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Numerical simulation of thin solids remains one of the challenges in computational mechanics. +e 3D elasticity problems of
shells of revolution are dimensionally reduced in different ways depending on the symmetries of the configurations resulting in
corresponding 2D models. In this paper, we solve the multiparametric free vibration of complex shell configurations under
uncertainty using stochastic collocation with the p-version of finite element method and apply the collocation approach to
frequency response analysis. In numerical examples, the sources of uncertainty are related to material parameters and geometry
representing manufacturing imperfections. All stochastic collocation results have been verified with Monte Carlo methods.

1. Introduction

Numerical simulation of thin solids remains one of the
challenges in computational mechanics. +e advent of sto-
chastic finite element methods has led to new possibilities in
simulations, where it is possible to replace isotropy assump-
tions with statistical models of material parameters or in-
corporate manufacturing imperfections with parametrized
computational domains and derive statistical quantities of
interest such as expectation and variance of the solution. Here,
we discuss two special classes of such uncertainty quantifi-
cation problems: free vibration of shells of revolution and
directly related frequency response analysis. What makes the
specific shell configurations interesting from the application
point of view is that they include junctions and shell-solid
couplings. Free vibrations of cylinder-cone configurations have
been studied by many authors before [1–4]. +ere also exists
an exhaustive literature review on shells with junctions [5].

In vibration problems, the sources of uncertainty relate to
materials and geometry. In this paper, the stochastic vibration
problems are solved using a nonintrusive approach, the
stochastic collocation [6]. Collocation methods are particu-
larly appealing in problems with parameterized (random)
domains. +e standard approach is to solve the problem at
specified quadrature points and interpolate over the points. If

the number of random variables is high, this leads to the curse
of dimensionality which can be alleviated up to a point with
special high-dimensional quadratures, the so-called sparse
grids [7–10]. If the uncertainty is only in the material pa-
rameters, one can apply the intrusive approach such as sto-
chastic Galerkin methods, see [11] and references therein.

Sparse grids are designed to satisfy given requirements
for quadrature rules. It is, however, possible to construct
similar interpolation operators even if the point set is limited
to some subset of the parameter space (partial sparse grids),
or, crucially, points are added to the sparse grid. In both
cases, the construction is the same [12]. Every point in
a sparse grid corresponds to some realization of the random
field. If some real measurements become available and the
data can be identified as points in the parameter space, they
can be incorporated into the interpolation operator.

+e two model problems studied here are a wind turbine
tower resonance problem and the free vibration of a classical
long cylinder-cone junction combined with T-junction via
kinematic constraints. +e wind turbine tower problem is
inspired by an earlier study [13], where the tower is modeled
as a solid due to solver limitations.+e long cylinder case is in
turn inspired by a photograph of a collapsed pipe ([14], p. 82).

We have studied related stochastic shell eigenproblems
in the previous work [15], but only for cylinders with
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constant thickness. In this study, in all cases one, of the
random parameters is geometric which changes the char-
acter of the computational problems considerably. However,
the underlying theoretical properties remain the same. One
of the characteristic features of multiparametric eigenvalue
problems is that the order of eigenpairs in the spectrummay
vary over the parameter space, a phenomenon referred to as
crossing of the modes.

In this paper, we show how the existing methods can be
applied to shell problems that have characteristics that differ
from those covered in the literature until now.We do observe
crossing of the modes in the wind turbine tower problem
which is satisfying since it highlights the fact that this feature
is not an artificial mathematical concept but something that is
present in standard engineering problems. +e stochastic
framework for eigenproblems is applied to frequency re-
sponse analysis in a straightforward manner, yet the resulting
method is new. We also demonstrate in connection with
frequency response analysis that interpolation operators
based on partial sparse grids can provide useful information.

All simulations have been computed using p-version of
the finite element method [16]. +e results derived using
collocation on sparse grids have been verified using the
Monte Carlo method.

+e rest of this paper is organized as follows. In Section 2,
the two shell models used in this paper are introduced; in
Section 3, the stochastic variant is given with the solution
algorithms; Section 3.5 covers the multivariate interpolation
construction; the frequency response analysis is briefly out-
lined in Section 4; the numerical experiments are covered in
detail in Section 5; finally, conclusions are drawn in Section 6.

2. Shell Eigenproblem

Assuming a time harmonic displacement field, the free vi-
bration problem for a general shell leads to the following
abstract eigenvalue problem: find u ∈ R3 and ω2 ∈ R such
that

Su � ω2Mu,

+ boundary conditions,
􏼨 (1)

where u � u, v, w{ } represents the shell displacement field,
while ω2 represents the square of the eigenfrequency. In the
abstract setting, S and M are differential operators repre-
senting deformation energy and inertia, respectively. In the
discrete setting, they refer to corresponding stiffness and
mass matrices.

Simulation of thin solids using standard finite elements is
difficult, since one (small thickness) dimension dominates the
discretization. In the following, we shall derive two variants of
problem (1) by employing different dimension reductions for
shells of revolution. Instead of working in 3D, the elasticity
equations are dimensionally reduced either in thickness or in
the case of axisymmetric domains, using a suitable ansatz.

2.1. Shell Geometry. In the following, we let a profile
function y � f(x) revolve about the x-axis. Naturally, the
profile function defines the local radius of the shell. Shells of

revolution can formally be characterized as domains inR3 of
type

Ω � x + η(x)n(x)|x ∈ D,−d0(x)< η(x) <d1(x)􏼈 􏼉, (2)

where D is a (mid)surface of revolution, n(x) is the unit
normal to D, and d(x) � d1(x) + d0(x) is the thickness of
the shell measured in the direction of the normal. An il-
lustration of such a configuration is given in Figure 1.

2.1.1. Constant (Dimensionless) .ickness. Let us have
d(x) � d (constant) and define principal curvature co-
ordinates, where only four parameters, the radii of principal
curvature R1, R2, and the so-called Lamé parameters, A1, A2,
which relate coordinates changes to arc lengths, are needed
to specify the curvature and the metric on D. +e dis-
placement vector field of the midsurface u � u, v, w{ } can be
interpreted as projections to directions

e1 �
1

A1

zΨ
zx1

,

e2 �
1

A2

zΨ
zx2

,

e3 � e1 × e2,

(3)

where Ψ(x1, x2) is a suitable parametrization of the surface
of revolution, e1, e2 are the unit tangent vectors along the
principal curvature lines, and e3 is the unit normal. In other
words,

u � ue1 + ve2 + we3. (4)

Assuming that the shell profile is given by f(x1), the
geometry parameters are

A1 x1( 􏼁 �

�����������

1 + f′ x1( 􏼁􏼂 􏼃
2

􏽱

,

A2 x1( 􏼁 � f x1( 􏼁,

R1 x1( 􏼁 � −
A1 x1( 􏼁

3

f″ x1( 􏼁
,

R2 x1( 􏼁 � A1 x1( 􏼁A2 x1( 􏼁.

