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Abstract: Artificial Intelligence methods like expert systems, fuzzy logic and 

neural networks have proved to be excellent tools for the control of mineral 

processes. This technology is currently being embedded directly into process 

equipment like flotation cells and dewatering filters. This paper presents the 

modelling module for a pressure filter. The modelling module of the intelligent 

system predicts filtration using the two-stage hybrid model. The first stage model 

is based on a numerical model for compressive cake filtration and the second stage 

model is the identified grey-box model based on the classical filtration model. The 

filtration parameters for the compressive cake filtration model were obtained from 

laboratory tests. The parameters for the classical filtration model are defined during 

filtration using the recursive least square identification method. The two-stage 

hybrid model of the on-line support system was tested in a full-size filter at a pilot 

plant. 

 

INTRODUCTION 

 

Artificial intelligence methods have attracted 

the growing interest of researchers in wide 

range of scientific and engineering fields. 

The number of applications has increased, 

and successful results have been widely 

reported. Artificial Intelligence methods like 

expert systems, fuzzy logic and neural 

networks have proved to be excellent tools 

for the control of mineral processes (Jämsä-

Jounela, et al., 1996). This technology has 

recently been embedded directly into process 

equipment like flotation cells and dewatering 

filters. 

 

This paper presents the intelligent control 

system designed for a variable-volume 

pressure filter. The system consists of the 

modelling, classification, economic, fault 

diagnosis and control modules. The 

modelling module utilises the simulation and 

real time models for predicting the filtration 

behaviour. The classification module utilises 



the neural network to classify the feed and 

states of the process. (Jämsa-Jounela, et.al., 

1998) 

 

The control and economic modules give  

suggestions for the most suitable set point 

values to the basic controllers in order to 

maintain the most economic and efficient 

operation of the filter. Fault diagnosis is an 

essential ingredient of an intelligent system. 

The aim of the fault diagnosis module is to 

indicate the undesired or unpermitted process 

states, and to take the appropriate actions for 

making the process more safe and 

economical. (Jämsä-Jounela, et.al., 1999) 

 

The intelligent control system has been 

implemented using the PC based InTouch 

system (Wonderware). The additional parts 

of the control system have been made using 

the Microsoft Visual C++ 1.52. The 

simulations were carried out using the 

MatLab 4.2c.1 version. 

 

The objective of this paper is to describe the 

modelling module of the intelligent system. 

The simulation models were constructed for 

compressive cake filtration at apparently 

constant pressure, which takes into account 

clogging phenomenon in the medium and the 

filter cake. These simulation models use 

commonly adopted equations for the 

compressive cake behaviour. These models 

are best suited for slightly compressible filter 

cakes. The models were first tested off-line 

by means of simulations. The experimental 

data obtained from the pilot test filter are 

compared with predictions given by the 

simulation model. The classical, constant- 

pressure filtration model using the recursive 

least square parameter identification method 

was evaluated on-line in pilot tests together 

with the simulation model. 

 

 

FILTRATION THEORY 

The classical cake filtration equation 

developed from Darcy's equation serves as 

the basis for most filtration models. 

 

p

q
m Rav c m
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wherep is the total filtration  pressure 

difference,   the viscosity of the filtrate, q  

the superficial flow rate,  av
 the average 

specific cake resistance, mc
  the mass of dry 

cake per unit area, and Rm
 the  medium 

resistance. The mass of dry cake is obtained 
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where c is a pseudo concentration defined as 

the mass of dry solids per unit volume of 

filtrate, V  the cumulative volume of filtrate, 

and A  the  filter area. The mass of dry solids 

can be calculated from the mass fraction of 

solids in the slurry s and the average cake 

concentration Cav
. 
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where   is the density of the filtrate, and s  

the density of the solids. The compressive 

cake filtration model takes into account the 

fact that the cake concentration and average 

specific filtration resistance are functions of 

the cake thickness. The average cake 

concentration is obtained from a power law 

equation 

 

C C m pav cake

m 0 1( )                   (4) 

 

where C0  and m  are empirical constants, and 

pcake  is the pressure difference over the 

cake. Similarly the average specific cake 

resistance is obtained from 

 

 av cake
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where  0  and n are empirical constants. 

