranked list, but their implementations in WEKA are only
able to issue the prediction with the highest score. Hence,
the performance for ANN and SMO is presented only for the
best prediction.

The power plant scenario was used to evaluate the per-
formance of the methods in the fault isolation task. The
performancewasmeasured in terms of accuracy on the testing
data set. The accuracy in turn was calculated as the proportion
of the correctly isolated faults.

E. CALIBRATING THE COMPARED METHODS FOR THE
FAIR BENCHMARKING
In order to get the optimized performance for each method,
the corresponding hyperparameters were set with the help
of 6-fold cross-validation on the training data. The number
of fold for cross-validation matches the nature of the train-
ing data as it included simulations for six power production
levels.

The applied ANN was feed-forward with three layers:
input, output and a hidden layer in between. During the
training the back propagation algorithm was used. The deci-
sion tree was trained using the J48 algorithm. The SMO
method implements John Platt’s Sequential minimal opti-
mization algorithm for training a support vector classifier.
The parameter k of the kNN providing the best performance
during the cross-validation on the training data equals to 7.
Because HoloGN requires finite alphabet of feature values,

1https://mathworks.com.
2https://www.cs.waikato.ac.nz/ml/weka/.

the original values of the data set were quantized into finite
number of levels that are uniformly distributed within the
range of feature values. It was experimentally found that the
approach demonstrated its best performance when each fea-
ture was quantized with Mi = 60. During the evaluation the
proposed approach used HD vectors with 10, 000 elements.
An initialization HD vector for each feature was generated at
random.

F. AN EXAMPLE OF FAULT ISOLATION BY HOLOGN
Consider the situation when one of the valves entered the
‘‘failed closed’’ fault, i.e., the valve is closed at a time when
it should be opened. The fault affects signals measured by
37 sensors. After 180 seconds since the fault start, the system
extracts 3 features from each signal (111 in total). Table 1
illustrates normalized mean values for three different sensors.

TABLE 1. Normalized mean values for three different sensors when one
of valves is in ‘‘failed closed’’ condition.

All available features are quantized into 60 levels. HoloGN
uses all 111 quantized features to represent the system’s
state as 10, 000 dimensional HD vector. Next, HoloGN mea-
sures normalized Hamming distances between the formed
HD vector and all available fault situations in the knowledge-
base. The similarity score for each of 92 faults is the mean
normalizedHamming distance for all entries of the fault in the
knowledge-base. Finally, HoloGN issues list of faults sorted
in the ascending order according to their similarity scores to
the current state of the system. In the considered example
the fault was isolated correctly. It is worth mentioning, that
the second and the third closest faults also belong to the type
‘‘failed closed’’, but point to other valves.

The centralized mode is used to train the conventional
machine learning methods. It also assumes that the struc-
ture of the evaluation data set assessing the performance of
the fault isolation should have the same structure, i.e., the
testing is also centralized. Because it is assumed that the
interdependencies between different components of the case
study model are not known, all methods were trained with
the values of features extracted from all 37 model’s compo-
nents (sensors). From the implementation point of view, this
corresponds to the case when all components communicate
their values of features to a central processing node, which
performs fault isolation.

G. PERFORMANCE ASSESSMENT: THE
CENTRALIZED CASE
Fig. 4 presents the comparison between the benchmarked
methods. The comparison shows that the centralized HoloGN
performs well against the other methods even when con-
sidering only the best prediction (marked as 1st result
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FIGURE 4. The results of benchmarking: SMO, ANN, decision tree,
random forest, kNN, and centralized HoloGN.

in Fig. 4). In particular, the accuracy of fault isolation
achieved by SMO is approximately 0.6; ANN with one hid-
den layer achieved 0.54 while ANN without hidden layers
(not depicted) achieved 0.60. The decision tree has demon-
strated the performance close to 0.75 while random for-
est achieved only 0.62. kNN and the centralized HoloGN
have shown results somewhat lower than the decision tree:
0.66 and 0.71 respectively. However, if top three predictions
are considered then the accuracy of both the kNN and the
centralized HoloGN are higher than 0.9.

Alternatively, the change in performance when considering
several predictions can be seen using the Precision. In the
case of top three predictions, if the correct fault type is
among the predictions then the isolation is correct. For kNN
when going from the best prediction to top three prediction
the Precision has increased from 0.654 to 0.940 while for
HoloGN the change was very similar 0.684 to 0.966. Thus,
the results of comparison show that the proposed centralized
approach demonstrates the performance of a par with other
machine learning methods. Next, the centralized approach
and its distributed version are compared.

H. PERFORMANCE ASSESSMENT: THE DISTRIBUTED CASE
In order to demonstrate the performance of the distributed
HoloGN its accuracy is compared against the centralized ver-
sion. The distributed version was considered to be deployed
on each component of the studied model, thus, forming
37 predictors in total. Each predictor issues top three faults.
Fig. 5 and 6 depict the accuracy for each result rank and their
sum (denoted as 1+2+3). The majority voting was applied to
predicted faults in order to get the final prediction. In order
to justify the performance of the proposed approach, 50 inde-
pendent simulations with different randomization seeds were
performed. Each simulation randomly selected the neighbor-
ing control nodes for each component as well as randomly
generated initialization HD vectors. The results presented
in Fig. 5 and 6 depict the mean and standard deviation values.
Fig. 5 demonstrates the results obtained by calculating the

FIGURE 5. Accuracy of the distributed HoloGN. The case of fault isolation
using all features to create the knowledge-base.

accuracy of the fault isolation when in the operational phase
each predictor is getting data from K components (i.e., K by
3 features), but the knowledge-base is created for all features.
The list of components connected to each predictor was
generated at random. The second assessment shown in Fig. 6
demonstrates the accuracy observed in the case when each
predictor had its own knowledge-based created from features
corresponding to the connected components.

