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Under a strong quantum measurement, the motion of an oscillator is disturbed by the measurement
backaction, as required by the Heisenberg uncertainty principle. When a mechanical oscillator is
continuously monitored via an electromagnetic cavity, as in a cavity optomechanical measurement, the
backaction is manifest by the shot noise of incoming photons that becomes imprinted onto the motion of the
oscillator. Following the photons leaving the cavity, the correlations appear as squeezing of quantum noise
in the emitted field. Here we observe such “ponderomotive” squeezing in the microwave domain using an
electromechanical device made out of a superconducting resonator and a drumhead mechanical oscillator.
Under a strong measurement, the emitted field develops complex-valued quantum correlations, which in
general are not completely accessible by standard homodyne measurements. We recover these hidden
correlations, using a phase-sensitive measurement scheme employing two local oscillators. The utilization
of hidden correlations presents a step forward in the detection of weak forces, as it allows us to fully utilize
the quantum noise reduction under the conditions of strong force sensitivity.

DOI: 10.1103/PhysRevLett.121.243601

Squeezed states of the propagating electromagnetic
field form a fundamental group of nonclassical states
[1,2]. In a squeezed state, fluctuations of the field in a
certain quadrature of the oscillations are diminished below
the level of vacuum fluctuations. Such a property of low
noise has raised long-standing interest in precision mea-
surements in optics [3–7] or more recently in the micro-
wave frequency domain [8–10], since in several detection
applications the sensitivity is limited by photon shot noise.
This is the situation particularly in the emerging field of
gravitational astronomy, where squeezed light will become
an indispensable asset in the near future [11,12]. Further-
more, quantum information processing with continuous
variables utilizes multimode squeezed states as the essential
resource [13–15].
On the other hand, squeezed electromagnetic fields are

connected to intriguing physics. A squeezed environment
can suppress relaxation [16], or it can reveal new phe-
nomena [9,17,18]. Various nonlinear optical processes
such as four-wave mixing or parametric oscillations can
produce squeezed light [19–23]. Following the early work
[24,25], itinerant microwaves are nowadays routinely
squeezed using Josephson parametric amplifiers (JPA)
at deep cryogenic temperatures [26–31].
Cavity optomechanics, which studies the interaction of

electromagnetic fields and mechanical oscillations, pro-
vides a novel platform to produce squeezed light. The
necessary nonlinear mechanism is provided by the radia-
tion-pressure interaction that couples cavity energy to
mechanical displacement. Squeezing in optomechanical

cavities [32,33] arises under an intense measurement that
couples amplitude fluctuations of an incoming laser to
phase fluctuations of the output field. Such “ponderomotive
squeezing” has recently been produced in several experi-
ments in optics [34–39]. In the microwave regime, we
mention the realization of strong measurements [40–42]
and squeezed microwaves obtained via degenerate para-
metric amplification [43].
In the present work, we show how certain complex-

valued quantum correlations, which are hidden from
standard homodyne detection, can be recovered by the
use of two sinusoidal local oscillators, as recently proposed
theoretically by Buchmann et al. [44]. Besides fundamental
interest, these hidden correlations are relevant for sensitive
measurements since they appear under the condition where
the system is the most responsive to forces. Furthermore, as
a test bed for this detection setup, we create ponderomotive
squeezing in the microwave frequency regime, thereby
demonstrating a new approach to create squeezed micro-
waves, distinct from JPA or from that realized in Ref. [43].
At optical frequencies, squeezing is detected using

homodyne detection. Within the theoretical framework
introduced by Glauber [45], photodetectors are sensitive
to the even normal-ordered correlators of the electromag-
netic field. In order to measure the expectation values of a
general quadrature operator XθðωÞ ¼ 1

2
ða†eiθ þ ae−iθÞ and

its correlation functions, it is necessary to mix the incoming
signal with a local field b [the local oscillator (LO)].
Depending on the state of the local field, it is possible to
access the expectation value of the original quadratures
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through an intensity measurement of the mixed signal.
The inclusion of low-pass filters in the measurement
process allows us to extend the applicability of this
description to the microwave regime.
In the standard (balanced) homodyne detection setup,

the LO is chosen to be in a coherent state at a specific
frequency, i.e., hbi ¼ α0 exp ð−iω0tÞ. In this case, it is
possible to show that homodyne detection allows access to
the following frequency-domain correlator