Equations (4) and (5) are valid for slightly 

compressible cakes, including cakes obtained 

in the filtration of mineral slurries. The 



pressure difference over the cake is 

calculated from 

 

 p p qRcake m                      (6) 

 

When the particle size distribution of the 

slurry is broad and the fraction of small 

particles is large, clogging phenomenon can 

be very harmful. In industrial applications a 

new filter cloth loses its original permeability 

soon after it has been taken into use, and for 

a certain time afterwards the permeability of 

the cloth remains reasonably constant. The 

increase in filter medium resistance can be 

described by an empirical equation (Leu and 

Tiller 1983). 

 

   R R em

jmcake    

0 1 1 1
2

                (7) 

 

where R0  is the clean medium resistance, and 

  and j are empirical constants.  As the cake 

grows the medium clogging stops and the 

cake becomes clogged. Tiller et al. (1981) 

assumed that the cake clogging can be 

described in terms of the average cake 

resistance and a specific function of the cake 

mass 
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where   is an empirical constant.  

 

The cake thickness L can be calculated from 
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The iterative solution is started with the 

assumptions that the applied filtration 

pressure acts over the filter cake, and that the 

filter medium is clean. The superficial 

flowrate q corresponding to a certain filtrate 

volume is obtained from Equation (1). The 

filtration time is calculated cumulatively 

from the start of filtration using small volume 

increments. Holdich (1994) introduced two 

spreadsheets for the simulation of apparently 

constant pressure filtration. The first one 

gives the throughput with time, and the 

second gives the cake concentration profiles. 

 

MODELS FOR PREDICTIG THE 

FILTRATE VOLUME 

 

The modelling module of the intelligent 

system utilises the simulation models for 

predicting the filtration behaviour. The first 

algorithm used in the calculation module is 

based on Equations 1-9. This algorithm 

developed for the revised compressive cake 

filtration model uses the volume increments 

as a step increment. First the algorithm 

assumes that the applied filtration pressure is 

consumed in cake. Then the pressure drop is 

divided between the cake and the medium 

using iterative solution for the Equations (1-

9). The medium and cake clogging were 

negligible in test cases, therefore it is 

assumed that medium resistance is constant 

and that the cake clogging does not affect the 

average specific cake resistance. 

 

In filtration of mineral slurries, c, aav, and Rm 

may attain their final value quickly after a 

short start-up period. For practical purposes, 

the variation of these parameters can be 

neglected, when constant filtration lasts more 

than few minutes. Then in constant pressure 

filtration Equation (1) can be presented in the 

form 

 

𝑡 =
µ𝑐𝛼𝑎𝑣

2𝐴2𝛥𝑝
𝑉2 +

µ𝑅𝑚

𝐴𝛥𝑝
𝑉   (10) 

 

The second simulation algorithm (Holdich 

1996) uses same initial assumptions as the 

first algorithm and calculates the filtrate 

volume using time increments as a step 

increment. 

 

For real-time use of the models, the 

assumptions are made that only the time and 

filtrate volume are variable and that the 

specific cake resistance and dry cake mass 

per unit volume are constant. The equation 

(10) is written in the form 
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where the parameters a and b  can be 

described as: 
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This equation is valid over a small increment 

of time for the compressible cake, but for the 

incompressible cakes it can be used over the 

full filtration time as well. The method uses 

the recursive least square (RLS) method 

proposed in (Åström et al., 1984) to identify 

the parameters of Equation 11 as follows: 
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where N is the time instant, y the output data 

vector, P the covariance matrix,  the 

parameter vector, K the correction vector and 

 is a measurement data vector.  

 

 

When this formula is applied to the 

identification of parameters a and b, the 

following recursive equations are given 
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where the measurement vector is given by 
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the output vector y (t) = t and the parameter 

vector is presented as  
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and the covariance matrix is then defined  
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IMPLEMENTATION OF THE 

MODELLING MODULE 

 

The modelling module consists of the five 

submodules: parameter input, calculation, 

identification, drawing, and equation 

module. The parameter-input module is 

divided into two parts, the measurement and 

the constant parameter parts as presented in 

Figure 1. 