(5)

Both cylinders and cones are examples of parabolic shells
according to the theory of surfaces by Gauss. +is follows
from the fact that, in both cases, f″(x1) � 0. In particular
the reciprocal function

1
R1 x1( 􏼁

� 0. (6)

For a cylinder with a constant radius, f(x1) � 1, say, we
get

A1 x1( 􏼁 � A2 x1( 􏼁 � R2 x1( 􏼁 � 1,

1
R1 x1( 􏼁

� 0.
(7)

In the following, we shall keep the general form of the
parameters in the equations.
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We can now define the dimensionless thickness t as
t � d/R, where R∼R2 is the unit length. In the following, we
assume that R∼1, and thus, use the two thickness concepts
denoted by d and t interchangeably.

2.2. Reduction in .ickness. +e free vibration problem for
a general shell (1) in the case of shell of revolution with
constant thickness t leads to the following eigenvalue
problem: find u(t) and ω2(t) ∈ R such that

tAmu(t) + tAsu(t) + t3Abu(t) � ω2(t)M(t)u(t),

+ boundary conditions.
􏼨 (8)

where u(t) represents the shell displacement field, while
ω2(t) represents the square of the eigenfrequency. +e
differential operators Am, As, and Ab account for mem-
brane, shear, and bending potential energies, respectively,
and are independent of t. Finally, M(t) is the inertia op-
erator, which in this case can be split into the sum
M(t) � tMl + t3Mr, with Ml (displacements) and Mr

(rotations) independent of t. Many well-known shell models
fall into this framework.

Let us next consider the variational formulation of
problem (8). Accordingly, we introduce the space V of
admissible displacements and consider the problem: find
(u(t),ω2(t)) ∈ V × R such that

tam(u(t), v) + tas(u(t), v) + t
3
ab(u(t), v)

� ω2
(t)m(t; u(t), v) ∀v ∈ V,

(9)

where am(·, ·), as(·, ·), ab(·, ·), and m(t; ·, ·) are the bilinear
forms associated with the operators Am, As, Ab, and M(t),
respectively. Obviously, the space V and the three bilinear
forms depend on the chosen shell model [17].

2.2.1. Two-Dimensional Model. Our two-dimensional shell
model is the so-called Reissner–Naghdi model [17],
where the transverse deflections are approximated with
low-order polynomials. +e resulting vector field has

five components u � (u, v, w, θ,ψ), where the first three are
the standard displacements and the latter two are the
rotations in the axial and angular directions, respectively.
Here, we adopt the convention that the computational
domain 􏽢Ωt ⊂ R2 is given by the surface parametriza-
tion, and the axial/angular coordinates are denoted by x
and y:

􏽢Ωt � (x, y) | a≤x≤ b, 0≤y< 2π􏼈 􏼉. (10)

Deformation energy A(u,u) is divided into bending,
membrane, and shear energies, denoted by subscripts B, M,
and S, respectively.

A(u,u) � t
2
AB(u, u) + AM(u, u) + AS(u, u). (11)

Notice that we can safely cancel out one power of t.
Bending, membrane, and shear energies are given as

follows [18]:

t
2
AB(u, u) � t

2
􏽚

􏽢Ωt

E(x, y)⎡⎣] κ11(u) + κ22(u)( 􏼁
2

+(1− ]) 􏽘
i,j�1

2

κij(u)
2⎤⎦A1(x, y)A2(x, y) dx dy,

AM(u, u) � 12􏽚
􏽢Ωt

E(x, y)⎡⎣] β11(u) + β22(u)( 􏼁
2

+(1− ]) 􏽘
i,j�1

2

βij(u)
2⎤⎦A1(x, y)A2(x, y)dx dy,

AS(u, u) � 6(1− ])􏽚
􏽢Ωt

E(x, y) ρ1(u)
2

+ ρ2(u)􏼐 􏼑
2

􏼔 􏼕

× A1(x, y)A2(x, y)dx dy,

(12)

where v is the Poisson ratio (constant) and E(x, y) is
Young’s modulus with scaling 1/(12(1− ]2)).

+e symmetric 2D strains, bending (κ), membrane (β),
and shear (ρ), are defined as

2 0
Z

–2

–2

0 Y

2

1.0
0.5

0.0 X

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0
Y

1.5

X

2.0

(b)

Figure 1: Shell of revolution with variable axial thickness; midsurface indicated with (a) red colour and (b) dashed line. (a) Shell of
revolution. (b) Cross section; midsurface f(x) � 1 (dashed), lower surface f(x) − d0(x) and upper surface f(x) + d1(x) (solid).
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κ11 �
1

A1

zθ
zx

+
ψ

A1A2

zA2

zy
,

κ22 �
1

A2

zψ
zy

+
θ

A1A2

zA2

zx
,

κ12 �
1
2

⎡⎣
1

A1

zψ
zx

+
1

A2

zθ
zy
−

θ
A1A2

zA2

zy
−

ψ
A1A2

zA2

zx

−
1

R1

1
A2

zu

zy
−

v

A1A2

zA2

zx
􏼠 􏼡−

1
R2

1
A1

zv

zx
−

u

A1A2

zA1

zy
􏼠 􏼡⎤⎦,

β11 �
1

A1

zu

zx
+

v

A1A2

zA1

zy
+

w

R1
,

β22 �
1

A2

zv

zy
+

u

A1A2

zA2

zx
+

w

R2
,

β12 �
1
2

1
A1

zv

zx
+

1
A2

zu

zy
−

u

A1A2

zA1

zy
−

v

A1A2

zA2

zx
􏼠 􏼡,

ρ1 �
1

A1

zw

zx
−

u

R1
− θ,

ρ2 �
1

A2

zw

zy
−

v

R2
−ψ.

(13)

In our experiments, the shell profiles are functions of x
only, but not necessarily constant; hence, the strains are
presented in a general form.

+e stiffness matrix S is obtained after integration and
assembly. Here, the mass matrix M is the standard 2D one
with density σ except for the scaling of the rotation com-
ponents and surface differential A1(x, y)A2(x, y).