SθXðωÞ ¼ SXðωÞcos2θ þ SYðωÞsin2θ
þ 2Re½SXYðωÞ� sin θ cos θ: ð1Þ

Here, SXðωÞ ¼ 1
2
hfXðωÞ; Xð−ωÞgi, similarly for SY, and

the cross spectrum is SXYðωÞ ¼ 1
2
hfXðωÞ; Yð−ωÞgi. Since

the cross spectrum of the two complex-valued frequency-
domain quantities is usually not real, information may be
lost in homodyne detection. This is represented in Fig. 1(a),
which shows how positive and negative sideband frequen-
cies sum up.
There has been little earlier discussion on the recovery of

complex-valued squeezing correlations hidden to ordinary
homodyne detection. Quantum squeezing in the hidden
regime has been achieved in optics in one experiment via
a modification of the two sidebands [46]. In the classical
limit, an analogous noise reductionwas recently obtained in a
cavity optomechanical experiment [47] using digital filter-
ing. Quite recently it was proposed [44] that the complex
correlations could be accessed with a bichromatic LO, i.e.,
α0ðtÞ ¼ jα−j expð−iωst − iθ−Þ þ jαþj expðiωst − iθþÞ, as
displayed in Fig. 1(b). The resulting noise spectrum can
be written in a simple form at zero frequency (in the
frequency frame oscillating at ω0) [48],

Sθ�X ð0Þ ¼ jαXj2C11ðωsÞ þ jαY j2C22ðωsÞ
þ 2Re½α�Xα�YC12ðωsÞ�; ð2Þ

where αX¼ð1= ffiffiffi
2

p Þðαþþα�−Þ, and αY ¼ ði= ffiffiffi
2

p Þðα�þ − α−Þ.
We have denoted the respective spectra with the correlation
matrix elements Cij, for example, C12 ≡ SXY . The relation

given by Eq. (2) allows us to interpret Sθ�X ð0Þ as a quadratic
form in the variables αX and αY associated with the matrix
CijðωÞ. The measurement of Sθ�X ð0Þ accesses the smallest
(largest) eigenvalue ofCijðωsÞ by the choice ofαX,αY in such
a way that the vector ðαX; αYÞT corresponds to the eigen-
vector associated to the smallest (largest) eigenvalue of
CijðωsÞ, thereby revealing correlations hidden to homodyne
detection.
The realization of the measurement leading to Eq. (2)

is not restricted to a specific system. We choose to work in a
generic cavity optomechanical setup [44], where the observ-
ability of the interesting quantities is expected to be well
within reach. The interaction between the electromagnetic

cavity (frequencyωc, damping rate κ, and the field operators
a†,a), and themechanical oscillator (frequencyωm, damping
rate γm, operators b†, b) is of the form g0a†aðb† þ bÞ, where
the single-photon coupling g0 ≪ κ is the small parameter.
In order to obtain an effectively strong electromechanical
coupling, a strong sinusoidal pump tone at frequency
ω0 ≃ ωc is injected in the system. One can write the pump
frequency using the detuning Δ≡ ω0 − ωc. The pump
induces a photon number nc in the cavity, and consequently
one obtains a linearized interactionGða† þ aÞðb† þ bÞwith
the effective coupling G ¼ g0

ffiffiffiffiffi
nc

p ≫ g0.
The dynamics is commonly written by the use of input-

output theory of optical cavities for the linearized system.
There is incoming electromagnetic noise at the device
input, which in the present case of low temperature kBT ≪
ℏωc is composed of vacuum noise having the quadratures
xinðtÞ and yinðtÞ. The mechanical oscillator phonon number
nTm ≃ kBT=ℏωm, on the other hand, is relatively far from the

(a)

(b)

(c)

