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
Abstract 

 

A two level control strategy that stabilizes and optimizes the production of an industrial 

copper solvent extraction process is presented. The stabilizing layer consists of a multi-

input multi-output controller or two single-input single-output controllers with additional 

four feedforward compensators that regulate the flow rates in the copper solvent extraction 

process. The optimization layer consists of an optimizer that maximizes the production of 
the copper solvent extraction process and gives setpoints to the controllers at the stabilizing 

level. The mechanistic plant models, verified with industrial data, are linearized by 

identifying first and higher order transfer function models from simulated PRBS data. On 

the basis of the linear models, the interactions of the controlled variables, and the pairing 

of the controlled and manipulated variables are studied and the optimizer and the 

controllers designed. The control strategy employing two PI-control loops or a model 

predictive controller and additionally four feedforward control loops is successfully tested 

against simulated disturbances and setpoint changes. The control strategy is also compared 

to the data collected from the industrial plant under manual control. With this two level 

control strategy the production of the copper solvent extraction process is increased by 3-

5% and the process variation is decreased by 70-90% compared to the manual operation 
of the case industrial plant. The results gained in simulation environment are successful 

and encouraging for further testing in an industrial plant. Copyright © 2006  


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
1 Introduction 


The copper leaching, solvent extraction and electrowinning (LX/SX/EW) process is one of the most important methods 

in the production of copper from low-grade oxidized ore. Research on the copper LX/SX/EW process to date has 

focused on the process chemicals and equipment, and control of the industrial plants relies on simple PID control loops 

and manual tuning. Advanced control of a solvent extraction plant would make it possible to keep the process variables 

closer to their optimal values, thus increasing the amount of copper produced, and reducing the amount of chemicals 

and energy consumed [1-3]. 
 

Very few papers are published on the modelling and control of industrial copper solvent extraction processes. The 

steady state of a copper solvent extraction process can be studied with mass balance equations and equilibrium 

diagrams, for example equilateral-triangular diagrams and McCabe-Thiele diagrams. McCabe-Thiele diagram is 

widely used in the industry for the plant design and production optimization. [4-6] 

 

A steady state model of an industrial copper solvent extraction and electrowinning plant was developed by Aminian et 

al [7]. The model for the solvent extraction considers mass transfer of copper and iron in the mixers. The mixer model 

is based on mass conservation and it includes both transfer to the interfacial surface of the phases and the reaction rate 



 

     

over the surface. The equilibrium curves are experimentally defined. The steady state model of the electrowinning is 

based on the basic formulation of electrolysis reaction. The models were combined to agree with the flow sheet of the 

pilot plant consisting of two series extraction units, one stripping unit and an electrowinning process. The 

measurements and steady state model predictions were compared with good agreement. 

 

The structure of a continuous dynamical model for mixer-settler cascade was summarized by Wilkinson and Ingham 

[8]. The model for one extraction step consisted of an ideal mixing model describing a mixer and a plug flow model 

describing a settler. The underlying assumptions were: (1) perfect mixing in the mixer, (2) equilibrium is immediately 

achieved in the mixer, (3) the aqueous and the organic solutions are immiscible, (4) flow rates for both phases are 

constant, (5) plug flow separately for both phases in the settler, (6) no mass transfer in the settler. The equilibrium was 

calculated from linear equilibrium curve or by using Murphree efficiency. The mass transfer coefficient was derived 
from two film theory using the phase specific film coefficients. 

 

Ingham et al. [9] suggested modifying the mixing model by adding an entrainment flow to the mixer settler model. If 

the phase separation is imperfect, the aqueous flow out of the settler contains organic droplets and the organic flow out 

of the settler aqueous droplets.  

 

Hoh et al. [10] have modeled copper solvent extraction by a continuous-flow stirred tank reactor model. The model 

considers the copper, reagent and hydrogen ion concentrations together with the flow rates. The mass transfer 

coefficient is modeled as function of the aqueous phase hold up, and the equilibrium constant is determined 

experimentally. The model fit to the experimental data, for laboratory system with one extraction step, one washing 

step and five stripping steps, was very good. 
 

To date, no advanced control strategies or systems have been reported in literature or known to be utilized in the plants. 

The control of the copper solvent extraction and electrowinning processes relies on operators actively manipulating 

the setpoints for the basic level controllers. This means that the control loops are decentralized with manual setpoints 

for flow rates, levels, motor speeds, stirring speeds, pumps and valves. Since the process includes long time delays and 

complex interactions between the variables, the optimal performance and productivity of the plant is seldom achieved. 

[11, 1, 12] 

 

In this paper, an industrial solvent extraction process is described and the mechanistic model (Komulainen et al. [13]) 

is briefly reviewed. Then the control strategy is described, and the optimization and controller design are presented. 

Finally the control results are presented and discussed. 
 

2 Process description 

 

The aim of the copper solvent extraction process is to concentrate aqueous copper solution from a few g/l to  

about 40 - 50 g/l and to purify the solution from ferrous, manganese, chloride and other impurities, which are harmful 

for the downstream electrowinning process. This continuous process consists of extraction and stripping processes, 

both of which may contain several unit operations. In the extraction units, copper is transferred from the mildly acid 

aqueous leach solution to the organic solution. In the stripping units, copper is transferred from the organic solution to 

the strongly acid aqueous electrolyte solution. In industry, the process equipment is solely mixer-settlers. In the mixers, 

the minor phase is dispersed to the major phase, and the copper ion transfer takes place on the droplet interphase 

between the phases. The dispersed phases are separated by gravity in the long and shallow settlers. [14, 2, 15] 

 
Generally, the process has two input flows, the pregnant leach solution (PLS) and the lean electrolyte (LE), and one 

recycling flow, the organic solution. In the extraction units, copper is extracted from the PLS to the barren organic 

(BO) solution. In the stripping units, copper is stripped from the loaded organic solution (LO) to the lean electrolyte 

(LE) solution. The result of stripping, i.e., the rich electrolyte solution (RE), is blended and fed to the electrowinning 

process, where 99.99% pure copper cathodes are produced. A flow diagram of the process is shown in Fig. 

