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Resonances in small scatterers with impedance boundary
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Department of Electronics and Nanoengineering, Aalto University School of Electrical Engineering, 00076 Espoo, Finland

(Received 24 May 2018; revised manuscript received 22 November 2018; published 17 December 2018)

With analytical (generalized Mie scattering) and numerical (integral-equation-based) considerations we show
the existence of strong resonances in the scattering response of small spheres with a lossless impedance boundary.
With increasing size, these multipolar resonances are damped and shifted with respect to the magnitude of the
surface impedance. The electric-type resonances are inductive and the magnetic ones capacitive. Interestingly,
these subwavelength resonances resemble plasmonic resonances in small negative-permittivity scatterers but
occur in two families unlike the only-electric multipoles in the plasmonic case. The fundamental dipolar mode
is also analyzed from the point of view of surface currents and the effect of the change of the shape into a
nonspherical geometry. For dissipative impedance scatterers, maximum absorption is shown to result in the
matched-impedance case.
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I. INTRODUCTION

Slight perturbations in a system usually lead to small
changes in its response function. In electromagnetic scatter-
ing, a good example is Rayleigh scattering, which means that
the total scattered power of a particle that is small compared
with the wavelength is proportional to the sixth power of its
linear size, and thus vanishes predictably for tiny objects.
But there are exceptions: A plasmonic subwavelength particle
may have a very strong scattering response. This happens,
for example, when the relative permittivity of a sphere hits
the value −2, and the particle is capable of supporting a
localized dipolarlike surface plasmon. The magnitude of the
resonance is in practice attenuated by material losses and
radiation damping but can in principle reach very large values
for spheres with a diameter that is much smaller than the
wavelength of the incident radiation. In this paper, we report
on a similar phenomenon that can be found in other types
of small scatterers: Our analysis shows that particles with a
special type of impedance boundary can have scattering and
extinction efficiencies that grow without limit when their size
decreases in the subwavelength domain. This phenomenon
may have fundamental implications regarding the scattering
by optically small objects.

In electromagnetics, a multitude of boundary conditions
exists that can be classified into different categories [1].
Among those, much used are the perfect electric conductor
(PEC) and perfect magnetic conductor (PMC) boundaries, on
which the tangential electric (PEC) or tangential magnetic
(PMC) field has to vanish. These conditions are special cases
of the impedance boundary condition (IBC) which requires
the following relation between the tangential electric (Et ) and
magnetic (Ht ) fields,

Et = Zsn × (η0Ht ) (1)

on the surface with unit normal vector n. The surface
impedance is a naked number, having units of free-space
impedance η0 = √

μ0/ε0. For the impedance surface to be

lossless, Zs has to be purely imaginary (see Sec. 3.6 in
Ref. [2]). A passive (dissipative) surface has a positive real
part of Zs , and correspondingly the negative real part means
an active surface.

The history of the IBC concept reaches back to the 1940’s
[3,4] when it was introduced in connection with the analysis of
radio-wave propagation over ground. The scattering problem
involving IBC objects has been treated in some studies in
the past (see Sec. 10.4 in Ref. [5], and Refs. [6,7]), but it
seems that the fundamental phenomenon of resonance modes
in small particles had not received attention earlier. The under-
standing of such mechanisms in the scattering problem opens
up possibilities to tailor structures with desired electromag-
netic responses. This complements other approaches that exist
to engineer the scattering characteristics of material objects,
such as metasurface-based manipulations [8–10] and various
principles to reduce visibility, such as mantle cloaking [11].

II. SCATTERING BY AN IBC SPHERE

Let us first compute the interaction of an IBC sphere with
an incident electromagnetic plane wave in free space. The
incident field will be scattered from the sphere, and the scat-
tered field can be expanded in an infinite series of spherical
harmonic functions. The expansion coefficients follow from
the boundary condition at the impenetrable surface of the
sphere. Following mutatis mutandis the classical Lorenz-Mie
analysis, we arrive at the electric (an) and magnetic (bn)
scattering coefficients,

an = x jn−1(x) − n jn(x) + iZs x jn(x)

x h(1)
n−1(x) − n h(1)

n (x) + iZs x h(1)
n (x)

, (2)

bn = x jn−1(x) − n jn(x) + (i/Zs )x jn(x)

x h(1)
n−1(x) − n h(1)

n (x) + (i/Zs )x h(1)
n (x)