 

 

 
Figure 1. Parameter input module 

 

The measurements part gives process 

parameters: the setpoint for the filtration 

pressure and the slurry characteristics. The 

constant parameters part gives the filter 

dependent parameters as filtration area and 

incremental volume of filtrate and also the 

experimentally measured model parameters 

for the slurry.  

 



The calculation module presents the main 

measurements, the simulated results based on 

the selected model and the results of the real 

time model. Figure 2 shows the results for the 

constant time increments: measurements, the 

simulated results of the second model and the 

results of the third model calculated with the 

real time parameters a and b. 

 

 

 
Figure 2. Calculation module 

  

In the identification module the parameter 

data vector, the measurement data vector, the 

output data vector and the covariance vector 

are given as the inputs for the RLS method. 

The function returns the new parameter 

vector and the covariance matrix.  

The identification module is presented in 

Figure 3. 

 

 
Figure 3. Identification module 

 

The convergence of the covariance matrix 

and the parameter saturation during 

identification can be followed using the on-

line trends of the parameters in the 

identification module and in the drawing 

module. The drawing module is shown in 

Figure 4. After parameters a and b are 

saturated, the model can predict the 

subsequent filtrate volume very accurately in 

real-time using the RLS algorithm. The first 

figure in the drawing module shows the 

differences between the measured and 

calculated filtrate volume using the identified 

parameters. The second figure in the drawing 

module shows the comparison between the 

simulated and the measured filtrate volume. 

The last four small figures describe the 

behaviour of the covariance matrix.  

 

 

 
Figure 4. Drawing module 

 

 

EXPERIMENTAL EQUIPMENT AND 

MATERIALS 

 

The understanding of solid-liquid separation 

is important in evaluating the performance of 

filters in the existing facilities. 

 

Laboratory tests  
The empirical parameters for the filtration 

model were measured separately using a 

laboratory-scale piston press filter. The test 

filter has been designed for testing different 

kinds of mineral slurry, which may need high 

filtration pressures, and industrially applied 

filter cloth materials. The test filter has a slurry 

feeding system and a computer-controlled 

piston press filter and data collection system. 

The filter can be filled automatically with high 

concentration slurries (20% - 30% by volume), 

and can be operated in two different modes: 

constant pressure mode (Oja et al 1994) and 

gradual pressure increase mode (Oja and 



Nyström 1995). The laboratory test filter is 

presented in Figure 5 and the respective 

technical data are given in Table 1. 

 

 
Figure 5. The laboratory test filter. 

 
Table 1.  Technical data of the test filter 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The experimental procedure used in the 

measurements was divided into the following 

steps: 

 

Pre-treatment of the slurry: The slurry is first 

produced by mixing and recycling outside the 

filter chamber. The slurry pump warms up the 

slurry. The temperature of the slurry is kept 

constant by cooling the slurry tank.  
 

Preparations:  The piping below the filter 

medium is filled with water and the wetted 

filter cloth is placed on the filter medium 

support. Data collection parameters and 

operating parameters were selected. The 

required chamber height is defined and the 

filter is closed. 

 

Filling: The inner wall of the filtration 

chamber and the piston are raised in order to 

open the two feeding ports, which are located 

just above the filter medium. The slurry flows 

into the chamber and raises the piston. When 

the piston has risen to the preset position, the 

inner wall is pushed down automatically. 

 

Filtration: When the feed ports are closed, the 

filtration is started by a preset filtration 

pressure profile. The filtrate is collected on the 

weighing scale through a check valve.  

 

Expression: The pressure transmitter of the 

filtration chamber works only when in contact 

with a liquid. Thus when filtration is 

completed the control system of the filter starts 

the expression automatically using a preset 

expression pressure and continues up to the 

preset expression time.   

 

Cake drying:  After expression, the check 

valve is opened and the filling water is drained 

from the piping.  The piston is raised and the 

air or steam-drying period is started.  