Typical process instrumentation includes flow rate, temperature, and level measurements. In addition, on-line 

measurements of conductivity in the mixers, pH, and copper and impurities may be included. The copper and impurity 

assays, phase ratio, phase separation time and other diagnostic measurements can be measured offline in the laboratory. 

 



 

     

 

Fig. 1. Flow diagram of the copper solvent extraction process. In the extraction units, copper is extracted from the pregnant leach 
solution to the organic solution. In the stripping units, copper is stripped from the loaded organic solution to the electrolyte solution. 
The resulting rich electrolyte solution is led to the electrowinning process. The barren organic solution is recycled back to the 
extraction units. 

 

The main control targets of the copper solvent extraction process are to maximize the extracted copper and to provide 

rich electrolyte with stable concentration to the electrowinning process. To achieve these goals, the throughput has to 

be maximized and the disturbances rejected by balancing the flow rates and adjusting the chemical levels (acidity of 

aqueous solutions and reagent concentration in the organic solution).  

 

In the studied plant, both flow rates and chemical concentrations are currently adjusted manually. Since automatic 
instrumentation is available only for the flow rates, the control of chemical concentrations is excluded from this study. 

The system requires on-line measurements of the flow rates and the copper concentrations. 

 

3 Model description 

 

3.1 Mechanistic process model 

 

The studied copper solvent extraction process consists of four units, three for extraction and one for stripping, as 

presented in Fig. 2. The inputs of the process are pregnant leach solution series and parallel flow rates, F(PLSS) and 

F(PLSP), pregnant leach solution copper concentration, c(PLS), lean electrolyte flow rate, F(LE), lean electrolyte 

copper concentration, c(LE), and the flow rate of the organic solution, F(LO). The organic solution is recycled in the 
process, but the flow rate can be manipulated through the organic storage tank. The outputs of the process are rich 

electrolyte copper concentration, c(RE), and raffinate copper concentrations, c(RaffS) and c(RaffP). The process states 

include the concentrations of the organic solution after each unit operation, and the organic to aqueous volume ratios. 

The laboratory measurements of the reagent volume percent in the organic solution, vol, the pH level in the leach 

solution, PH, and the acidity of the electrolyte solution, Acid, are used to update the plant specific McCabe-Thiele 

equilibrium isotherm parameters. These offline measured variables vary very slowly, and, therefore interpolation 

between the samples is considered giving accurate enough estimates. 

 

In the control context, the controlled variables (CV) of the process are the rich electrolyte copper concentration, c(RE), 

and the loaded organic copper concentration, c(LO). The flow rates are manipulated variables (MV) and the PLS and 

lean electrolyte copper concentrations are (measured) disturbance variables (DV). The process variables and indication 

of the measurement type (online/offline) are presented in Table 1. 
 



 

     

 

Fig. 2. The case copper solvent extraction process. The output variables are the copper concentrations of the raffinates c(RaffP) and 
c(RaffS), rich electrolyte, c(RE), and the copper concentrations of the recycled organic stream, barren organic, c(BO) and loaded 
organic c(LO). The input variables are the flow rates of PLS, F(PLSS) and F(PLSP), organic, F(LO), and lean electrolyte, F(LE), and the 
copper concentration of PLS, c(PLS) and lean electrolyte, c(LE). 

 
Table 1 
Controlled, manipulated, disturbance and state variables of the industrial copper solvent extraction process. The measurement 
type, online/offline, is indicated on fourth and fifth column, with an indication of the online and offline measurements. 
 

Classification Variable name Abbreviation Online Offline 

Controlled variables Rich electrolyte copper concentration c(RE) X X 

 Loaded organic copper concentration c(LO) X X 

Manipulated variables PLS series flow rate F(PLSS) X  

 PLS parallel flow rate F(PLSP) X  

 Organic flow rate F(LO) X  

 Electrolyte flow rate F(LE) X  

Disturbance variables PLS copper concentration c(PLS) X X 

 Lean electrolyte copper concentration c(LE) X X 

 Reagent volume percent in organic solution Vol  X 

 pH level of the PLS solution PH  X 

 Acidity of electrolyte solution Acid  X 

State variables Partial PLS copper concentration c(PLS1)  X 

 Partial organic copper concentration after E1P step c(BO1)  X 

 Partial organic copper concentration after E1S step c(BO2)  X 

 Raffinate series copper concentration c(RaffS) X X 

 Raffinate parallel copper concentration c(RaffP) X X 

 Barren organic copper concentration c(BO) X X 

 

In this work, the solvent extraction process is modeled considering only the mass transfer of copper between organic 

and aqueous phases. Each unit process is modeled as combination of an ideal mixer and settler with on-line estimated 

parameters. The model is described in more detail in Komulainen et al. [13]. 

 

The copper transfer is calculated from the ideal mixing equations, where the equilibrium value c* is determined on the 

basis of the incoming flow rates, concentrations, efficiency coefficients and plant specific McCabe-Thiele diagram. 

The variables are marked: flow rates F, the mixing volumes Vmix, organic concentrations corg, aqueous concentrations 

caq, mass transfer coefficients K, efficiency parameters α. The mixer are treated as ideal mixers with adapted parameters 
K, α, and equilibrium isotherm coefficients, A and B for extraction, and C and D for stripping. The settler, always 

following the mixer, is described by a pure time delay and marked with ti. 