. (3)

Here, x = 2πa/λ is the size parameter of the sphere with
radius a, and jn and h(1)

n are the spherical Bessel and
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FIG. 1. Scattering (extinction) efficiency of lossless impedance
spheres as functions of size parameter x, for certain values of Xs ,
which is the (negative of the) normalized surface reactance. Left:
Solid blue, Xs = 0 (PEC); long-dashed orange, Xs = −0.2; short-
dashed green, Xs = −0.5; dotted red, Xs = −1. Right: Solid blue,
Xs = ±∞ (PMC); long-dashed orange, Xs = −5; short-dashed
green, Xs = −2; dotted red, Xs = −1.

Hankel (of the first kind) functions of order n. The convention
exp(−iωt ) is applied to map the sinusoidal time dependence
into complex numbers. From these coefficients, the scattering
(sca), extinction (ext), and absorption (abs) efficiencies can
be computed according to the same principle as with classical
efficiencies of penetrable spheres (see Sec. 4.4 in Ref. [12]),

Qsca = 2

x2

∞∑
n=1

(2n + 1)(|an|2 + |bn|2), (4)

Qext = 2

x2

∞∑
n=1

(2n + 1)Re{an + bn}, (5)

Qabs = Qext − Qsca. (6)

The efficiency is a dimensionless figure of merit, e.g., the
scattering efficiency is the scattering cross section divided by
the geometrical cross section of the particle. The series (4) and
(5) converge. The larger the sphere in terms of wavelength, the
more terms are needed. We use the Wiscombe criterion for the
necessary number of terms (Nmax = x + 4 3

√
x + 2) to truncate

the series [13].
With this mathematical equipment, we can calculate the

scattering and extinction behavior of spheres with arbitrary
surface impedance and size. For lossy scatterers (Zs has a
nonzero real part), all three efficiencies are different while
in the lossless case (Zs is purely imaginary), the absorption
efficiency vanishes and Qsca = Qext. Following the notation
of circuit theory, we write the surface impedance as

Zs = Rs − iXs (7)

into the surface resistance Rs and surface reactance Xs . The
reactance Xs is positive for inductive surfaces, and negative
for capacitive. The particularly interesting finding from our
studies concerns lossless scatterers for which the surface
impedance is Zs = −iXs . We plot the scattering efficiencies
of IBC spheres as functions of size parameter x for different
values of the surface impedance in Fig. 1. Due to the lossless
character of the sphere, the scattering efficiency equals the
extinction efficiency.

As to their scattering efficiency, the PEC (Zs = 0) and
PMC (1/Zs = 0) spheres behave identically (the two blue
curves in Fig. 1). However, the functional form of the re-
sponses is far from trivial for intermediate surface impedance
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FIG. 2. Scattering (extinction) efficiency of lossless impedance
spheres as functions of the surface reactance parameter Xs . The size
parameter is x = 0.5 (solid blue) and x = 0.2 (long-dashed orange).
Due to the broad range of Xs in the left-hand side figure, very high-
order resonances cannot be distinguished.

values. As the value of the reactance Xs decreases from the
PMC limit, a gradual increase in scattering amplitude takes
place over the entire range. The evolution leads to oscillations,
and once the surface reactance reaches small (negative) val-
ues, the whole curve is dominated by the resonances. In the
PEC limit (Xs is close to zero), the resonances, riding on top
of the gently rolling PEC curve, become vanishingly narrow.

The broadest (dipolar) resonance for very small spheres
appears at −Xs ≈ x, and the higher-order modes follow with
−Xs ≈ x/n for integers n. Figure 2 shows a closer view of
the resonances, showing the positions of quadrupolar and oc-
topolar modes for size parameters x = 0.5 and x = 0.2. The
amplitude of the resonances is max{Qsca} ≈ 2(2n + 1)x−2,
being 24, 40, and 64 for the three lowest modes in the case
of x = 0.5, and 150, 250, and 350 for x = 0.2.