2.3. Reduction through Ansatz. +e 3D elasticity equations
for shells of revolution can be reduced to two-dimensional
ones using a suitable ansatz [19]. For shells of revolution, the
eigenmodes u(x, y, z) or u(x, r, α) in cylindrical coordinates
have either one of the forms:

u1(x, y, z) � u1(x, r, α) �

u(x, r) cos(Kα)

v(x, r) sin(Kα)

w(x, r) cos(Kα)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (14)

u2(x, y, z) � u2(x, r, α) �

u(x, r) sin(Kα)

v(x, r) cos(Kα)

w(x, r) sin(Kα)

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, (15)

where K is the harmonic wavenumber. +us, given a profile
function r � y � f(x), with x ∈ [a, b], the computational
domain 􏽢Ω is 2D only:

􏽢Ω � (x, r + η(x)) | a≤ x≤ b,−d0(x)< η(x)<d1(x)􏼈 􏼉,

(16)

where the auxiliary functions di(x) again simply indicate that
the thickness d(x) � d1(x) + d0(x) need not be constant.

Deformation energy A(u,u) is defined as

A(u, u) � r
3
􏽚

􏽢Ω
E(x, y)

·
]

(1 + ])(1− 2])
(tr ϵ)2 +

1
1 + ]

􏽘
i,j�1

3

ϵ2ij⎡⎢⎢⎣ ⎤⎥⎥⎦dx dη,

(17)

where the symmetric 3D strains ϵij are

ϵ11 �
zu

zx
,

ϵ12 �
1
2
−

K

r + η
u +

zv

zx
􏼠 􏼡,

ϵ13 �
1
2

zu

zη
+

zw

zx
􏼠 􏼡,

ϵ22 �
1

r + η
(Kv + w),

ϵ23 �
1
2

zv

zη
−

1
r + η

(v + Kw)􏼠 􏼡,

ϵ33 �
zw

zη
.

(18)

+e stiffness matrix S is obtained after integration and
assembly. Here, the mass matrix M is the standard 3D one
with density σ.

2.4. Special Features of Shell Problems

2.4.1. Boundary Layers. +e solutions of shell problems,
static or dynamic, often include boundary layers and even
internal layers, each of which has its own characteristic
length scale [20]. Internal layers are generated by geo-
metric features, such as cuts and holes, or changes in
curvature, for instance, at shell junctions. +e layers either
decay exponentially toward the boundary or oscillate with
exponentially decaying amplitude. For parabolic shells,
it is known that the axial boundary layers decay expo-
nentially with a characteristic length scale ∼

�
t

√
. If

there are generators for internal layers, then the layers
oscillate in the angular direction with characteristic length
scale ∼

�
t4

√
. +ere also exists an axial internal layer of a very

long range ∼1/
�
t

√
.

Identification of the boundary layer structure or layer
resolution is a useful tool for assessing the quality of the
discretized solution and providing guidance for setting up
the discretization, for instance, in mesh generation. If the
solution is not dominated by the layers, we simply observe
the underlying smooth part of the solution.

2.4.2. Numerical Locking. One of the numerical difficulties
associated with thin structures is the so-called numerical
locking, which means unavoidable loss of optimal
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convergence rate due to parameter-dependent error am-
plification [21]. We use the p-version of the finite element
method [16] in order to alleviate the (possible) locking and
ensure convergence.

3. Stochastic Shell Eigenproblem

+e stochastic extension of the free vibration problem
arises from introducing uncertainties in the material pa-
rameters and the geometry of the shell. In the context of
this paper, we assume that these uncertainties may be
parametrized using a finite number of uniformly distrib-
uted random variables. +e approximate solution statistics
are then computed employing a sparse grid stochastic
collocation operator.

3.1. .e Stochastic Eigenproblem. We let the material and
geometric uncertainties be represented by a vector of mu-
tually independent random variables ξ � (ξ1, ξ2, . . . , ξM)

taking values in a suitable domain Γ ⊂ RM for some M ∈ N.
For uniformly distributed random variables, we may,
without loss of generality, assume a scaling such that
Γ ≔ [−1, 1]M.

First, we assume a set of geometric parameters
(ξ1, ξ2, . . . , ξm′) and let the computational domain be given
by a function D(ξ) � D(ξ1, ξ2, . . . , ξm′). Second, we assume
a set of material parameters (ξm′+1, ξm′+2, . . . , ξM), and let
Young’s modulus be a random field expressed in the form

E(x, ξ) � E0(x) + 􏽘
M

m�m′+1

Em(x)ξm, x ∈ D(ξ). (19)

+e parametrization (19) may, for instance, result from
a Karhunen–Loéve expansion of the underlying random
field E. We assume that the random field is strictly uniformly
positive and uniformly bounded, i.e., there exists
Emin, Emax > 0 such that

Emin ≤ ess inf
x∈D(ξ)

E(x, ξ)≤ ess sup
x∈D(ξ)

E(x, ξ)≤Emax, (20)

for all ξ ∈ Γ.
Let L2

μ(Γ) denote a weighted L2-space, where μ is the
uniform product probability measure associated with the
probability distribution of ξ ∈ Γ. For functions in L2

μ(Γ), we
define the expected value

E[v] � 􏽚
Γ
v(ξ)dμ(ξ), (21)

and variance Var[v] � E[(v−E[v])2].
Assuming stochastic models for the computational

domain and Young’s modulus, the eigenpairs of the free
vibration problem now depend on ξ ∈ Γ. +e stochastic
eigenvalue problem is obtained simply by replacing the
differential operators in (8) with their stochastic counter-
parts and assuming that the resulting equation holds for
every realization of ξ ∈ Γ. In the variational form, the
problem reads find functions u(t) : Γ⟶ V and
ω2(t) : Γ⟶ R such that for all ξ ∈ Γ, we have

tam(ξ;u(t, ξ), v) + tas(ξ; u(t, ξ), v) + t
3
ab(ξ; u(t, ξ), v)

� ω2
(t, ξ)m(t, ξ; u(t, ξ), v), ∀v ∈ V,

(22)

where am(ξ; ·, ·), as(ξ; ·, ·), ab(ξ; ·, ·), and m(t, ξ; ·, ·) are
stochastic equivalents of the deterministic bilinear forms in
(9). We assume that the eigenvector u(t, ξ) is normalized
with respect to the inner product m(t, ξ; ·, ·) for all ξ ∈ Γ.