Experience has shown that it is better to use 

manual control during piston lifting in order to 

avoid cake cracking.  

 

End of the cycle: After the test, the filter is 

opened, the filter cake removed and the filter 

washed. The filter is now ready for the next 

test. 

 

 Technical data 

 Horizontal filter area  78.5 cm2 

 Pressure ranges 

 Filtration                   0.3 - 20 bars 

 Expression                0.3 - 20 bars 

 Air drying                        1- 5 bars 

 Max. filter chamber height    70 mm 

 Data collection 

 Applied piston pressure  

 Pressure below the filter medium 

 Applied work cylinder pressure 

 Piston level 

 Mass of filtrate 

 Flow rate of drying air 

 Conductivity of the slurry 

. 



Pilot test filter   

The experimental tests were performed with 

a Larox PF 1.6 variable volume pressure 

filter. In this filter, a plate pack forms the 

horizontal layered filter chambers on the top 

of each other. The Larox PF 1.6 test filter 

contains only one filter chamber, but 

otherwise it has the same operations and 

control as the industrial filters. The effective 

filter area of the filter is 1.6 m2.  

 

The filtration procedure used in the pilot test 

filter was divided into the following phases: 

 

Pretreatment of the slurry: The slurry is first 

produced by mixing it in the feeding tank of 

the pilot filter. Before the actual experimental 

runs, the slurry was first filtered and the 

obtained cake resuspended into filtrate.  

 

Automatic pressure cycle: After a filtration 

cycle, the test filter is open and closing the 

filter begins a new cycle. The data collection 

begins when the filter is closed. The pressure 

sensor in the feed line measures the feeding 

and filtration pressures, as well as the drying 

air pressure, and a pressure sensor in the feed 

line of the pressing water measures the 

expression pressure.  

 

The automatic filtration cycle can have six 

steps. In this study the optional steps, cake 

washing and post wash expression, were 

omitted. The steps included in the study were 

feeding, expression, drying and cake 

discharge.  

 

Feeding: The slurry is pumped into the filter 

chamber, and filtering begins by applying the 

pumping pressure. In this study the applied 

pressures were four and seven bars. The 

pumping times were from five to ten minutes. 

 

Expression: After pumping, the feeding valve 

is closed and the diaphragm is filled with 

pressurized water. Squeezing produces more 

filtrate and completes the filtration. 

Expression was continued for one to two 

minutes. 

 

Drying: After expression, the air-drying 

valve is opened and air is blown into the filter 

chamber. The pressurized air raises the 

diaphragm and dries the cakes further.  The 

air drying time in this study was two minutes.  

 

Cake discharge:  The filter is opened and 

movement of the filter cloth discharges the 

cake. After the discharge, the filter cloth is 

washed and the filter is ready for the next 

cycle.   

 

Materials  

The slurry used in the first test series was a 

copper concentrate slurry. The concentration 

of the copper concentrate slurry was 60 % by 

weight (34 % by volume), the mean particle 

size 35 µm and the median particle size 20 

µm. The density of the dry material is 1820 

kg/m3. 

 

The second test series was a calcium 

carbonate slurry. The concentration of the 

slurry was 40 % by weight (20 % by volume), 

the mean particle size 6.6 µm and the median 

particle size 5.7 µm. The density of the dry 

material is 2700 kg/m3. 

  

RESULTS OF THE LABORATORY 

TESTS 

 

The filtration parameters were measured on 

the original slurry and on the slurry made by 

suspending the filter cakes in the filtrate in 

order to estimate the effects of recycling. 

Experimental laboratory data (Table2) 

showed that the test slurries did not block the 

cakes or the medium during the tests. The 

laboratory filtration test gives the mass of the 

dry cake, filtrate volume and the height of the 

cake at the end of the filtration period. The 

concentration of the feed was measured 

separately for each filtration test.  
 

The structure of the cakes obtained from the 

recycled copper concentrate slurry was 

denser than the structure of the cakes of the 

original slurry. This can be seen from the 

increased specific cake resistance and from 

the initial cake concentration. The mean 

particle size of the slurry did not change 

during recycling. 