 

In extraction, copper is transferred from the aqueous leach solution to the barren organic solution. An extraction unit 

is modelled with Eq. (1), where the equilibrium is calculated at each time step from nonlinear Eq. (2). Each of the three 

extraction steps can be formulated as follows: 
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Loaded organic copper concentration, the second controlled variable, is the time delayed value of the output of the 

third extraction Eq. (1). Loaded organic copper concentration is defined as follows: 

 

3 3( )( ) ( )orgc LO t c t t            (3) 

 

 

In the stripping, copper is transferred from the loaded organic solution to the lean electrolyte solution resulting in a 

rich electrolyte solution. The stripping unit process is modeled with Eq. (4), where the equilibrium is calculated from 

linear Eq. (5). The stripping unit operation is modeled as follows: 
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Rich electrolyte copper concentration, that is the first controlled variable, is the time delayed value of the output of the 
stripping Eq. (4). Rich electrolyte copper concentration is defined as follows: 

 

1 4( )( ) ( )elc RE t c t t            (6) 

 

The nonlinear model structure with adaptation in the equilibrium isotherm and efficiency parameters performed very 

well in comparison to industrial process data, and therefore was chosen for the control studies. For the model details, 

please refer to Komulainen et al. [13]. The model was simulated in Matlab, using the ode15s stiff solver for integration. 

 

 

3.2 Linear model identification 
 

In order to develop linear controllers for the process, the mildly nonlinear mechanistic model was first linearized to 

first and higher order plus time delay transfer function model and to linear state space model form. The output variables 

are rich electrolyte, loaded organic copper concentrations, c(RE) and c(LO) (see Table 1). The input variables are the 
flow rates of the PLS series, PLS parallel, organic and electrolyte, F(PLSS), F(PLSP), F(LO) and F(LE), the copper 

concentrations of PLS and lean electrolyte, c(PLS) and c(LE), and the reagent volume percent in the organic solution, 

vol. The input variable vector [F(PLSS) F(PLSP) F(LO) F(LE) c(PLS) c(LE) vol] is referred as [IN] and the output 

vector [c(LO) c(RE)] is referred as [OUT] in this paper. 
 

The state space model for the outputs, the loaded organic and rich electrolyte copper concentrations, c(LO) and c(RE), 

is defined as follows: 

 

[𝑥̇] = 𝑀1[𝑥] + 𝑀2[𝐼𝑁]𝑇          (7) 

[𝑂𝑈𝑇]𝑇 = 𝑀3[𝑥] + 𝑀4[𝐼𝑁]𝑇     
 

where the number (n) of the states x determines the order of the coefficient matrices 𝑀1  ∈  ℜ𝑛 𝑥 𝑛 , 𝑀1  ∈  ℜ𝑛 𝑥 7, 𝑀1  ∈
 ℜ2 𝑥 𝑛. The matrix 𝑀4 in this case is [0] since there are no direct effects from the inputs to the outputs.  
 

In the transfer function model most of the submodels are first order plus time delay form. The more complex dynamics 

are modeled as second order with zero plus time delay. The transfer function models for the outputs, the loaded organic 

and the rich electrolyte copper concentrations are of the following form: 
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] [𝐼𝑁]𝑇  (8) 

 

The state space model matrices and transfer function model parameters were identified from the simulated pseudo-

random binary sequence data using Matlab system identification toolbox (for the N4SID identification algorithm, see 

Ljung [16]). Next, the models were validated by applying the inputs of the validation data sets to the linear models and 
comparing the linear model outputs to the outputs of the validation data sets. 

 



 

     

The model performances are compared to each other with the fitness index. The fitness index is the percentage of the 

output variations that is reproduced by the model, the higher the percentage is, the better fit. (Matlab system 

identification toolbox: Ljung [16]). 

 

 
mod

1 100%
meas el

meas meas

norm Y Y
fit

norm Y Y

 
   

  

        (9) 

where 
measY  is the measured value, 

measY  is the average value of the measured outputs, 
modelY  is the model value. 

The fit index values are between -100% and 100%, where 100% represents perfect fit. 

 

The linear models were validated against three different data sets, one input step change response data set, one 

simulated data set, and one industrial data set. The fit indices are presented in Table 2, and visual comparison for the 

rich electrolyte copper concentration in Error! Reference source not found.. The model linearization was successful 

with both model structures, the best fit indices were for the transfer function models and state space models of 8th- and 

10th- order. The transfer function and the eight order state space models are used in the further control studies. 

 
Table 2 
Model fits to the rich electrolyte (c(RE)) and loaded organic (c(LO)) copper concentration responses to the 5% input steps (Valid 1) 
at the first operating point, to mechanistic model outputs (Valid2) with the inputs of the first industrial data set, and to the first 
industrial data set (Valid3). 

 
Model structure Valid1 

c(RE) 

Valid2 

c(RE) 

Valid3 

c(RE) 

Valid1 

c(LO) 

Valid2 

c(LO) 

Valid3 

c(LO) 

Transfer function (Eq. 

10) 

89.64 79.34 27.19 93.82 39.23 4.837 

State space 2 order 67.51 69.7 20.36 60.01 31.27 16.05 

State space 3 order 62.89 57.94 23.33 55.71 30.59 16.22 

State space 4 order 59.07 53.23 28.59 51.47 30.6 16.47 

State space 5 order 70.33 70.2 20.35 52.79 30.04 16.77 

State space 6 order 68.17 66.8 25.87 57.84 36.2 15.63 

State space 7 order 87.37 75.35 14.29 67.72 39.72 13.09 

State space 8 order 91.7 72.96 13.21 75.42 41.6 10.24 

State space 10 order 90.9 76.92 16.7 75.43 40.69 10.45 

State space 12 order 90.66 78.03 17.74 73.91 41.69 10.39 

State space 14 order 92.75 75.77 15.97 74.6 41.72 9.783 

 

For example, compared to the rich electrolyte copper concentration measurements of the first industrial data set 

(Valid3), the linear transfer function and eight order state space models follow well the dynamics of the process, as 

can be seen from Error! Reference source not found.. 

 

Fig 3. Rich electrolyte copper concentration; measurement of the first industrial data set (solid), mechanistic model (dashed), 
transfer function model (dotted), and eight order state space model (dash dotted). 

  



 

     

4 The proposed control strategy 

 
4.1 Design of the control strategy 

 

A two level control strategy that stabilizes and optimizes an industrial copper solvent extraction process is developed. 

The three level control strategies are illustrated in Fig, where the two highest levels, optimization level and stabilization 
level, are included in this study. The stabilization layer consists of a multi-input multi-output controller or two single-

input single-output controllers with four feedforward compensators that regulate the flow rates in the copper solvent 

extraction process. The optimization layer consists of an optimizer that maximizes the production of the copper solvent 

extraction process. 