3.2. Eigenvalue Crossings. In the context of stochastic ei-
genvalue problems, special care must be taken in order to
make sure that different realizations of the solution are in
fact comparable. +is is true for shell eigenvalue problems in
particular, since the eigenvalues of thin cylindrical shells are
typically tightly clustered. Double eigenvalues may appear
due to symmetries and physical properties of the shell might
be such that eigenvalues corresponding to different har-
monic wavenumbers appear very close to each other. When
the problems are brought to stochastic setting, we may face
the issue of eigenvalue crossings. +e ordering of the ei-
genvalues associated with each mode may be different for
different realizations of the problem. +is issue has pre-
viously been illustrated in [11] and considered in the case of
shell eigenvalue problems in [15].

In our examples, the eigenvalue crossings do not pose
computational difficulties. When the problem is reduced
through ansatz (14) or (15), the eigenmodes are separated by
wavenumber K, and as a result for any fixed K, the eigen-
values of the reduced problem appear well-separated.
However, one should bear in mind that the eigenvalues of
the original 3D problem may still cross: In Section 5, we
present numerical examples which illustrate that a kth
smallest eigenvalue may be associated with eigenmodes with
different wavenumbers for different values of the stochastic
variables. Moreover, as revealed by the ansatz, each eigen-
value of the dimensionally reduced problem is actually as-
sociated with an eigenspace of dimension two.

3.3. .e Spatially Discretized Eigenvalue Problem. We em-
ploy standard high-order finite elements with polynomial
order p ∈ N. For any fixed t> 0, the spatially discretized
problem may be written as a parametric matrix eigenvalue
problem: find λp : Γ⟶ R and yp : Γ⟶ Rn such that

S(ξ)yp(ξ) � λp(ξ)M(ξ)yp(ξ), ∀ξ ∈ Γ, (23)

where n is the dimension of the discretization space. Here,M
and S are the mass matrix and the stiffness matrix, which
obviously depend on ξ ∈ Γ. For any fixed ξ ∈ Γ, problem
(23) reduces to a positive-definite generalized matrix ei-
genvalue problem.

We let 〈·, ·〉M(ξ) and ‖ · ‖M(ξ) denote the inner product
and norm induced by the mass matrix. We assume the
eigenvector to be normalized according to ‖yp(ξ)‖M(ξ) � 1
for all ξ ∈ Γ. Moreover, we fix its sign so that the inner
product 〈yp(0), yp(ξ)〉M(ξ), where yp(0) is a suitable ref-
erence solution, is positive for every ξ ∈ Γ. In practice, we
may disregard the possibility that the inner product is zero,
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and therefore, as long as the discrete eigenvalues are simple,
the solution is well defined for all ξ ∈ Γ.

3.4. Stochastic Collocation on Sparse Grids. We introduce
an anisotropic Smolyak-type sparse grid collocation oper-
ator ([6, 22, 23]) for resolving the effects of the random
variables ξ ∈ Γ.

Assume a finite multiindex setA ⊂ NM
0 . For α, β ∈ Awe

write α≤ β if αm ≤ βm for all m≥ 1. For simplicity, we make
the assumption that A is monotone in the following sense:
whenever β ∈ NM

0 is such that β≤ α for some α ∈ A, then
β ∈ A. Let Lp be the univariate Legendre polynomial of
degree p. Denote by χ(p)

k􏽮 􏽯
p

k�0 the zeros of Lp+1. We define
the one-dimensional Lagrange interpolation operators
I(m)

p via

I
(m)
p v􏼐 􏼑 ξm( 􏼁 � 􏽘

p

k�0
v χ(p)

k􏼐 􏼑ℓ(p)

k ξm( 􏼁, (24)

where ℓ(p)

k􏽮 􏽯
p

k�0 are the related Lagrange basis polynomials of
degree p. Finally, we define the sparse collocation operator as

IA ≔ 􏽘
α∈A
⊗
m�1

M

I
(m)
αm
−I(m)

αm − 1􏼐 􏼑. (25)

+e operator (25) may be rewritten in a computationally
more convenient form

IA � 􏽘
α∈A

􏽘
β∈Gα

(−1)
‖α−β‖1⊗

m�1

M

I
(m)
βm

, (26)

where Gα ≔ β ∈ NM
0 |α− 1≤ β≤ α􏼈 􏼉. We see that the com-

plete grid of collocation points is now given by

XA ≔ ∪α∈A ∪β∈Gα

􏽙
m�1

M

χ βm( )
k􏼚 􏼛

βm

k�0

� ∪
α∈A

􏽙
m�1

M

χ αm( )
k􏼚 􏼛

αm

k�0
.

(27)

Statistics, such as the expected value and variance, of the
solution may now be computed by applying the one-
dimensional Gauss–Legendre quadrature rules on the
components of (26). +e accuracy of the collocated ap-
proximation is ultimately determined by the smoothness of
the solution as well as the choice of the multiindex set
A ⊂ NM

0 , see [6] for a detailed analysis. Similar results in the
context of source problems have been presented in [22–25].

3.5. Stochastic Collocation on Partial Sparse Grids. In the
framework of this paper, each collocation point in the
stochastic space Γ corresponds to a single measurement
configuration. In contrast to idealized mathematical models,
the range of practical measurement settings may be limited
to a small subset of Γ. In this section, we discuss one method
to carry out the analysis of the response statistics of a ran-
dom field in a subset of Γ.

We approach this problem from the viewpoint of
polynomial interpolation. In the following, we assume for
simplicity that Γ � [−1, 1]M. Let X � χ1, . . . , χN􏼈 􏼉 ⊂ Γ

denote a set of collocation points, and letB � L1, . . . ,LJ􏽮 􏽯,
J≥N, be a set of orthogonal polynomial basis functions with
respect to the measure dμ satisfying

􏽚
Γ
Li(ξ)Lj(ξ)dμ(ξ) � 0 whenever i≠ j. (28)

In addition, we denote

ck � 􏽚
Γ
Lk(ξ)

2
dμ(ξ)􏼒 􏼓

1/2
for k ∈ 1, . . . , J{ }. (29)

We assume that the basis functions in B are ordered in
degree lexicographic order. In particular, L1 is constant.