 



The filtration model requires also the 

medium resistance value. Industrial filter 

cloths are not uniform and the sides of the 

cloth may be tighter than the centre. The 

measured resistance of the filter cloth varied 

from 0.2 1011 to 10.9 1011 1/m, and the mean 

value of 3.4 1011 1/m was used in the model 

calculations.  

 

 

 
Table 2. Compressibility data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SIMULATION RESULTS  

 

The applicability of the models was tested 

with history data of the pilot test filter. The 

main purpose of the pilot tests was to verify 

the filtration models. Therefore the industrial 

size test filter (Larox PF 1.6) was filled to 

maximum cake thickness in order to obtain 

constant pressure conditions. The simulation 

results of the proposed models were 

compared with measured values of 15 copper 

concentrate tests and with 50 calcium 

carbonate tests. 

 

Figure 6 shows a typical filtration curve with 

measured pressure difference. The data 

reveals interesting facts about the course of 

the filtration. The frequency of the pump 

changes after a short period, when a 

diaphragm pump feeds the slurry to the 

filtration chamber. Figure 7 shows the 

expected linear behaviour after the startup 

period. The filtration curve of the expression 

period shows the time when no more liquid 

can be removed from the cake with the 

applied pressure. The filtration curve jumps 

up at the beginning of the drying period 

(t=1400 s), when the drying air blows away 

the filtrate, which was collected in the space 

below the filter cloth. The time difference 

between this jump in the filtrate curve and the 

first measurement of the drying air pressure 

gives the estimate for time delay. 
 

 

 
Figure 6. Mass of filtrate, feed pressures and 
pressure as a function of time.   

 

 
Figure. 7.  t/V for the experiment shown in Figure 6. 

 

Figure 8 and 9 show the results of the 

measured and predicted filtrate volumes of 

the copper concentrate and calcium 

carbonate. The solid line represents the actual 

values of the process measurements, and the 

dashed line shows the prediction using the 

first simulation algorithm. The model did not 

use any measurements to update its 

predictions. 
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Experiment date:16.1.1997 

Experiment date: 16.1.1997 

   

 Original      Recycled 

   slurry                slurry 

Copper concentrate filter cakes 
 

 0    1.7 109 m/kg         6.3 109 m/kg 

n        0.41                      0.33 

C0    0.37                      0.39 

m       0.04                      0.04 

 

Calcium carbonate filter cakes 
 

 0
   5.8 1010 m/kg         4.5 1010 m/kg 

n        0.10                      0.10 

C0
   0.21                      0.21 

m       0.08                      0.08 
 



 
Figure 8. Measured and predicted filtrate volume 
based on the simulation model for the copper 
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Figure 9: Measured and predicted filtrate volume 
responses for calcium carbonate 

 

The measured filter volume of the 

experiment presented in Figure 9 together 

with the predictions by the numerical model 

for compressive cake filtration and the 

identified model are presented in Figure 10.  

The “identified” curve of Figure 10 shows 

the prediction of the filtrate volume at t=200 

s. The identified model when information is 

included about the measurements can be seen 

to converge on the true process values better 

than the model alone. 

 
Figure 10. Measured and predicted filtrate 
Experimental run number 794 

 

Figure 11 illustrates the behaviour of the 

identified parameters a and b during the 

filtration process. The responses indicate 

that the parameters have attained stable 

values at approximately t=100s, which can 

also be seen from the behaviour of the 

covariance matrix elements in Figure 12. 

After the time instant t=360 s the instability 

of the parameters behaviour can be 

observed.  Due to the identified uncertainty 

in a and b and the elements of the 

covariance matrix, less reliance can be 

placed on the dynamic model after the time 

t=360 s. 

 

 

 

 
Figure 11. Behaviour of the identified parameters a 
and b during the filtration. 
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Figure 12. Behaviour of the elements of the 
covariance matrix of the RLS- model (Experiment 
794). 