 

In the optimization layer, the production of the copper solvent extraction process is maximized on the basis of the 

linearized, dynamic model of the copper solvent extraction process. The optimization layer provides setpoints for the 

controlled variables (copper concentrations) at the stabilizing control level. At the stabilizing control level the single-

input single-output controllers or alternatively a multi-input multi-output controller are keeping the controlled variables 

at the given setpoints by manipulating the flow rate setpoints. The flow rate setpoints are further given to the basic 

level controllers. The stabilizing control level consists of two PI controllers or a model predictive controller and 
additionally four feedforward compensators, which are designed on the basis of the linearized, dynamic model of the 

copper solvent extraction process. At the basic control level, the flow rate controllers (PID controllers) are manipulating 

the opening of the control valve by comparing the difference between the flow rate setpoint and the flow rate 

measurement. The measurement information (flow rates, copper concentrations) is led to the higher control levels.  

 

 

Fig. 4. Proposed control hierarchy for the copper solvent extraction process. The local optimization layer provides the setpoints of 
the controlled variables to the supervisory control level. The supervisory control level is based on single-input single-output or multi-
input multi-output control strategy. The supervisory control level provides the setpoints of the manipulated variables to the 
regulatory control level. The regulatory control level gives signals to the final control elements in the instrumentation level. The 
measurement information is led from the instrumentation level to all the upper levels. 

The controlled variables (CV) are the output of the extraction, the loaded organic copper concentration (c(LO)), and 

the output of stripping, the rich electrolyte copper concentration (c(RE)). The available manipulated variables (MV) 

are the flow rates of PLS, organic and electrolyte, F(PLSS), F(PLSP), F(LO) and F(LE). The measured disturbance 

variables (DV) are the PLS and lean electrolyte concentrations, and the total PLS flow rate, the unmeasured disturbance 

is the change in reagent volume percent in the organic solution and pH changes in PLS and acidity changes electrolyte 

solution. The restrictions are the organic to aqueous ratio, which is related to phase continuity, pumping capacity, and 

the organic level in the tanks.  
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4.2 Design of the optimization algorithm 

 

The optimization provides setpoints of the controlled variables for the stabilizing layer controllers, and is the local 

optimization level of the proposed control hierarchy. The setpoints of the controlled variables and the optimal values 

of the manipulated variables are determined by solving the linear optimization problem with the linear constraints. The 

optimal values of the controlled and manipulated variables are calculated on the basis of the values of the disturbance 

variables and the optimization parameters. 

 

The maximization of the production, i.e. the copper mass flow out of the copper solvent extraction process, can be 

formulated mathematically as the copper concentration difference between the rich and lean electrolytes times the 

electrolyte flow rate, as follows: 

 ( ) ( ) ( )P c RE c LE F LE           (10) 

The restrictions of the optimization problem are the aqueous to organic ratios in the mixers. In the extraction part the 

mixers are assumed to run aqueous continuous, i.e. the major phase is aqueous, and therefore the organic to aqueous 

ratio has to be below β1 (<1). In the stripping part, the mixers are assumed to run organic continuous with organic to 
aqueous ratio above β2 (>1). These restrictions can be formulated for the extraction as follows: 

 

𝐹(𝐿𝑂) ≤ β1 ∙ F(PLSS)   𝐹(𝐿𝑂) ≤ β1 ∙ F(PLSP)       (11) 

 

and for the stripping as follows: 

 

𝐹(𝐿𝑂) ≥ β2 ∙ F(LE)          (12) 

 

The optimization problem can be presented with the controlled, manipulated and disturbance variables by assuming 

that the transfer function models of the plant present the steady state of the process adequately well. Now, the rich 
electrolyte copper concentration can be presented as: 

 

𝑐(𝑅𝐸) = [𝑤1  𝑤2   𝑤3  −𝑤4  𝑤5  𝑤6  𝑤7][𝐼𝑁]𝑇       (13) 
 

and the loaded organic copper concentration can be presented as: 

 

𝑐(𝐿𝑂) = [𝑟1  𝑟2  −𝑟3  −𝑟4  𝑟5  𝑟6   𝑟7][𝐼𝑁]𝑇        (14) 
 

 

The constants, wi and ri, are positive, and represent the absolute values of the steady state gains of the transfer function 

models for the loaded organic and rich electrolyte copper concentrations. On the basis of these equations, the profit 

function (10) can be expressed with the manipulated and disturbance variables as follows: 

 

𝑃 = [𝑤1   𝑤2  𝑤3  0  𝑤5 − (1 − 𝑤6)  𝑤7][𝐼𝑁]𝑇 ∙ 𝐹(𝐿𝐸) − 𝑤4𝐹(𝐿𝐸)2     (15) 
 

The maximization of this equation requires maximum value for the organic flow rate, F(LO). The maximum values of 

the manipulated flow rates can be derived from the restrictions of the optimization problem. The organic flow rate has 

a maximum restriction in relation to the minimum of the PLS flow rates. Since maximum value for the organic flow 

rate is desired, Eq. (11) yields: 

 

𝐹(𝐿𝑂)𝑜𝑝𝑡 = β1 ∙ min{𝐹(𝑃𝐿𝑆𝑆), 𝐹(𝑃𝐿𝑆𝑃)} = β1 ∙ 𝐹(𝑃𝐿𝑆)𝑚𝑖𝑛      (16) 

 

where the minimum of the two PLS flow rates, PLSS and PLSP, is marked as 𝐹(𝑃𝐿𝑆)𝑚𝑖𝑛. 

 

The electrolyte flow rate, F(LE), has an optimum point, which can be calculated by setting the derivative of the profit 

function (with the optimal organic flow rate) to zero. The derivative is taken in relation to the electrolyte flow rate. 