FIG. 1. Detection of squeezing correlations. The signal is
injected into a mixer that multiplies it with LO waveforms.
(a) In the case of standard homodyne detection, the LO is a single
sinusoid with frequency ω0 and phase θ, coinciding with the
frequency of the pump used to create correlations in the resonator.
This essentially sums up negative and positive frequencies �ω
with respect to ω0. (b) Bichromatic LO with two phases can
detect complex quantum correlations that may be invisible in
homodyne detection. (c) Sketch of the electromechanical experi-
ment, where ponderomotive squeezing of microwaves is created
in a sample comprising a micromechanical oscillator parametri-
cally coupled to a microwave resonator.
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ground state. The field quadratures leaking out from the
cavity receive a contribution by the classical dynamics in
the electromechanical system, but also by the fundamental
measurement quantum backaction. In order to obtain the
output field XoðtÞ, YoðtÞ, for simplicity we do not in
the following write down the mechanical thermal noise.
The frequency-domain quadratures are [48]

XoðωÞ ¼ AXXXinðωÞ þAXYY inðωÞ; ð3aÞ

YoðωÞ ¼ AYXXinðωÞ þAYYY inðωÞ; ð3bÞ

where the coefficients are

AXX ¼ κηχc

�
κ

2
− iω

�
− 1; AXY ¼ κηχcΔ;

AYX ¼ −κηχcðΔþ 4G2ωmχmÞ;

AYY ¼ κηχc

�
κ

2
− iω

�
− 1; ð4Þ

and η¼½1þ4GωmχmΔχc�−1, χc¼f½ðκ=2Þ−iω�2þΔ2g−1,
χm ¼ f½ðγm=2Þ − iω�2 þ ω2

mg−1.
Ponderomotive squeezing qualitatively arises because

the measurement backaction affects each of the output
quadratures in a distinct way. The case Δ ¼ 0 represents
the most direct example, with AXX ¼ AYY and AXY ¼ 0,
but AYX ≠ 0. This, on one hand, implies squeezing;
hXoðωÞXoð−ωÞi ≠ hYoðωÞYoð−ωÞi and, on the other hand,
the appearance of nontrivial correlations among quadra-
tures; hXoðωÞYoð−ωÞi ≠ 0. The emergence of nontrivial
correlations is related to the fact that it is not possible to
recast Eqs. (3a) and (3b) in diagonal form through a pair of
orthogonal transformations of the input and output quad-
ratures. Another example of a system for which Eqs. (3a)
and (3b) cannot be written in diagonal form, hence leading
to a mixing of the quadrature signals and a complex-valued
C12ðωÞ, is represented by a phase-mixing amplification
(PMA) setup [43,49], showing how PMA and hidden
correlations are closely related concepts.
Our experimental scheme is that of microwave cavity

optomechanics; see Fig. 1(c). We use a superconducting
on-chip cavity resonator (frequency ωc=2π ≃ 7.31 GHz)
coupled to a mechanical drum oscillator that has the
frequency ωm=2π ≃ 9.204 MHz and the damping rate
γm=2π ≃ 120 Hz. The single-sided cavity is strongly
coupled to the measurement port through the coupling
rate κE=2π ≃ 27.7 MHz. The cavity also has internal losses
at the rate κI=2π ≃ 100 kHz, and the cavity losses sum up
to κ ¼ κI þ κE ≃ 2π × 27.8 MHz. The parameters are
selected such that we operate somewhat in the bad-cavity
limit κ ≫ ωm and the cavity responds fast to the mechanical
fluctuations induced by the incoming shot noise, and hence
the amount of squeezing is optimized.

The output signal from the sample is directed via
isolators and superconducting cables towards the amplifier
at 3 Kelvin. To avoid saturating the amplifier, we cancel
the strong pump tone by summing up the original signal
applied via a −20 dB directional coupler, similar to our
earlier works [42,43,50,51]. We detect the squeezing in the
plane immediately preceding the 3 K amplifier. This is a
regular phase-preserving high-electron-mobility transistor
(HEMT) amplifier, and adds around NHEMT ≈ 10 quanta of
noise to the signal. At room temperature, the signal is
further amplified and digitized in a signal analyzer that
provides the in-phase and out-of-phase quadratures.
Squeezing can be quantified as the noise in one quad-