Figure 3 illustrates the scattering characteristics as a func-
tion of the size parameter and the surface impedance. The
effect of increasing sphere size is to soften the resonances
and shift their position towards larger values of the imaginary
part of the surface impedance. Two clusters of resonance

FIG. 3. A contour plot of the scattering efficiency of an
impedance sphere as function of its surface reactance and the size
parameter x.
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FIG. 4. The imaginary part of the electric surface current (left)
and the real part of the magnetic surface current (right) for an IBC
sphere with size parameter x = 0.1 and homogeneous scalar surface
impedance Zs = i0.101. The incident wave is propagating upwards
from the bottom.

modes exist, one for positive and one for negative Xs . The
resonances at Im{Zs} > 0 are due to the maxima of the bn

Mie coefficients (3), and hence are magnetic-type resonances,
while the resonances for negative Im{Zs} arise from an (2),
being of electric type. Despite the different visual appearances
of the two clusters, they follow the symmetry

Qsca(x,Xs ) = Qsca(x,−1/Xs ). (8)

To gain an understanding of the mode pattern of the
lowest resonance, Fig. 4 displays the induced electric Js

and magnetic Ms surface currents on the sphere for the
case x = 0.1 and Zs = i0.101, with a plane-wave excitation.
The surface currents are connected to the tangential fields
as Js = n × H and Ms = −n × E. The current distributions
show clearly a magnetic dipole type of structure (circulating
electric current). Due to the boundary condition (1) where the
surface impedance is imaginary, the currents have to be in 90◦
phase shifted, and also rotated by 90◦ on the sphere surface.
The tenfold magnitude of the electric current compared with
the magnetic follows from the amplitude of the surface reac-
tance. [The figures display only the imaginary (real) part of
Js (Ms); the out-of-phase components are around 3000 times
smaller.]

The resonance structure of small IBC spheres, although
resembling that of subwavelength plasmonic scatterers, has
its own character. While plasmonic resonances are due only
to the electric multipoles, here the electric and magnetic
resonances are dual as seen in Eq. (8).

III. DISSIPATIVE SCATTERERS

When the surface impedance Zs has a real part, the surface
is no longer lossless. Hence also the three efficiencies in
(4)–(6) are different. For passive surfaces (the real part of Zs

is positive), there is absorption (Qabs > 0), and in the case of
active surfaces, absorption is negative. The interplay between
scattering, absorption, and extinction for lossy impedance
spheres is depicted in Fig. 5 for two cases: Zs has real and
positive values 1 and 10.

The dominance of absorption over scattering is conspic-
uous for small spheres in Fig. 5: The extinction is mainly
due to absorption when x is small. This phenomenon is also
seen in the Taylor expansions of the scattering efficiencies
(4) and (5). The ordinary Rayleigh scattering dependence
Qsca ≈ (16/3)x4 holds for scattering, while the absorption
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FIG. 5. Extinction (solid blue), scattering (long-dashed orange),
and absorption (short-dashed green) efficiencies for spheres with
lossy surface impedance as a function of the size parameter: Zs = 1
(left), Zs = 10 (right).

efficiency has a square dependence on the size parameter,

Qabs ≈ 6(Zs + 1/Zs )x2. (9)

This square dependence of absorption efficiency on the size
parameter of IBC spheres differs from the corresponding be-
havior of the absorption of lossy penetrable dielectric spheres
in which the dependence is linear in the small-particle limit
[14], and the maximum absorption occurs when the losses
match the radiative damping term [15,16]. For small spheres
with fixed x, the maximum absorption takes place for increas-
ing Zs or 1/Zs , but as the size parameter is larger than 0.4,
the maximum is strongest for the “matched-impedance” case
Zs = 1 (for which the scattering achieves its minimum). Such
a sphere is an example of a zero-backscattering object [17].

The efficiencies are invariant with respect to the change
Zs → 1/Zs . Therefore (8) can be written for general complex
IBC spheres as Q(x,Zs ) = Q(x, 1/Zs ), valid for all three
efficiency quantities and Zs = Rs − iXs .

Figure 6 shows contour plots of the three efficiencies as
functions of the size parameter and the (real-valued) surface
impedance. In agreement with the extinction paradox (see
Sec. 4.4.3 in Ref. [12], and Ref. [18]), the extinction efficiency
approaches the value 2 for large spheres, independent of the
surface impedance. The convergence can be slow if |Zs | ≈ 1:
To be within 1% of this limiting value, x needs to be around
1000.