 

Figure 13 describes the behaviour of the 

feed and pressing pressure during the same 

experiment. The figure shows that the 

pressing stage starts at time t = 650 s. This 

is also clearly evident from the dynamic 

behaviour of parameters a and b in Figure 

11. After the same time instant there is 

considerable uncertainty in the filter 

performance parameters. The values of the 

covariance matrix elements also start to 

deviate considerably from the steady state 

values after the start of the pressing stage. 

 

Based on the results, the mathematical 

models of the compressive cake filtration 

are good enough to predict the first critical 

stage of filtration with sufficient accuracy. 

After the identified parameters are 

saturated, the RLS identification algorithm 

can be used for filtrate prediction during the 

time period t = 100s to t = 360 s. After the 

time instant of 360 s the filter is not 

operating optimally. 

 
Figure 13. Behaviour of the feed and pressing 
pressure in experiment 794. 

 

Figure 14 shows the predicted results of the 

shorter filtering cycle that is normally used 

in industrial applications. The behaviour of 

the model parameters a and b is stable after 

t=100 s (Figure 15 & 16) which can also be 

discovered from the behaviour of the 

elements of the covariance matrix in Figure 

17. In optimal operating conditions the 

filtration models can be used in an on-line 

support system to predict filtration 

behaviour in an industrial set-up. 

 

 
Figure 14. Predicted vs. measured filtrate volume in 
experiment 788 
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Figure 15. Feed and pressing pressures in experiment 
788 

 

 
Figure 16. Model parameters a and b in experiment 
788 
 

 
Figure 17: Elements of covariance matrix 

 

RESULTS OF THE REAL -TIME 

APPLICATION 

 

 

For real-time use it was decided to implement 

the two-stage hybrid model which combines 

the physical and grey-box model. According 

to the experimental results, the mathematical 

models of the compressive cake filtration are 

good enough to predict the first “critical” 

stage of the filtration with sufficient 

accuracy. After the identified parameters are 

saturated, the RLS identification algorithm 

can be used for filtrate volume prediction. In 

the last experiments, the system was tested in 

real-time use for two weeks at the pilot plant. 

 

The results of the long terms tests were good. 

The on-line prediction results can be used to 

monitor the operation of the pressure filter 

and to support the decision making of the 

plant operator. The display of the real-time 

intelligent control system, as shown during 

the long-term tests, is presented in Figure 18. 

 

 

 

 
Figure 18. Prediction results on the system interface. 

 

 

CONCLUSIONS 

 

In the mineral industries, the filtration 

characteristics of slurries can change 

periodically due to varying operating 

parameters of the plant, system conditions 

and physical characteristics. The current 

demands for cost effectiveness and better 
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cake-dewatering have increased the use of 

membrane filter presses. Present-day 

automation technology for monitoring filter 

performance permits high level control with 

modern artificial intelligence methods. The 

expert system has, however, to be customised 

separately for each filter and application. 

 

An intelligent control system for a pressure 

filter has been designed and the modelling 

module of this system is described in this 

paper. Two different filtration models have 

been implemented to predict the filtration 

behaviour on-line.  The mechanistic filtration 

model for the first critical filtration stage and 

the grey-box model together with the RLS-

identification method for the succeeding 

stages. The results of the prediction of the 

performance of the pilot pressure filter are 

reported by means of simulations and 

experimental tests carried out at the pilot 

plant. The results confirmed that the filtration 

models can be used in an on-line support 

system to predict filtration behaviour in an 

industrial set-up. Further work will be 

directed towards developing the other 

modules of the intelligent control system. 
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NOMENCLATURE 

 

A Filtration area, m2 

Mc mass of dry cake per unit area 

L cake thickness 

N time instant 

P covariance matrix 

K correction vector 

Q superficial flowrate, m3/s 

Rm filter medium resistance, m-1 

R0 clean medium resistance, m-1 

T time, s 

Y output data vector 

V cumulative volume, m3 

 specific cake resistance, m/kg 

avg average value of specific cake 

resistance, m/kg 

 filtrate viscosity, Pa s 

 density of the filtrate, kg/m3 

 parameter vector 

 measurement data vector 
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