rature Nθ in units of the vacuum noise in that quadrature,
Nθ

zp ¼ 1
4
,

S ¼ Nθ

Nθ
zp
; ð5Þ

therefore, S < 1 (or 0 dB) entails quantum squeezing.
Squeezed microwaves have to be detected inside the
refrigerator, because thermal noise at room temperature
would overwhelm the squeezing. To infer the squeezing,
we measure the quadrature spectral density Sθ with the
pump tone on, and in a separate measurement Sθoff with the
pump tone off. This allows us to use NHEMT as a reference,
which remains unchanged in both measurements, and was
calibrated against a tunable noise source in a separate
cooldown using the procedure of Ref. [43]. For details,
see [48].
When using a single LO at the pump frequency [regular

homodyne detection, Fig. 1(a)] we observe a strong phase
dependence in the output noise. At LO phase values
around θ ≃ π=2, we observe a maximum quantum squeez-
ing of 1.1� 0.4 dB; see Fig. 2. The theoretical model
shows a good agreement. For the fits, we used as free
parameters the mechanical and cavity noise temperatures.
The effective coupling and pump detuning are within
≃5 % of values calibrated via sideband cooling. Away
from the mechanical resonance frequency we observe
some excess noise S > 0 dB due to technical heating of
the cavity.
To proceed towards detecting the hidden quantum

correlations, we next explore the possible values of the
spectrum S at a given frequency. We make a dense scan
of the LO phase [Fig. 3(a)], and record at each frequency
the minimum and maximum values of the spectrum. As
displayed in Fig. 3(b), at the mechanical resonance fre-
quency the minimum envelope develops a peak, which
does not exhibit squeezing. In the figure we have also
plotted the theoretically expected eigenvalues of the corre-
lation matrix, and one can see that the mentioned peak
clearly rises higher than the smaller eigenvalue.
We now discuss the main result obtained using the

bichromatic LO [Fig. 1(b)]. The two LOs have frequencies
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�ωs ≃�ωm symmetrically at both sides of the pump tone.
In the general case they have a small detuning from the
mechanical sideband, allowing us to map the frequency
dependence of the correlation matrix; see Eq. (2). We create
the two LOs digitally and optimize their amplitude and
phase to maximize the squeezing around zero frequency.
The optimized amplitude ratio of α− and αþ differs only
0.2% from that predicted by the model. In Fig. 4 we display
the results at different LO detuning values. With the
complex detection, we recover squeezing around the zero
frequency, which in the lab frame corresponds to the
mechanical sidebands of the cavity resonance. The theo-
retical prediction, using the same parameters as in Fig. 2,

accurately follows the data. Finally, in Fig. 5 we present the
squeezing around zero frequency as a function of bichro-
matic LO detuning, showing how we can map the eigen-
values of the correlation matrix within the “forbidden”
region of ∼� 5 kHz around the mechanical resonance.
While at small detunings the error bars grow larger (since
there are only a few data points to consider in the spectra
of Fig. 4); several points are around 2 standard deviations
below the expected result with ideal homodyne detection
(black line), demonstrating that the bichromatic LO pro-
vides a significant improvement over homodyne detection.
We note that the average value does not quite reach that of

(a)

(b)

FIG. 3. Squeezing eigenvalues. (a) Homodyne noise spectrum
shown as a color map. We observe quantum squeezing (value
below 0 dB) inside the white contours. (b) Maximum (red) and
minimum (blue) envelope of the spectrum with respect to the
local oscillator phase θ from the data in (a). The black lines are
theory predictions, and the red theory line is the lower eigenvalue
of the correlation matrix.

FIG. 4. Complex squeezing spectrum. The detuning of the two
LOs are varied between ðωs−ωmÞ=2π¼½−31;−15;−4.5;1�kHz
from top to bottom (magenta, green, blue, red). The phase is
optimized in order to minimize the noise for each detuning value.
Black lines are theoretical fits.

(a) (b)

FIG. 2. Ponderomotive squeezing of microwaves. (a) Homodyne spectrum, Eq. (5), as referred to the input of the cryogenic amplifier.
The phases of the sinusoidal local oscillator are written in the panels. (b) Detailed views of the phases around π=2 that display the
quantum squeezing. The thin black lines are theoretical fits. The experimental parameters are G=2π ≃ 728 kHz, nTm ≃ 517, nTc ≃ 0.07,
Δ=2π ≃ −620 kHz.