IV. NONSPHERICAL OBJECTS

The sphere is an extravagantly symmetric shape. It is fair
to raise the question whether the IBC resonances remain
if the spherical symmetry is broken. As an answer, we com-
pute the scattering behavior in the vicinity of the resonance of
the magnetic dipole for an IBC superspherical object, using
the numerical surface-integral-equation method based on the
electric field integral equation formulation for IBC scatterers
[19,20]. (Appendix A gives the computational details.) The
surface of such an object is defined by

|x|p + |y|p + |z|p = ap. (10)

The value p = 2 reproduces a sphere with radius a, p = 1
an octahedron, and for increasing p, the shape approaches
a cube [21]. Figure 7 shows how the scattering response, in
particular, the position of the main resonance, shifts with the
shape of the object. Not surprisingly, the spherical geometry
gives an extremum. As an additional numerical illustration,
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FIG. 6. Extinction (left), scattering (center), and absorption (right) efficiencies of a lossy IBC sphere as functions of the size parameter
(horizontal axis x) and the (logarithmic) surface impedance.

Appendix B shows the computed resonance structure for an
ellipsoidal IBC object.

V. DISCUSSION

The question about the material realization of these scat-
terers remains. In engineering electromagnetics, the boundary
condition has been used as an approximation to interfaces
between materially strongly contrasting media, often with
success, such as in the response of metal surfaces in the
microwave region. However, interfaces over which the mate-
rial parameters only change moderately cannot be accurately
described by a boundary condition due to the fact that the
relation between the tangential electric and magnetic fields
depends on the incidence angle and polarization of the inci-
dent wave. A remedy to the synthesis problem is the so-called

FIG. 7. The magnitude of the scattering efficiency of a small
lossless IBC quasispherical particle in the plane of the surface
impedance and the supersphere parameter p. Throughout the p scale,
the volume of the particle is the same as the volume of a sphere with
p = 2 for which x = 0.1. The insets show the electric surface current
distributions for cases (a) p = 5 and (b) p = 1.2.

waveguiding material [22], which is an anisotropic medium
that has large components in the permittivity and permeability
dyadics in one direction. Cut perpendicular to this direction,
the material surface behaves as an impedance surface since
the large values of the normally directed material parameter
components force the longitudinal fields to vanish, and the
fields in the material remain transversal. Adding a parallel
metallic plate at a certain depth, the waves are reflected and
travel as in a waveguide, and the field relation can be manipu-
lated by varying the transversal permittivity and permeability
components of the medium. Another approach to materialize
a structure mimicking the surface reactance is to make use
of frequency-selective-surface (FSS) principles [23,24] and
carve a regular subwavelength pattern of holes on a conduct-
ing metallic surface, thus manipulating the ratio between the
averaged electric and magnetic fields to produce the desired
surface impedance. For instance, the idea of nanoparticles
coated with a thin layer of graphene [25] can be embraced
from the point of view of the IBC approach with its two
classes of resonances, thus exploiting both the inductive and
capacitive regions of graphene spectrum.

As a final note, the fascinating resonance spectrum de-
scribed in this paper is given as a function of the size param-
eter which is essentially a product of frequency and absolute
size. Hence it can describe scattering functions of the sphere
for varying frequency or a single-frequency response of a
distribution of spheres of varying size.

APPENDIX A: COMPUTATIONAL DETAILS IN THE
NUMERICAL EVALUATIONS OF SCATTERING

The scattering computations in this paper are based on
the surface-integral-equation approach. It can be applied for
arbitrary-shaped impedance boundary objects. In this ap-
proach, first the surface equivalence principle is used to
express the scattered electromagnetic fields in terms of the
equivalent electric and magnetic surface current densities.
Then IBC is applied to express the magnetic current in terms
of the electric one. This allows us to eliminate the magnetic
current from the equations. The resulting integral equations
are discretized and converted to a matrix equation using
Galerkin’s testing procedure and Rao-Wilton-Glisson (RWG)

235417-4
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FIG. 8. Scattering (extinction) efficiency of a small lossless
impedance ellipsoid as functions of the (imaginary part of the)
surface impedance, for six different excitations.

functions [20,26]. To simplify the numerical implementations,
IBC is enforced in the weak sense [19]. For the ellipsoid
problem (Fig. 8), the discretization has been done with 720
elements (triangles), and the number of unknowns (edges in
the triangle mesh) was 1080.