Let β � (β1, . . . , βN) denote a subsequence of 1,{

2, . . . , J} so that each element of β corresponds to one and
only one element of this set. +en for any such subsequence,
we can construct the Vandermonde-like matrix Vβ �

(Li(χj))i∈β,1≤j≤N. If Vβ is invertible, then for any input f :

Γ⟶ R we can set

c1 · · · cN( 􏼁 � f χ1( 􏼁 · · · f χN( 􏼁( 􏼁V
−1
I , (30)

so that the Lagrange interpolating polynomial

P(ξ) � 􏽘
N

i�1
ciLβi

(ξ), (31)

satisfies P(χi) � f(χi) for all i ∈ 1, . . . , N{ }. If β1 � 1, then
the expansion coefficients can be used to estimate the re-
sponse statistics of f via

E[f] ≈ c
−1
1 c1, (32)

Var[f] ≈ c
−1
β2

c2􏼐 􏼑
2

+ · · · + c
−1
βN

cN􏼐 􏼑
2
. (33)

Following [12], it turns out that the Vandermonde-like
matrices related to the Smolyak interpolating polynomials
are remarkably well conditioned. One may find a well-
conditioned interpolating polynomial for a subset of
a sparse grid by proceeding in the following way:

(i) Let X � χ1, . . . , χN􏼈 􏼉 be a subset of a sparse grid
X � χ1, . . . , χJ􏽮 􏽯

(ii) Let B � L1, . . . ,LJ􏽮 􏽯 be the Smolyak polynomial
basis functions (cf. [26])

(iii) Let β � (β1, . . . , βN) denote a subsequence corre-
sponding to the row indices of the maximum vol-
ume submatrix of W � (Li(χj))1≤i≤J,1≤j≤N

(iv) Form the Lagrange interpolating polynomial
Pf(ξ) � 􏽐

N
i�1ciLβi

(ξ), where the coefficients
c1, . . . , cN ∈ R are obtained as in (30)

+e use of the maximum volume submatrix ensures both
that the Lagrange interpolation polynomial is well defined
and that system (45) is sufficiently well conditioned.

In practical calculations, finding the analytical maximum
volume submatrix is in general an NP-hard problem.
However, there exist several algorithms in the literature
which can be used to find the approximate maximum
volume submatrix in a computationally efficient manner.
We use the MaxVol algorithm proposed in [27]. A related
algorithm has been discussed in [28].
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4. Frequency Response Analysis

In frequency response analysis, the idea is to study the
excitation or applied force in the frequency domain.
+erefore, the uncertainty in the eigenproblem is directly
translated to frequency response. In the deterministic set-
ting, the procedure is as follows [29]: starting from the
equation of motion for the system,

M€x + C _x + Sx � f , (34)

whereM is the mass matrix, C is the viscous damping matrix,
S is the stiffness matrix, f is the force vector, and x is the
displacement vector. In our context, M and S are defined as
mentioned above, and the viscous damping matrix is taken to
be a constant diagonal matrix C � 2δI, where δ � 1/2000.

In the case of harmonic excitation, a steady-state solu-
tion is sought, and the force and the corresponding response
can be expressed as harmonic functions as

f � 􏽢f(ω)eiωt,

x � 􏽢x(ω)eiωt.
(35)

Taking the first and second derivatives of equation (34)
and substituting using (35) leads to

−ω2M􏽢x(ω)e
iωt

+ iωC􏽢x(ω)e
iωt

+ S􏽢x(ω)e
iωt

� 􏽢f(ω)e
iωt

,

(36)

thus reducing to a linear system of equations:

−ω2M + iωC + S􏼐 􏼑􏽢x(ω) � 􏽢f(ω). (37)

Any quantity of interest can then be derived from the
solution 􏽢x(ω). In the following, we consider maximal
transverse deflections wmax as the quantity of interest.

4.1. Frequency Response Analysis with Sparse Grids. +e
collocation methods are invariant with respect to the
quantity of interest, and therefore, the application to fre-
quency response is straightforward.

Let us consider four-dimensional second-order
Smolyak-Gauss-Legendre quadrature points XGL and the
second-order Smolyak-Clenshaw-Curtis quadrature points
XCC with 41 points. Let (Pk)∞k�0 denote the standard or-
thonormal univariate Legendre polynomials generated by
the three-term recursion:

P0(x) � 1,

P1(x) � x,

(k + 1)Pk+1(x) � (2k + 1)xPk(x)− kPk−1(x), k≥ 1,

(38)

and define the sequence m(0) � 0, m(1) � 1, and m(k) �

2k−1 + 1 for k> 1. +e standard Smolyak polynomial basis
functions for the dimension 4, second-level Smolyak rule are
then given by [26]

B � ∪
α ∈ Z4

+

4≤‖α‖1≤4+2

Bα,
(39)

where

Bα � 􏼚Pi1−1 ξ1( 􏼁 · · · Pi4−1 ξ4( 􏼁; m αj − 1􏼐 􏼑 + 1≤ ij ≤m αj􏼐 􏼑,

1≤ j≤ 4􏼛

(40)

for α ∈ Z4
+. With this convention, #B � #XGL � #XCC � 41

and the interpolation problem is well posed for the full
sparse grids.

In order to make the problem well posed for some partial
grids XGL ⊂ XGL and XCC ⊂ XCC, we proceed as in Section
3.5 and construct the rectangular Vandermonde-like matrix
W � (L(ξ))L∈B,ξ∈X and choose its maximum volume
submatrix V using the MaxVol algorithm. We compute the
expectation E[wmax] and upper confidence envelope
E[wmax] +

���������
Var[wmax]

􏽰
using formulae (32) and (33) for

each frequency, respectively.

5. Numerical Experiments

In the numerical experiments, at least one of the sources of
uncertainty is related to some geometric feature, for instance,
diameter of a cylinder or local thickness of a shell. In the finite
element context, this means that in order to compute statistics
over a set of solutions, it is necessary to introduce some
nominal domain onto which every other realization of the
discretized domain is mapped. In a general situation, this
could be done via conformal mappings, and in specific sit-
uations as happens to be here, the meshes can be guaranteed
to be topologically equivalent ensuring errors only in the
immediate vicinity of the random parts of the domain.

Material constants adopted for all simulations are E �

2.069 × 1011 MPa, ] � 1/3, and ρ � 7868 kg/m3, unless
otherwise specified. Also, in the following examples, we
employ the sparse collocation operator (25) with total degree
multiindex sets

A � AL ≔ α ∈ NM
0

􏼌􏼌􏼌􏼌􏼌 􏽘
m�1

αm ≤L
⎧⎨

⎩

⎫⎬

⎭, (41)

where applicable. All computations were performed on an
Intel Xeon(R) CPU E3-1230 v5 3.40GHz (eight cores)
desktop with 32GB of RAM.