PHYSICAL REVIEW LETTERS 121, 243601 (2018)

243601-4



the homodyne detection, which is likely because the LOs
cannot be well optimized under strong scatter of the data.
To conclude, we have investigated propagating micro-

waves to recover quantum correlations that hitherto have
remained elusive. Our work also confirms ponderomotive
squeezing at a frequency range 4 orders of magnitude lower
than previously demonstrated. The hidden correlations are
foreseen to exist and be measurable also in other systems
where the output field has to be expressed as a mixture of
the quadratures of the field entering the system. In the
present system, we expect the reduced noise at a resonant
condition to be useful for sensitive force detection.
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C. F. Ockeloen-Korppi,1 E. Damskägg,1 G. S. Paraoanu,1 F. Massel,2 and M. A. Sillanpää1, ∗
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DERIVATION OF THE OUTPUT FIELD CORRELATORS

We derive here the equations of motion (EOMs) for the field and the mechanical quadratures generated by the
linearized optomechanical Hamiltonian, extending the result given in [1] to finite pump detuning from the cavity
resonance and to finite mismatch between the bichromatic sideband frequency ωs and the mechanical oscillator
frequency ωm. In a frame rotating at the pump frequency ωp the linearized Hamiltonian can be written as

H =
∆

2

(
X2 + Y 2

)
+ 2GXQ (S1)

where ∆ = ωc − ωp and we have defined X = (a† + a)/
√

2, Y = i(a† − a)
√

2, Q = (b† + b)/
√

2, P = i(b† − b)/
√

2.
The quantum Langevin equations associated with the Hamiltonian given in Eq. (S1) can be written in the frequency

domain as

(κ
2
− iω

)
X = ∆Y +

√
κXin (S2a)(κ

2
− iω

)
Y = −∆X − 2GQ+

√
κYin (S2b)(γ

2
− iω

)
Q = ωmP +

√
γQin (S2c)(γ

2
− iω

)
P = −ωmQ− 2GX +

√
γPin (S2d)

where all operators are evaluated at the frequency ω, unless otherwise specified.
Solving Eqs. (S2a-S2d), we can express the relation between the input (Xin, Yin) and the output (Xo =

√
κX−Xin,

Yo =
√
κY − Yin) quadratures for the cavity field as

Xo = AXXXin +AXYYin +AXqQin +AXpPin (S3a)

Yo = AY XXin +AYYYin +AYqQin +AYpPin (S3b)

where we have defined

AXX = κηχc

(κ
2
− iω

)
− 1, AXY = κηχc∆, (S4a)

AYX = −κηχc

(
∆ + 4G2ωmχm

)
, AYY = κηχc

(κ
2
− iω

)
− 1, (S4b)

AXq = −2
√
κγGηχcχm∆

(γ
2
− iω

)
, AXp = −2

√
κγGηχcχm∆ωm, (S4c)

AYq = −2
√
κγGηχcχm

(κ
2
− iω

)(γ
2
− iω

)
, AYp = −2

√
κγGηχcχm

(κ
2
− iω

)
ωm. (S4d)

with

χc =

[(κ
2
− iω

)2

+ ∆2

]−1

, χm=

[(γ
2
− iω

)2

+ ω2
m

]−1

, η = [1 + 4Gωmχm∆χc]
−1
. (S5)

From Eqs. (S3a, S3b), it is possible to evaluate the symmetrized covariance matrix for the output field correlator,
which, owing to time translation invariance, becomes

Ci j(ω) =
1

2
〈
{
X i

o(ω), X j
o(−ω)

}
〉 (S6)

where i, j = 1, 2 (X1
o = Xo, X2

o = Yo). Each element of Ci j(ω) is written as the sum of a contribution originating from
the mechanical thermal bath (〈. . .〉m) and a contribution associated with the cavity thermal bath (〈. . .〉c). Recognizing
that, for each of the coefficients given in Eqs. (S4a-S4d) we have that Aij(−ω) = A∗ij(ω), we can derive the following
relations for the dependence of Ci j(ω) on the bath field correlators

1

2
〈{Xo(ω), Xo(−ω)}〉c =

[
|AXX|2 + |AXY|2

](
nc +

1

2

)
(S7a)