APPENDIX B: RESONANCE STRUCTURE
IN NONSYMMETRIC OBJECTS

In order to see how the scattering spectrum of an
impedance boundary object is affected by morphological
changes, we compute the scattering efficiency Qsca for an
ellipsoid with three different semiaxis lengths. This breaks
the symmetries of the sphere and the supersphere that were
analyzed in the main text.

Figure 8 shows the scattering efficiency spectra for an
electrically small ellipsoid with a lossless impedance bound-

ary condition (Zs is purely imaginary). The semiaxes of the
ellipsoid are

kax = 0.1, kay = 0.05, kaz = 0.033, (B1)

with k = 2π/λ.
The magnetic dipole resonance, which for a spherical scat-

terer occurred at Zs = 0.1i for a sphere with a size parameter
x = 0.1 as shown in the main text, is now split into three main
resonances. These happen for values around Im{Zs} = 0.115,
0.047, and 0.036, depending on the excitation.

Due to the fact that there are six basic different excitation
constellations (the wave can be incident for each of the three
axis directions, and for each of these, the electric field can take
any of the two perpendicular polarizations), the figure shows
six different curves. However, these six occur in three closely
similar pairs, which is due to the small electrical size of the
scatterer.

For example, the curves displaying the strongest resonance
are for a z-propagating wave with a y-polarized electric field
(dark blue curve) which falls very closely on the curve cor-
responding to the y-propagating wave with the electric field
polarized along the z axis (green curve). In both of these cases,
the magnetic field is x polarized into which direction the
ellipsoid has its largest semiaxis, corroborating the conclusion
that the resonance is due to a magnetic multipole. The wave
propagation direction obviously does not have a strong effect
on the resonance curve, due to the smallness of the particle
over which there is not much phase delay for the wave.

APPENDIX C: IMPEDANCE BOUNDARY
IN GRAPHENE-COATED NANOSPHERES

As a possible realization of the IBC particles, we suggest
graphene-coated nanoparticles. Graphene offers capacitive
and inductive responses at terahertz frequencies. The charac-
teristic bulk conductivity of graphene is usually modeled as a
combination of intra- and interband transitions,

σ (ω) = σintra (ω) + σinter (ω). (C1)

FIG. 9. The real (solid lines) and imaginary (dashed lines) of the surface impedance of a graphene sheet in k�. Varying the chemical
potential shifts and modifies the spectrum: εF = 0.1 eV (brown), εF = 0.1 eV (orange), and εF = 0.1 eV (purple). Graphene mobility is
assumed to be μ = 0.5 m2/(V s).

235417-5



ARI SIHVOLA et al. PHYSICAL REVIEW B 98, 235417 (2018)

With the assumption that the chemical potential of graphene
εF is much larger than the scale factor kBT , we can approxi-
mate the graphene conductivity as [27]

σintra ≈ ie2kBT

πh̄2(ω + i2�)

[
εF

kBT
+ 2 log

(
e
− εF

kBT + 1
)]

(C2)

and

σinter ≈ ie2

4πh̄
log

(
2|εF| − (ω + i2�)h̄

2|εF| + (ω + i2�)h̄

)
. (C3)

Here, the parameters are as follows: � = eu2
F

μεF
is the phe-

nomenological scattering rate (inverse of relaxation time),
μ = 0.5 m2/(V s) is value used in our computations for
the graphene mobility, uF = 106 m/s the Fermi velocity,
kB = 1.3806 × 10−23 J/K is the Boltzmann’s constant, T =
300 K is the absolute temperature, and e = 1.602 × 10−19 A s
is the electron charge.

With this model, we plot Fig. 9 which illustrates the surface
impedance of a graphene sheet for different chemical potential
values εF. We can observe two regions, one with inductive
and one with capacitive characteristics, situated below and
above a central resonant region, respectively. The inductive
region (“plasmonic”) generally experiences smaller ohmic
losses (real part of impedance) allowing the direct exploitation
of this region for localized plasmonic resonances as shown
in Ref. [25]. However, also capacitive resonances can occur,
just above the region of strong resonance. Admittedly, this
capacitive region experiences much larger losses than in the
band below the resonance. However, especially for large εF

values, there is a region where the losses achieve a minimum.
This window might allow the implementation of a new class
of “dielectric” resonances in plasmons, thus generalizing the
present-day focus on only plasmonic resonances exploited in
connection with graphene sheets [25,28].
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