5.1. Tower Configuration: Free Vibration. Our first example
is an idealized wind turbine tower (Figure 2). We can apply
dimension reduction via ansatz as in Section 2.3 and arrive at
a highly nontrivial shell-solid configuration. Notice that in
this formulation, we model the shell as a solid which is
computationally feasible in 2D, and the resulting systems
can be solved for different harmonic wavenumbers as
outlined above.

+e tower is assembled with four parts: a thin shell of
thickness t � 1/100 and vertical length of 11 units
(x ∈ [−1, 10]), a top ring of height C1 � 2/5 and width 3/4,
and two base rings, inner and outer ones, of height D1 � 2/5
and random widths W1 and W2, respectively. An additional
source of randomness comes from varying thickness of the
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shell near the top ring, centered at x � 0. Here, the varying
thickness can be interpreted as manufacturing imperfection
or damage to the structure. +e tower configuration is
detailed also in Figure 2.

Let us define the computational domain 􏽢Ω to be a union
of five parameterized domains:

􏽢Ω �∪5i�1 􏽢Ωi, (42)
where
􏽢Ω1 � (x, r + η) |− 1≤ x≤−1−C1,−3/4− t/2≤ η≤ t/2􏼈 􏼉,

􏽢Ω2 � (x, r + η) |− 1−C1 ≤x≤−b,−t/2≤ η≤ t/2􏼈 􏼉,

􏽢Ω3 � (x, r + η) |− b≤x≤ b,−ϕ(bx, t; a, b)≤ η≤ϕ(bx, t; a, b)􏼈 􏼉,

􏽢Ω4 � (x, r + η) |b≤x≤ 10−D1,−t/2≤ η≤ t/2􏼈 􏼉,

􏽢Ω5 � (x, r + η) |10−D1 ≤x≤ 10,−t/2−W1 ≤ η≤ t/2 + W2􏼈 􏼉.

(43)

+e random variables and their ranges used in different
experiments are (Figure 2)

Tower
W1 [1/4, 3/4]

W2 [1/4, 5/4]

a (0, 1/2]

b [3/40, 1/8],

(44)

where a and b are parameters in the shape modeling the
imperfection taken to be symmetric on the inner and outer
surfaces:

ϕ(s, t; a, b) �
t (a− 1)b4s4 − 2(a− 1)b4s2 + ab4( 􏼁

2b4
, (45)

where s is the coordinate scaled to center the shape around
x � 0. For a plot of the profiles, see Figure 3.

In each experiment, the dimension of the stochastic
space is M � 4, and the random vector ξ ∈ Γ is obtained by
scaling the geometric parameters to the interval [−1, 1]. +e
base of the tower is clamped, that is, fully kinematically
constrained. +e p-version of FEM is used with p � 4
resulting in a linear system with 14247 d.o.f. +e multiindex
set isAL, with L � 3. Per collocation point, the time spent is
approximately 40 seconds; 10 seconds for solution and 30
seconds for obtaining statistics.

In Tables 1 and 2, we have listed statistics for eight of the
smallest eigenvalues of the tower configuration with the
corresponding wavenumberK. Of interest is the pair of fourth
and fifth smallest eigenvalues since the values are fairly close
to each other; in other words, they form a cluster. Indeed, if we
track themodes over the parameter space, we see that crossing
occurs, i.e., different eigenmodes are associated with the
fourth smallest eigenvalue for different realizations of the
problem. Also notice that the actual squares of frequencies
vary (at least) within range [4562.30, 4578.79] for K � 4, with
the expected value � 4572.40. +is means that in a multi-
parametric setting, the number of modes observed within
a fixed range of frequencies is not necessarily constant over
the whole parameter space.

+e statistics presented in Tables 1 and 2 were verified by
aMonte Carlo simulation of S � 1000 samples. A comparison
of the results obtained by Monte Carlo and collocation al-
gorithms has been presented in Table 3. +e central limit
theorem guarantees (stochastic) error bounds for statistics
computed via Monte Carlo: the error in the expected value of
the quantity of interest is given by

�������
Var[·]/S

√
. From Table 3,

we see that the errors between the two solutions fall well
within the tolerances of the Monte Carlo results.

L1

C1

D1

X

–1

10

(a)

B

W1 W2

X

–1

10

0

(b)

0

5

10
210–1–22

1
0

–1
–2

–1.0

–0.5

0

0.5

1.0

(c)

Figure 2: Tower configuration: Computational domain; B indicates the location of the assumed manufacturing imperfections at x � 0. (a)
Shell-solid model; diameter of the base is random. (b) Computational domain. (c) Lowest mode; normalized transverse detectionw; rainbow
colour scale.
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+e effect of the manufacturing imperfection is illus-
trated for the eigenmodes associated with K � 1 in Figure 3.
High-localized variance in the computed displacements
means that the uncertainty in derived quantities of interest
such as stresses is likely to be highest. In Figure 3, we see
that the variance of the transverse deflection of the third
eigenmode for K � 1 is localized exactly at the thinnest part

indicating a highly likely location for failure of the tower.
+is is of course what we would expect.

5.2. Cylinder with Junctions. Our second example is a cyl-
inder with two junctions: a T-junction with another cylinder
and a cone extension at one end of the cylinder. Since we
limit ourselves to shells of revolution, we remove the
T-junction through clamped boundary conditions. Here, the
sources of uncertainty are the random radius (diameter) of
the circular T-junction, i.e., a circular hole in our modeling,
D1, the slope of the cone, ζ, and Young’s modulus. +e
radius of the cylindrical part is constant � 1, and the di-
mensionless thickness is constant t � 1/100. For the long
cylinder, the distance of the center of the hole to ends is
L1 � 10π and the distance to the cone is L2 � 40π/7, and for
the short one, the lengths are simply scaled by 10. For
a schematic of the construction, see Figure 4.

–0.2 –0.1 0.0 0.1 0.2
x

y

0 1 2 3
×10–8 

(a)

y
–0.2 –0.1 0.0 0.1 0.2

x

0 0.5 1.0 1.5 2.0
×10–3

(b)

y
–0.2 –0.1 0.0 0.1 0.2

x

0 2 4 6 8
×10–6

(c)

y
–0.2 –0.1 0.0 0.1 0.2

x

0 2 4 6
×10–3

(d)

y
–0.2 –0.1 0.0 0.1 0.2

x

0 2 4 6 8
×10–6

(e)

y
–0.2 –0.1 0.0 0.1 0.2

x

0 2 4 6 8 10
×10–3

(f )

Figure 3: Variances of the tower configuration near themanufacturing defect: components of the first (left) and third (right) eigenmodes for
K � 1. Solution computed with p � 4 and L � 3 (165 collocation points). (a) Component μ of the first eigenmode. (b) Component μ of the
third eigenmode. (c) Component v of the first eigenmode. (d) Component v of the third eigenmode. (e) Component w of the first ei-
genmode. (f ) Component w of the third eigenmode.