1

2
〈{Yo(ω), Yo(−ω)}〉c =

[
|AYX|2 + |AYY|2

](
nc +

1

2

)
(S7b)

1

2
〈{Xo(ω), Yo(−ω)}〉c = [AYXAXX

∗ +AYYAXY
∗]

(
nc +

1

2

)
, (S7c)
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and on the mechanical field correlators

1

2
〈{Xo(ω), Xo(−ω)}〉m =

[
|AXq|2 + |AXp|2

](
nm +

1

2

)
(S8a)

1

2
〈{Yo(ω), Yo(−ω)}〉m =

[
|AYq|2 + |AYp|2

](
nm +

1

2

)
(S8b)

1

2
〈{Xo(ω), Yo(−ω)}〉m = [AYqAXq

∗ +AYpAXp
∗]

(
nm +

1

2

)
. (S8c)

Eqs. (S7a, S7c) can be explicitly written as

1

2
〈{Xo(ω), Xo(−ω)}〉c = κ

{
κ |η|2 |χc|2

(
κ2

4
+ ω2 + ∆2

)
− 2Re

[
ηχc

(κ
2
− iω

)
+ 1
]}(

nc +
1

2

)
(S9a)

1

2
〈{Yo(ω), Yo(−ω)}〉c = κ

{
κ |η|2 |χc|2

(
κ2

4
+ ω2 +

∣∣∆ + 4G2ωmχm

∣∣2)
−2 Re

[
ηχc

(κ
2
− iω

)
+ 1
]}(

nc +
1

2

)
(S9b)

1

2
〈{Xo(ω), Yo(−ω)}〉c = κ

{
κ |η|2 |χc|2

[
2κG2ωm + 2iω

(
∆ + 2G2ωmχm

)]
+ηχc

(
∆ + 4G2ωmχm

)
−∆η∗χ∗c

}(
nc +

1

2

)
(S9c)

and Eqs. (S8a, S8c) become

1

2
〈{Xo(ω), Xo(−ω)}〉m = 2κγ |η|G2∆2 |χc|2 |χm|2

(
γ2/4− ω2 + ω2

m

)(
nm +

1

2

)
(S10a)

1

2
〈{Yo(ω), Yo(−ω)}〉m = 2κγ |η|2G2

(
κ2/4 + ω2

)
|χc|2 |χm|2

(
γ2/4− ω2 + ω2

m

)(
nm +

1

2

)
(S10b)

1

2
〈{Xo(ω), Yo(−ω)}〉m = 2κγ |η|G2∆κ |χc|2 |χm|2

(
γ2/4− ω2 + ω2

m

)(
nm +

1

2

)
(S10c)

COMPLEX DETECTION AND COVARIANCE MATRIX

In order to extract all information encoded in the covariance matrix, we consider the power spectrum resulting from
the bichromatic detection:

Sbi (ω) =
1

2
〈{Σ(ω),Σ(−ω)}〉 (S11)

where

Σ(ω) =
1√
2

[αXXo(ω − ωs) + α∗XXo(ω + ωs) + αYYo(ω − ωs) + α∗YYo(ω + ωs)] (S12)

where ωs is the detuning of the LO frequency from the pump tone. Sbi (ω) can be written in terms of the covariance
matrix Ci j(ω) as

Sbi(ω) =
|αX|2

2
[C1 1(ω − ωs) + C1 1(ω + ωs)] +

|αY|2

2
[C2 2(ω − ωs) + C2 2(ω + ωs)]

+ Re [αAαYC1 2 (ω − ωs) + α∗Xα
∗
YC1 2 (ω + ωs)] (S13)

which for ω = 0 and ωs = ωm, due to the frequency symmetry of Ci j(ω), can be written as

Sbi(0) = |αX|2 C1 1(ωs) + |αY|2 C2 2(ωs)

+ 2Re [αXαYC1 2 (ωs)] (S14)
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FIG. S1. Comparison between the bichromatic spectrum Sbi (blue line), the homodyne spectrum Shom (blue dashed line) and
the eigenvalues of Ci,j (C±, red line) for ωm/κ = 0.3. a. ∆ = 0, ωs = ωm; b. ∆ = 0, ωs = 1.003ωm; c. ∆/κ = −0.2, ωs = ωm;
d. ∆/κ = −0.2, ωs = 1.003ωm.