Both bar graphs show the estimated accuracy and the
corresponding standard deviations for different number of
connected sensors included in each predictor as well as
the performance for the centralized case (Fig. 4). For both
scenarios the accuracy of the distributed HoloGN degrades
compared to the centralized version with the number of
connected components, but it is approaching 0.9 even with
three sensors. We attribute the performance degradation to
the fact that the distributed HoloGN has to operate in the
absence of the full available information, i.e., in comparison
to the centralized version, fault isolation is initially made by
individual components using incomplete patterns. Secondly,
the accuracy to a certain extend depends on the number of
components connected to each predictor. For example, with
nine connected sensors the total accuracy is 4.4% (Fig. 5)
and 3.4% (Fig. 6) lower than for the centralized approach
while with three connected sensors the difference is 8.7%
(Fig. 5) and 7.5% (Fig. 6). However, beyond a certain point,
the accuracy improves marginally with the increase in the
number of connections. The study of the optimal number of
connections is a subject for further investigation.

I. PERFORMANCE ASSESSMENT: COMPUTING TIME
While the main performance indicator in the scope of this
article is the classification accuracy it is worth discussing
the computational complexity of the proposed method. First,
it should be noted that the fair comparison of the exact
computing time would require implementations of all clas-
sifiers on the same platform using the same program-
ming environment. Unfortunately, such implementations are
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FIGURE 6. Accuracy of the distributed HoloGN. The case of fault isolation
using individual knowledge-base for each predictor.

currently not available. However, qualitatively the complexity
of the method in the operational phase linearly depends on the
number of features, the dimensionality of HD vectors, and
the size of the knowledge-base. Thus, it is comparable to the
kNN except for the additional cost of mapping features to
a high-dimensional space. On the other hand, once mapped
operations are binary. Also, note that the dimensionality
used in the experiments is 10, 000. Therefore, given the
efficient implementation, one HD vector would require only
1250 bytes. For the kNN 111 real-valued features would
require 888 bytes (assuming 8 bytes per number). Thus,
the difference is not significant. An additional advantage of
HD vectors is that the required operations (cyclic shift, Ham-
ming distance, and majority sum) can be efficiently executed
in one clock cycle (see [35]).

While hardware integration aspects are outside the main
scope for this article, the computational energy-efficiency and
computational complexity of hyperdimensional computing
will be performed taking into account specific methods of
hardware realization. The fundamental difference of hyper-
dimensional computing from the traditional computer archi-
tectures is the tight integration of logic with the memory
during the processing. Therefore all its operations (binding,
bundling, and permutation see Section V for details) can
be implemented by manipulations and comparison of large
patterns within the memory. The method for hardware inte-
gration of HD operations described in [36] and [37] is based
on in-memory processing in 3D Resistive RAM, avoiding
shuttling data back and forth between the memory and the
processor as in conventional architectures. The proposed
hardware implementation exhibits substantial energy savings
due to accessing global interconnects at a relatively low fre-
quency.

VII. CONCLUSION
This article presented the application of hyperdimen-
sional computing for the problem of data-driven distributed

fault isolation. The application was demonstrated on the
generic model of a nuclear power plant using the sensory
measurements for training and assessing the method. The
results of the use-case study show the accuracy of fault
isolation comparable to the conventional machine learning
methods applied in the same context.

It is worth mentioning two aspects, which could affect
the results reported in this study. First, this study used the
fixed setup for extracting the features. The search of optimal
features for the considered problem was not the main focus.
However, the exploration of effects of additional features
and facilitating techniques such as dimensionality reduction
and feature selection is a promising direction for the future
work. Second, during the benchmarking several conventional
methods were used but there are many other machine learning
methods which were not assessed during the benchmarking.
In particular, as the data in the studied application are time-
series a promising direction for the future work is to study
the performance of methods for processing temporal data
(e.g., Recurrent Neural Networks).

The advantages of the hyperdimensional computing-based
solution are in its distributed operation and its potential for
on-line learning. On-line learning would allow constantly
keeping the updatedmodel of a system. On the other hand, the
distribution allows the fault isolation subsystem to be an inte-
gral part of the distributed automation aspect of the system.
Moreover, it potentially enables the deployment of such sub-
system in standard programmable logic controllers with pre-
dictable dependability characteristics which can be checked
and proven using a variety of verification tools, including
closed-loop simulation [38] and model-checking [39]. Alter-
natively, the subsystem can be implemented as a multiagent
system.

From the practical point, the proposed approach can be
used as an additional mechanism on top of the existing fault
management system improving the robustness and the deci-
sion making for the whole system.
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