The optimal electrolyte flow rate is now defined as follows: 
 

𝐹(𝐿𝐸)𝑜𝑝𝑡 =
1

2𝑤4
[𝑤1  𝑤2   β1𝑤3  0  𝑤5 − (1 − 𝑤6)  𝑤7] ∙  

[F(PLSS) F(PLSP) F(PLS)𝑚𝑖𝑛  F(LE) c(PLS) c(LE) vol]𝑇        (17) 
  

            

This is the optimal value for the electrolyte flow rate if the maximum electrolyte flow rate limitation is not exceeded, 

as required in Eq. (12). The maximum for the electrolyte flow rate is smaller than the optimum organic flow rate 

divided by β2: 



 

     

2

1
( ) min ( ) , ( )optF opt optF LE F LE F LO



 
  

 
       (18) 

 

Now the setpoints for the rich electrolyte and loaded organic copper concentration can be formulated on the basis of 

the optimum manipulated variables, the disturbance variables and optimization parameters as follows: 
 

𝑐𝑅𝐸𝑠𝑝 = [𝑤1  𝑤2  − β1𝑤3 −𝑤4  𝑤5  𝑤6   𝑤7] ∙  

[F(PLSS) F(PLSP) F(PLS)𝑚𝑖𝑛  F(LE)𝑜𝑝𝑡𝐹  c(PLS) c(LE) vol]𝑇      (19) 

 

𝑐𝐿𝑂𝑠𝑝 = [𝑟1  𝑟2  − β1𝑟3 −𝑟4  𝑟5  𝑟6  𝑟7] ∙  

[F(PLSS) F(PLSP) F(PLS)𝑚𝑖𝑛  F(LE)𝑜𝑝𝑡𝐹  c(PLS) c(LE) vol]𝑇      (20) 

 

The maximal production can be calculated by substituting Eqs. (16) and (18) to Eq. (10) as follows: 

 

𝑃 = [𝑤1   𝑤2  β1𝑤3 −𝑤4  𝑤5 − (1 − 𝑤6)  𝑤7] ∙  

[F(PLSS) F(PLSP) F(PLS)𝑚𝑖𝑛  F(LE)𝑜𝑝𝑡𝐹  c(PLS) c(LE) vol]𝑇 ∙ F(LE)𝑜𝑝𝑡𝐹    (21) 

 

4.3 Design of siso and mimo controllers 

 
The pairing of the controlled (loaded organic and rich electrolyte copper concentrations) and manipulated (PLS series 

and parallel, organic and electrolyte flow rates) variables was performed with Bristol’s relative gain array analysis 

[Seborg et al, 2004, Skogestad and Postlethwaite, 2005]. The pairing was first studied with full non-square matrix 

RGA for both the transfer function matrices at frequencies  𝜔 ∈ [0, 1 5⁄ ] . For the loaded organic copper concentration 

the pairing at lower frequencies (𝜔 < 0.1) favors organic flow rate, F(LO), but in higher frequencies (𝜔 > 0.1) the 

pairing with PLS series flow rate, F(PLSS) becomes more favorable. However, the RGA values for the organic flow 

rate pairing do not fall below 0, so this pairing is still valid at the frequency range. For the rich electrolyte copper 

concentration, the RGA analysis favors pairing with electrolyte flow rate.  

     

On the basis of the relative gain array analysis of the linearized dynamic model, favorable pairing of the controlled and 
manipulated variables for the feedback controllers is loaded organic copper concentration with organic flow rate, 

c(LO)-F(LO), and rich electrolyte copper concentration with electrolyte flow rate, c(RE)-F(LE). The additional 

manipulated variables, PLS flow rates, F(PLSS) and F(PLSP), are considered as measured disturbances. The 

feedforward compensators (rejecting disturbances) are constructed for the PLS series flow rate with organic flow rate, 

F(PLSS)-F(LO), the PLS parallel flow rate with organic flow rate, F(PLSP)-F(LO), the PLS copper concentration with 

organic flow rate, c(PLS)-F(LO), and lean electrolyte copper concentration with electrolyte flow rate, c(LE)-F(LE). 

 

The single-input single-output control strategy and comparable multi-input multi-output control strategy are designed 

on the basis of the feedback control structure, utilizing the linearized dynamic model of the copper solvent extraction 

process. These strategies are alternatives for the stabilizing control level in the proposed control hierarchy. 

 

In the single-input single-output control strategy the first control loop consists of the loaded organic copper 
concentration, c(LO), which is controlled by manipulating the organic flow rate, F(LO). The second control loop 

consists of rich electrolyte copper concentration, c(RE), which is kept in setpoint by manipulating electrolyte flow rate, 

F(LE). For the single-input single output strategy PI controllers are used. 

 

In the multi-input multi-output control strategy the model predictive controller is designed on the basis of the linearized 

dynamic model of the copper solvent extraction process. The two controlled variables are loaded organic copper 

concentration, c(LO), and rich electrolyte copper concentration, c(RE). The manipulated variables are organic flow 

rate, F(LO), and electrolyte flow rate, F(LE). 

 

The feedforward controllers are constructed to compensate for changes of PLS and lean electrolyte concentrations, 

c(PLS) and c(LE), and PLS series and parallel flow rates, F(PLSS) and F(PLSP), as shown in Fig. 5. The feedforward 
compensators are of the lead-lag type. 

 



 

     

 

Fig. 5. Control strategy: the loaded organic copper concentration, c(LO), is feedback controlled (FB1) with organic flow F(LO). The 
rich electrolyte copper concentration, c(RE), is feedback controlled (FB2) with electrolyte flow, F(LE). The disturbances are 
compensated with feedforward controllers, for PLS series flow, F(PLSS) with FF1, for PLS parallel flow, F(PLSP), with FF2, for PLS 
copper concentration, c(PLS), with FF3, and lean electrolyte copper concentration, c(LE) with FF4. 

 

The difference between the single input-single output and multi-input multi-output control strategies is illustrated in 

Fig. The compensation of input concentration disturbances and set-point tracking of the loaded organic and rich 

electrolyte concentrations is done by changing the organic and electrolyte flow rates. Change in the flow rates changes 

organic to aqueous ratio in mixers and thus changes the output concentration of the process. An effective way to 

compensate concentration disturbances would be to change the reagent volume percent in the organic solution, but due 

to lack of instrumentation and measurements, this is not currently a realizable approach. 