The relation given by Eq. (S14) allows us to interpret Sbi(ω) as a quadratic form associated with the matrix Ci j(ω)
in the variables αX and αY. Moreover, setting an arbitrary ωs, the measurement Sbi(0) allows us to access the
smallest (largest) eigenvalue of Ci j(ωs) by choosing αX, αY in such a way that the vector (αX, αY)T correspond to the
eigenvector associated to the smallest (largest) eigenvalue of Ci j(ωm), thus allowing us to access correlations hidden
to homodyne detection. The special case ωs = ωm essentially accesses the mechanical resonant frequency that shows
the strongest noise reduction, and at the same time, the best sensitivity to external forces. Setting the two LO’s
exactly at the mechanical sidebands at either side of the pump tone is therefore the most relevant case. This case
corresponds to the x-axis coordinate equal to zero in Fig. 5 in the main text.

In Fig. S1 we have compared the bichromatic and homodyne spectra Sbi and Shom with the eigenvalues of Ci,j for
∆ = 0 and ∆/κ = 0.3. We also consider the case ωs 6= ωm. From these plots it is possible to see how the frequency
mismatch raises the value Sbi(0), while leaving the eigenvalues of Ci,j and the homodyne signal unaltered. Conversely,
the choice ∆ 6= 0 affects the value of the homodyne signal at the mechanical resonance ωm, increasing its value above
the SQL. In the experiment, we chose a slightly red-detuned ∆ in order to broaden the hidden window as compared
to exact zero detuning, hence making it more clearly visible.

DATA ANALYSIS

We use the convention that variables labeled as So (with the subscript o) are the spectra right after the sample in
units of quanta. The corresponding spectra at the HEMT input are labeled by N . These are not the same, because
there are some losses, characterized by the power transmission coefficient t < 1, between the sample and HEMT. In
the case of large noise So � 1, these are related by

N = tSo , (S15)

After amplification and detection at the analyzer, we write the spectra with the symbol S (without the subscript o),
see Eq. (S19) below. The latter quantity is given in W/Hz.

In all the experiments, as mentioned in the main text, we run the measurement twice: S(ω) (or Sθ(ω) in phase-
sensitive measurements) with the pump tone on, and in a separate measurement, Soff(ω) (or Sθoff(ω)) with the pump
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tone off. Reduction of noise when the pump tone is off signifies squeezing. The noise reduction could in principle
be due to artifacts in particular owing to amplifiers’ nonlinearity. We take careful precautions to exclude these
possibilities. First of all, we cancel the pump tones inside the cryostat between the isolators and the first amplifier
by around 30 dB, and check the result does not depend on the amount of canceling. Second, we calibrate most of the
parameters independently, except the bath temperatures of the mechanics and the cavity, which both depend on the
particular pump setting, and tend to grow as the pump power is increased.

We note that the relevant quantity in both squeezing and sideband cooling at high power, instead of the mechanical
bath temperature, is the mechanical decoherence rate given as γnTm. In these measurements, one therefore cannot
distinguish whether the decoherence is due to heating up of the mechanical bath when pump power is cranked up,
or due to an enhanced γ. For convenience, in the analysis, we fix γ which results in the same conclusions as keeping
γnTm as the free parameter.

Sideband cooling

We present the sideband cooling data discussed in this section differently from squeezing discussed elsewhere in this
work. In accordance with a common practice, sideband cooling spectra shown are referred back to the plane right
after the sample (So). The squeezing spectra (N) are those directly detected in front of the HEMT amplifier, which
approach involves less inference.

We can apply the single pump tone at considerably varying detunings around the cavity, and thereby obtain
information that is inaccessible in the main experiment where the detuning is small, i.e. |∆| � ωm. The sideband
cooling, where we have a red detuning ∆ ' −ωm, is the basic such calibration. The sideband cooling in our bad
cavity case ωc > ωm is not too effective in cooling the mechanics, but we can determine the effective coupling versus
the generator power setting, as well as the gain of the measurement system.