Table 1: Statistics and wavenumbers of the eight smallest (in
expected value) eigenvalues of the tower configuration as defined
by the wavenumber K.

E[ω2] Var[ω2]
�������
Var[ω2]

􏽰
K

79.7358 0.00175638 0.0419092 1
2055.46 218.179 14.7709 3
3449.66 2194.93 46.8501 2
4548.42 989.703 31.4595 0
4572.40 30.0598 5.48268 4
5958.11 2550.51 50.5026 0
6664.07 446.766 21.1368 4
7296.49 3535.53 59.4603 3

Table 2: +e eigenmodes evaluated at two different points in Γ
(solution computed with p � 4 and L � 3 (165 collocation points)).

ξ � (−0.9, 0, 0, 0) ξ � (0.9, 0, 0, 0)

ω2 K ω2 K
79.7681 1 79.6528 1
2072.60 3 2028.05 3
3503.49 2 3361.97 2
4578.79 4 4485.45 0
4581.93 0 4562.30 4
6013.69 0 5861.08 0
6688.77 4 6625.28 4
7365.13 3 7185.36 3

Table 3: +e errors between eigenvalues computed by collocation
(ω2

C) and Monte Carlo (ω2
MC) methods. +e eight smallest (in

expected value) eigenvalues of the tower configuration.

εmean εstdev εMC

0.000453485 0.000637457 0.00130513
0.0120954 0.0580925 0.465259
0.0444178 0.205332 1.47504
0.0921339 0.163266 0.989675
0.00269920 0.0209490 0.172715
0.0590391 0.293009 1.58777
0.00789916 0.0910774 0.665526
0.0626177 0.263587 1.87197
+e error measures are as follows: error in expected value εmean �

|E[ω2
MC]−E[ω2

C]|, error in standard deviation εstdev � |
���������
Var[ω2

MC]
􏽱

−
�������
Var[ω2

C]
􏽱

|, and Monte Carlo standard error εMC �
����������
Var[ω2

MC]/S
􏽱

.
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Now the computational domain is periodic in the an-
gular direction:

􏽢Ωt �
([−10π, 10π] ×[0, 2π])

Disk (0, 0), D1/2( 􏼁
. (46)

Notice that the change in the slope does not affect the
computational domain.

+e random variables and their ranges used in different
experiments are

Long Short
D1/2 [π/36, 7π/36] [π/84, π/12]

ζ [0, tan(1/10)] [0, tan(1/10)]

ξ3 [−1, 1] [−1, 1]

ξ4 [−1, 1] [−1, 1],

(47)

where ζ is the slope of the cone. Finally, the parameters ξ3
and ξ4 correspond Karhunen–Loéve basis functions,
i.e., terms E3(x) � sin x and E4(x) � sin 2x in the expan-
sion (19). Again, in each experiment the dimension of the
stochastic space is M � 4, and the random vector ξ ∈ Γ is
obtained by scaling the geometric parameters to the interval
[−1, 1]. Both ends of the cylinder are clamped, as well as the
T-junction interface, that is, fully kinematically constrained.
+e p-version of FEM is used with p � 3 resulting in a linear
system with 41280 d.o.f. +e multiindex set isAL with L � 2.
Per collocation point, the time spent is approximately 60
seconds; 10 seconds for solution and 50 seconds for
obtaining statistics.

We study both free vibration and frequency response for
this configuration.

5.2.1. Free Vibration. Let us first examine the lowest modes
of the two structures. Interestingly, when comparing the two
subfigures of Figure 5, the colours indicate that indeed in the
long cylinder, the long-range internal layer of 1/

�
t

√
emerges

in the lowest mode. However, none of the shorter charac-
teristic length scales have strong amplitudes in the transverse
deflection in this case.

In Table 4, we have listed statistics for four of the smallest
eigenvalues of the short and long cylinder configurations. In
this case, the eigenvalues appear well separated. Again, the
statistics were verified by a Monte Carlo simulation of S �

1000 samples. A comparison of the results obtained by
Monte Carlo and collocation algorithms has been presented
in Table 5. As discussed before, we see from the figures in
Table 5 that the errors between the two solutions fall well
within the tolerances of the Monte Carlo results.

Statistics of the first eigenmode for the long cylinder with
junctions have been presented in Figure 6. +e long-range
layer is clearly visible in the second, third, and fifth com-
ponents. +e effect of the cone junction is distinctly man-
ifested in the statistics of the fourth component. +e
standard deviations of the two smallest eigenvalues are
approximately 62 and 50 percent of the respective expected
values. +e ratio of the expected values is approximately
0.21, and thus, the eigenvalues at least appear to be well
separated.

Statistics of the first eigenmode for the short cylinder
with junctions have been presented in Figure 7. In this
case, we do not observe a separate long-range layer. +e
effect of the cone junction is never the less apparent in the
statistics of the fourth component. +e standard de-
viations of the two smallest eigenvalues are now ap-
proximately 31 and 49 percent of the respective expected
values. +e ratio of the expected values is approximately
0.24, and thus, the eigenvalues again appear to be well
separated.

In Figure 8, the short-range effects of the T-junction have
been highlighted. +e statistics of the fifth component have
been shown in vicinity of the junction for both cylinders.+e
relative strength of the long-range axial layer in the long
cylinder can be observed, whereas in the short cylinder, the
angular oscillatory layer is dominant. In both configurations,
there is a hint of short-range axial layer emanating from the
hole.

5.2.2. Frequency Response Analysis. For the frequency re-
sponse analysis of the short cylinder, the load is chosen
to be F(x, y) � 1000 cos(y/2)N, and the angular fre-
quency range is taken to be ω ∈ 2π 5, 10, . . . , 200{ }Hz.
In our analysis, all modes are present; no attempt to
choose, for instance, a subspace of lowest modes has been
made.