 

 

Fig. 6. The single-input single-output (SISO) and multi-input multi-output (MIMO) control strategies. The SISO strategy utilizes two 
PI controllers marked with PI1 and PI2, and the MIMO strategy utilizes model predictive controller, marked with MPC. The additional 
feedforward compensators are marked with FF. The setpoints are marked with subscript sp. 
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The two PI-controllers were tuned with the internal model control (IMC) rules. In order to take into account the effects 

of the loop interactions, MIMO Nyquist stability criteria is tested, as suggested by Skogestad and Postlethwaite [18]. 

The determinant was calculated for the transfer function of the system with the controllers, det(I+Gp(s) Gc(s)), where 

the time delays were estimated with first order pade approximations. The Nyquist plot of the determinant does not 

encircle origin, therefore the process with PI controllers is stable. 

 

The model predictive controller is based on the eight order state space model (for MPC see for example Maciejowski 

[19]). The cost function to be minimized has the following form:  

 
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n nu
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J y k d i y k d i k u k j 
 

               (22) 

where yr is the reference trajectory, y is the output prediction and u is the input value and k is the present moment and 

d is the discrete dead time. The tuning parameters are the following: the prediction horizon (n2-n1), the control horizon 

nu, and the weights γy and γu. The output weight γy is penalizing the error between the output and the reference 

trajectory, and γu is penalizing the changes in the manipulated variable. The MPC tuning was done by adjusting the 

following parameters: prediction horizon (n2-n1), control horizon (nu), cost function weights for: controlled variable 

weights (γy) and manipulated variable rate weights (γu). Hard constraints were not assigned. Initial choices for the 

parameters were the following: prediction horizon was the longest settling time of the manipulated variable - controlled 

variable pairs, and the control horizon the larger than longest dead time of the manipulated variable-controlled variable 

pairs. The rich electrolyte copper concentration had larger weight than loaded organic copper concentration to 
emphasize the importance of the end product quality. The manipulated variable rate weights were tuned to avoid big 

changes and oscillating behaviour. The feedforward compensators were lead-lag type, designed by using the transfer 

function models between the controlled variable-disturbance variable and the controlled variable-manipulated variable. 

The time delay parts of the transfer function models were discarded. The feedforward controllers were added one by 

one on the top of the feedback controllers, and the coefficients were tuned. The controllers were tuned to have the best 

possible performance for disturbance rejection and setpoint tracking in different scenarios. The performances under 

different scenarios are compared in the following in Sections 5.1 and 5.2. For further details on the control strategy 

and controller tuning, please refer to Komulainen [20]. 
 

 

5 Control performance 

 
5.1 Control performance for disturbance rejection 

 

The disturbance rejection performances of the following controller combinations were tested and compared: open loop 

(OL) with no controllers, both of the two PI controllers (PI), both the two PI controllers with four feedforward 

compensators (PI+FF), model predictive controller (MPC), model predictive controller with four feedforward 

compensators (MPC+FF). 
 

The testing was done by introducing ±5% changes to the following the inputs and input combinations one at the time: 

PLS series flow rate F(PLSS), PLS parallel flow rate F(PLSP), PLS copper concentration c(PLS), lean electrolyte 

copper concentration c(LE), simultaneous with different signs for PLS series flow rate and PLS copper concentration  

F(PLSS) and c(PLS), simultaneous with same signs for PLS parallel flow rate and PLS copper concentration  F(PLSP) 

and c(PLS), simultaneous for PLS copper concentration and electrolyte copper concentration c(PLS) and c(LE). The 

measure to compare the controller combinations was integral of absolute error (IAE) between the constant setpoints of 

the controlled variables and the outputs of the controlled variables under control. 

 

The results with the model predictive controller were better for disturbance rejection than with PI-controllers for the 

loaded organic copper concentration, as can be seen from Table 3. With the feedforward compensators, PI controllers 

performed better to reject the F(PLSS), F(PLSP) and c(PLS) disturbances. All the combined disturbances are rejected 
more efficiently with MPC than with PI controllers as shown in Fig. 7.  

 

The disturbance rejection for rich electrolyte copper concentration is clearly better with MPC than with PI controllers, 

as presented in Table 3. Addition of the feedforward controller for lean electrolyte copper concentration improves the 

disturbance rejection characteristics for MPC. The other feedforward compensators slightly worsen the result for rich 

electrolyte copper concentration, but on the other hand the result for loaded organic copper concentration is 

significantly improved. 

 

 

 

 
 



 

     

 
Table 3 
The integral of absolute error (IAE) for loaded organic copper concentration c(LO) and rich electrolyte copper concentration c(RE) 
with disturbances. 

 
 F(PLSS) F(PLSP) c(PLS) c(LE) F(PLSS) and c(PLS) F(PLSP) and c(PLS) c(PLS) and c(LE) 

c(LO) OL 66.5 57.7 134.3 57.9 200.5 191.7 76.4 

c(LO) PI 9.1 7.8 18.4 4.1 27.6 26.2 21.0 

c(LO) PI+FF 4.0 1.9 7.1 2.6 9.9 7.1 7.2 

c(LO) MPC 7.2 6.1 14.3 7.1 21.4 20.4 20.3 

c(LO) 

MPC+FF 

4.2 2.2 8.0 2.0 11.4 9.1 8.7 

c(RE) OL 83.9 72.8 169.7 669.1 253.3 242.1 506.7 

c(RE) PI 8.0 6.8 16.0 40.8 24.0 22.8 31.0 

c(RE) PI+FF 7.7 5.9 15.4 7.4 22.7 21.1 19.5 

c(RE) MPC 2.4 1.9 3.3 28.5 5.6 4.9 29.5 

c(RE) 

MPC+FF 

4.9 2.9 6.7 5.5 11.2 9.5 8.9 

 

 

 

Fig. 7. Loaded organic copper concentration with +5% change to c(PLS) and F(PLSS), c(PLS) and F(PLSP), and c(PLS) and c(LE), under 
open loop control (OL), PI controllers (PI), and model predictive controller (MPC). 