We first carry out the solution of the frequency response
statistics subject to the abovementioned second-order
Smolyak–Gauss–Legendre quadrature points XGL and the
second-order Smolyak–Clenshaw–Curtis quadrature points
XCC and then consider their respective subsets with 25
points defined by setting

X
GL

� ξ1, . . . , ξ4( 􏼁 ∈ XGL
􏼌􏼌􏼌􏼌􏼌 ξ1 � 0􏼚 􏼛,

X
CC

� ξ1, . . . , ξ4( 􏼁 ∈ XCC
􏼌􏼌􏼌􏼌􏼌 ξ1 � 0􏼚 􏼛,

(48)

where the choice ξ1 � 0 is arbitrary. In the context of this
numerical experiment, it means that the diameter of the hole
is fixed at its expected value.

R1 R2

L2L1

C1D1

Figure 4: Cylinder-cylinder-cone schematic. +e cylinder diameter R1 � 2, L1, L2, and C1 are deterministic: L1 + L2 + C1 � 20π; the
diameter of the hole D1 is random, and the cone diameter R2 is random since it depends on the random slope of the cone.
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Let us first consider sparse grids XGL and XCC. In
Figure 9, we show two frequency response graphs where the
expected values of the quantity of interest, the maximal
transverse deflection wmax, are shown along standard de-
viations. It is clear that the frequency response is sensitive to
perturbations to the parameters. +e two point sets are not
hierarchic, and thus, one cannot expect to get exactly
identical responses. Moreover, distributions of the values of

the quantity of interest appear to be exponential. +is is
illustrated in Figure 10. +e maximal transverse deflection
wmax at any given frequency depends on how well the tail of
the distribution is approximated.
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Figure 5: Shell configuration: t � 1/100; lowest mode; normalized transverse deflection w; rainbow colour scale. (a) Long cylinder with T-
junction and cone junction; frequency � 1Hz; x ∈ [−10π, 10π]; cone: [40π/7, 10π]. (b) Short cylinder with T-junction and cone junction;
frequency � 10Hz; x ∈ [−π, π]; cone: [4π/7, π].

Table 4: Statistics of the four smallest eigenvalues of the long (a)
and short (b) cylinder with junctions (solution computed with p �

3 and L � 2 (45 collocation points)).

E[ω2] Var[ω2]
�������
Var[ω2]

􏽰

(a) Long cylinder
3.12173 3.70583 1.92505
15.1519 57.9719 7.61393
25.7390 161.805 12.7203
88.1692 239.444 15.4740
(b) Short cylinder
58.6626 335.750 18.3235
240.370 13908.9 117.936
655.337 4200.64 64.8123
1137.43 10215.8 101.073

Table 5: +e errors between eigenvalues computed by collocation
(ω2

C) and Monte Carlo (ω2
MC) methods. +e four smallest eigen-

values of the long (a) and short (b) cylinders.

εmean εstdev εMC

(a) Long cylinder
0.0652920 0.0150364 0.0604000
0.287854 0.187262 0.234852
0.430142 0.00845208 0.401983
0.503874 0.199000 0.483037
(b) Short cylinder
0.0134338 0.473668 0.564461
0.163070 1.13330 3.76530
0.422822 1.92808 1.98858
1.12535 9.27454 3.48951
+e error measures are as follows: error in expected value εmean �

|E[ω2
MC]−E[ω2

C]|, error in standard deviation εstdev � |
���������
Var[ω2

MC]
􏽱

−
�������
Var[ω2

C]
􏽱

|, and Monte Carlo standard error εMC �
����������
Var[ω2

MC]/S
􏽱

.
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Let us next move to the partial sparse grids X ∈
XCC, XGL􏼈 􏼉.+e results are displayed in Figure 11.+e results
should be compared with Figure 9; in particular, sampling the
stochastic space with fixed first component already charac-
terizes the locations of the maxima in the frequency response.
However, the maximal amplitudes are different, again
reflecting the fact that the points sets are not hierarchic.

Remark 1. We emphasise that if it were possible to identify
real measurements as points in the grid, with this approach,
one could augment simulations with real data and arrive at
more realistic interpolation operators.

+is example underlines the fact that in multiparametric
situations, it is always necessary to think in terms of dis-
tributions and relate the observed statistics to them.
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Figure 6: Long cylinder with junctions: expected value and variance of the first eigenmode. Solution computed with p � 3 and L � 2 (45
collocation points). (a) Expected value (A) and variance (B) of the component μ. (b) Expected value (A) and variance (B) of the component v.
(c) Expected value (A) and variance (B) of the component w. (d) Expected value (A) and variance (B) of the component θ. (e) Expected value
(A) and variance (B) of the component ψ.
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6. Conclusions

Multiparametric vibration problems and especially those
involving thin domains are and remain challenging. We
have studied two vibration problems rooted in practice, yet
artificial in terms of the parametrization of the random
model. +e efficacy of the stochastic collocation has been

demonstrated, and its extension to frequency response
analysis has been demonstrated. More specifically, in the
context of thin shells, the boundary layers, including internal
ones, are shown to have the predicted characteristic length
scales, and their contribution to statistics such as variance is
clearly illustrated in the results. In vibration-related prob-
lem, the frequency response analysis, the importance of
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Figure 7: Short cylinder with junctions: expected value and variance of the first eigenmode. Solution computed with p � 3 and L � 2 (45
collocation points). (a) Expected value (A) and variance (B) of the component μ. (b) Expected value (A) and variance (B) of the component v.
(c) Expected value (A) and variance (B) of the component w. (d) Expected value (A) and variance (B) of the component θ. (e) Expected value
(A) and variance (B) of the component ψ.
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Figure 8: Statistics of the fifth field component ψ near the T-junction. (a) Long cylinder: expected value (A) and variance (B). (b) Short
cylinder: expected value (A) and variance (B).
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Figure 9: Continued.
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Figure 10: Frequency response distribution: Transverse deflections over the combined sparse gridsXGL andXCC. (a) Frequency � 65Hz.
(b) Frequency � 85Hz.
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Figure 9: Frequency response: comparison of sparse grids: XGL vs XCC; maximal transverse deflection wmax vs frequency; dashed line
represents the added standard deviation. (a) Gauss XGL p � 2, 41 points. (b) Clenshaw–Curtis XCC p � 2, 41 points. (c) Combined.
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Figure 11: Frequency response: comparison of partial sparse grids: XGL vs XCC; maximal transverse deflection wmax vs frequency; dashed
line represents the added standard deviation. (a) Gauss XGL p � 2, 25 points. (b) Clenshaw–Curtis XCC p � 2, 25 points. (c) Combined.
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gaining complete statistical understanding of the results is
underlined.
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