 
5.2 Control performance for setpoint tracking 

 

The setpoint tracking performances of the controller combinations listed in Section 5.1 were tested and compared. The 

testing was done by introducing ±5% changes to the setpoints of the controlled variables and their combination: loaded 

organic copper concentration c(LO), rich electrolyte copper concentration c(RE), simultaneous with same signs for 

loaded organic copper concentration and rich electrolyte copper concentration c(LO) and c(RE). The measure to 

compare the controller combinations was integral of absolute error (IAE) between the setpoints of the controlled 
variables and the outputs of the controlled variables under control. 

 

The results with the model predictive controller were better for loaded organic copper concentration and rich electrolyte 

copper concentration setpoint tracking than with PI-controllers, as can be seen from Table 4. MPC was able to minimize 

the control loop interactions, and the overall performance was better than with PI-controllers. The controller interaction 

is significantly decreased with MPC, for example the setpoint tracking of the rich electrolyte copper concentration 

c(RE) has value 4.8 with MPC and 15.7 with PI-controllers. Within the MPC structure the rich electrolyte copper 

concentration setpoint tracking had higher coefficient than loaded organic copper concentration, and thus here the loop 

interaction plays against the good result for the loaded organic copper concentration. MPC provides better setpoint 

tracking than PI-controllers. Adaptation to the new loaded organic setpoint if fast with small overshoot. The 

simultaneous setpoint change for the both controlled variables results in similar responses between MPC and PI 
controller, however, as can be seen from Table 5 and Fig. 13, MPC is performing slightly better than PI controllers 

(29.1 and 30.2 correspondingly). Also the effect of the rich electrolyte copper concentration setpoint change is far 

smaller with model predictive controller than with PI controllers (IAE 4.8 and 15.7 correspondingly). 

 

 

 

 

 



 

     

Table 4 
The integral of absolute error (IAE) for loaded organic copper concentration c(LO) and for rich electrolyte copper concentration 
c(RE) with set point tracking. 

 c(LO) c(RE) c(LO) and c(RE) 

c(LO) OL 191.4 0.0 191.4 

c(LO) PI 30.8 15.7 30.2 

c(LO) MPC 25.7 4.8 29.1 

c(RE) OL 0.0 906.0 906.0 

c(RE) PI 19.9 64.4 81.5 

c(RE) PI+FF 19.9 64.4 81.5 

c(RE) MPC 7.7 58.5 58.4 

c(RE) MPC+FF 8.1 58.4 58.0 

 
Table 5 
The production increase, and variation decrease for rich electrolyte and loaded organic copper concentration with the control 
system compared to the manual control. 

 Production AAE c(RE) AAE c(LO) 

PI +4.93% -75.15% -71.09% 

PI+FF +4.92% -84.11% -80.43% 

MPC +4.93% -81.33% -71.20% 

MPC+FF +4.93% -91.75% -73.49% 

 

 

5.3 Comparison of the control strategies to the manual control strategy 

 

In order to verify the benefits of the proposed single-input single-output and multi-input multi-output control strategies, 

the performances of the proposed control strategies are compared to the performance of the manual control strategy of 

the case copper solvent extraction plant. The control strategies are compared to each other by the average copper 
production and the average absolute error around the setpoints on the basis of the simulated and measured outputs. 

 

The average production is determined as follows: 
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       (13) 

 

where N is the total number of samples. 

 

The average absolute error between output copper concentration c and the setpoint csp is calculated as follows: 
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         (24) 

The industrial measurements are representing the manual control strategy. The setpoints for the controlled variables 

are determined as one day moving average of the corresponding industrial online measurement.  

 

For the single-input single-output and multi-input-multi-output control strategies, the inputs to the simulator with the 
controllers are the industrial measurements and adapted parameters for equilibrium isotherm and efficiency correction 

parameters. The setpoints for the controlled variables are determined by solving the optimization problem with the 

offline process data. 

 

In the optimization the minimum and maximum flow rates of the industrial data are considered as additional 

constraints. Also the organic to aqueous ratios are determined on the basis of the maximum value for the extraction 

and the minimum value for the stripping from the industrial data.  

 

No assumptions are made of the operation of the electrowinning, but the lean electrolyte copper concentration 

measurements are used as such. This assumption might affect the control results negatively, since the rich electrolyte 

control loop has to do extra work to stabilize the disturbances from lean electrolyte copper concentration.  

 
The production increase with the different control strategies compared to the manual control is presented in Table 5. 

Compared to the industrial test data set, the production was increased almost 5% with all the control strategies. The 

production increase is due to the efficient optimization and therefore the percentages with all the control strategies are 

similar. 



 

     

 

For the first data set, the production under the PI controllers with the feedforward compensator is presented in Fig. 8: 

rich electrolyte copper concentration with +5% changes to c(LO) setpoint, c(RE) setpoint, and simultaneously to both 

setpoints, under open loop control (OL), PI controllers (PI), and model predictive controller (MPC).  

 

 

Fig. 8.  Rich electrolyte copper concentration with +5% changes to c(LO) setpoint, c(RE) setpoint, and simultaneously to both 
setpoints, under open loop control (OL), PI controllers (PI), and model predictive controller (MPC). 

 

 
Fig. 9, and under MPC control with the c(LE) feedforward compensator is shown in Fig. 10. The production is clearly 

higher and has less variation compared to the manual operating practice. The visual comparison shows that the model 

predictive controller also causes less variation to the production compared to the PI controllers with the feedforward 

compensators.  

 

 

Fig. 9. Copper production: industrial measurement (dotted) and PI+FF controlled in simulation environment (solid). 

 



 

     

 

Fig. 1. Copper production: industrial measurement (dotted) and MPC+FF controlled in simulation environment (solid). 

 

The variation decrease with the different control strategies compared to the manual control is presented in Table 5. The 

variation in the controlled variables is decreased between 70-90%. For the rich electrolyte copper concentration the 
decrease is up to 90% and for the loaded organic copper concentration up to 80%. The difference between the 

controllers is mainly due to the tuning of the controllers. The MPC is tuned to track the rich electrolyte copper 

concentration better than loaded organic copper concentration. 

 

The PI controller with the feedforward compensators tracks better the setpoint for the loaded organic copper 

concentration, as shown in Fig. 11, than the MPC with the feedforward compensator, as presented in Fig. 12. The 

optimization for this data set reduces the setpoint of the loaded organic copper concentration to lower level than the 

measurement, but the flow rate is higher and thus, more copper is transferred from pregnant leach solution to the 

organic solution. 

 

Fig. 11. Loaded organic copper concentration: industrial measurement (dotted, black), PI+FF controlled in simulation environment 
(solid, blue), and setpoint (red, dashed). 



 

     

 

Fig. 12. Loaded organic copper concentration: industrial measurement (dotted, black), MPC+FF controlled in simulation 
environment (solid, blue), and setpoint (red, dashed). 

 
The setpoint tracking for the rich electrolyte copper concentration is more efficient with the MPC with feedforward 

compensator, as shown in Fig. 13, than with the PI controllers with feedforward compensators, as presented in Fig. 14. 

The rich electrolyte copper concentration setpoint is higher than the measurement, but the flow rate slightly lower. 

 

 

Fig. 13. Rich electrolyte copper concentration: industrial measurement (dotted, black), PI+FF controlled in simulation environment 
(solid, blue), and setpoint (red, dashed). 

 



 

     

 

Fig. 14. Rich electrolyte copper concentration: industrial measurement (dotted, black), MPC+FF controlled in simulation 
environment (solid, blue), and setpoint (red, dashed). 

 

6 Conclusions 

 

A two level control strategy that stabilizes and optimizes the production of an industrial copper solvent extraction 

process was designed and tested. First, the linear transfer function and state space models were obtained to follow 

adequately well the trends of the industrial data sets. The controlled variable – manipulated variable pairing was 

performed using the relative gain array (RGA). The optimization algorithm was developed on the basis of the linear 

process models. Next, the SISO and MIMO controllers were designed on the basis of the linear process models. Both 

control strategies were tested for setpoint tracking and disturbance rejection with successful results. 

  
The controllers’ performances were compared to the manual control practice in simulation environment with the two 

industrial data sets. The benefits of the control system were verified by comparing the variation of the controlled 

variables and the produced copper tons. With PI controllers the variation in the rich electrolyte copper concentration 

was decreased by 75-85% and with MPC the decrease was around 80 - 90% on average. The copper mass production 

was increased with about 5% with both controllers. The control results are very encouraging for the further testing of 

the control system on the industrial copper solvent extraction plant. 
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List of symbols and abbreviations 

 

LIST OF THE SYMBOLS 

aij, bij,cij  parameters of the transfer function model 

A,B  parameters of extraction equilibrium isotherm 

C,D  parameters of stripping equilibrium isotherm 

c  concentration of copper if not otherwise specified   (g/l) 

c*  equilibrium concentration      (g/l) 

caq  copper concentration of aqueous solution    (g/l) 

corg   copper concentration of organic solution    (g/l) 
f  general function 

F  flow rate       (m3/min) 

Gp,tot  total transfer function of the process 

Ki  mass transfer coefficient, i=E1,E2,EP,S    (1/min) 

Mi  matrix 

N  number of samples 

P  profit function of the optimization problem 

ri  steady state gain of a transfer function 

s  Laplace transform variable 

t  time        (min) 



 

     

V  volume        (m3) 

Vm  volume of the mixer      (m3) 

Vs  volume of the settler      (m3) 

wi  steady state gain of a transfer function 

Ymeas  measured value 

Ymodel  model prediction 

 

i  Extraction / stripping efficiency, i=E1,E2,EP,S 
β1 , β2  the organic to aqueous flow ratio constraints 

 i  Equilibrium constant, i=E1,E2,EP,S 
ω  frequency       (1/rad) 

 

aq  aqueous 

el  electrolyte 
max  maximum value 

min  minimum value 

opt  optimum value 

org  organic 

out  out of mixer / unit 

outs  out of settler 

 

ABBREVIATIONS 

AAE  average absolute error 

acid  acidity of the electrolyte solution 

BO  Barren organic solution 
c(BO)  copper concentration of the barren organic solution 

c(LE)  copper concentration of the lean electrolyte solution 

c(LO)  copper concentration of the loaded organic solution 

c(PLS)  copper concentration of the pregnant leach solution 

c(Raff)  copper concentration of the raffinate solution 

c(RE)  copper concentration of the rich electrolyte solution 

Cu  copper 

CV  controlled variable 

DV  disturbance variable 

E  extraction unit 

E1S,E2S,E1P Series 1 and 2 and parallel extraction units 
EW  electrowinning 

F(LE)  flow rate of the electrolyte solution 

F(LO)  flow rate of the organic solution 

F(PLS)  flow rate of the pregnant leach solution 

FB  feedback 

FF  feedforward 

FOPTD  first order plus time delay model 

H+  hydrogen ion 

IAE  integral of the absolute error index 

[IN]  vector of the input variables 

ISE  integral of the square error index 

LE  lean electrolyte solution 
LO  loaded organic solution 

MIMO  multi input – multi output 

MPC  model predictive control 

MV  manipulated variable 

OL  open loop 

[OUT]  vector of the output variables 

pH  pH level of the pregnant leach solution 

PI  PI (proportional, integral) controller 

PLS  pregnant leach solution 

Raff  raffinate solution of the extraction step 

RaffS  raffinate solution from series extraction step 
RaffP  raffinate solution from parallel extraction step 

RE  rich electrolyte solution 

RGA  relative gain array method 

S/S1H  stripping unit 



 

     

SISO  single input – single output 

SS  state space model 

SX  solvent extraction 

TF  transfer function model 

vol  reagent volume percent in the organic solution 
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