When the red-detuned pump power is increased, the mechanics effective linewidth grows, while in the relevant
regime the lineshape stays Lorenzian. The linewidth, or ”optical” damping, of the mechanics is given by

γopt =
4G2

κ
=

4g2
0nc
κ

=

4g2
0
βPPκ
~ωc

1

∆2+(κ2 )
2

κ
=

4g2
0β

~ωc︸ ︷︷ ︸
≡J

PP

∆2 +
(
κ
2

)2 , (S16)

where we used

nc =
βPPκ

~ωc
1

∆2 +
(
κ
2

)2 , (S17)

and PP is the pump generator power setting, β is the attenuation preceding the sample, and J is the calibration coef-
ficient to be determined. We separate the detuning-dependent cavity response from the fit because several detunings
are used. The effective coupling is then

G =

√
κγopt

4
=

√√√√ κJPP
4
[
∆2 +

(
κ
2

)2] . (S18)

The output spectrum at the sample plane So(ω) for sideband cooling is calculated numerically taking into account
bad-cavity effects. The measured pump output spectrum S(ω) (in W/Hz) on top of the noise floor is

S(ω) = G~ωc︸ ︷︷ ︸
≡A

So(ω) , (S19)

where G is the gain of the detection system including amplifiers and cable losses, and A is the calibration coefficient
to be determined from the fit. Here, in So(ω) we use the effective coupling calibrated in Eq. (S18).

From a set of spectra measured at varying generator powers (Fig. S2), we first obtain the conversion of generator
power into effective coupling (Eq. (S18)), the gain of the detection system, as well as the temperatures of the mechanics
and of the cavity under these pumping conditions. All of these can be obtained with very small statistical errors,
viz. ∼ 6 % and 10% for nTm and nTc , respectively, in the relevant power region.
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(a)

(b)

FIG. S2. Sideband cooling. (a), Spectra in units of quanta as calibrated in the circuit plane right after the sample, and theory
fits at the effective coupling values quoted in the panels. (b), Extracted bath temperatures of the mechanical oscillator and of
the cavity.

Amplifier noise

The noise floor in the measurement, supposing it is set by the HEMT noise, and by the transmission t < 1 between
the sample and HEMT, is given as

Seff
o =

NHEMT

t
. (S20)

This is the effective input noise in the measurement, setting e.g. the signal-to-noise ratio. The effect of the transmission
here is that it attenuates the signal, although it does not directly affect the noise.

In an earlier cooldown, we have measured Seff
o ' 18 at the same frequency [2]. We have not, however, directly

measured t, whose uncertainty then sets significant error bars for the squeezing. In our system with a standard
superconducting coaxial cabling, we estimate a typical t ≈ 1.5...3 dB. If for some reason the attenuation would
be larger than we estimate, the squeezing would be stronger than claimed now. The attenuation is unlikely to be
smaller than the stated values because even if all components are working ideally, the total attenuation amounts to
approximately 1.5 dB.

After calibrating the gain with sideband cooling, using Eq. (S19) we can also get an estimate for Seff
o ' 22, which

is close to the value quoted immediately above.

Squeezing

The calibration of the squeezing is done by using as a reference the noise level in one quadrature Sθoff when the
pumps are off, corresponding to half the true input noise NHEMT = 2Nθ

HEMT of the HEMT. When the pumps are on
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FIG. S3. Squeezing error analysis. Graphs from Fig. 2b, overlaid with the theoretical fit, and error lines (see text).

or off, respectively, the measured noise is

Sθ = G(Nθ +Nθ
HEMT) , (S21)

Sθoff = G(Nθ
zp +Nθ

HEMT) . (S22)

Here, Nθ is the quantity of interest, the squeezed noise radiating into the HEMT input.
The amount of squeezing is conveniently expressed as the noise in one quadrature in units of Nθ

zp = 1
4 :

S =
Nθ

Nθ
zp

, (S23)

and hence a value < 1 (or 0 dB) entails squeezing below vacuum. Using Eqs. (S21,S22), Eq. (S23) becomes

S =
Sθ/G −Nθ

HEMT

Nθ
zp

=
1

Nθ
zp

[
Sθ

Sθoff

(
Nθ
zp +Nθ

HEMT

)
−Nθ

HEMT

]
. (S24)

From the theory, we obtain the squeezing directly at the output of the sample (Sθo). Losses, however, reduce the
amount of squeezing by bringing the state towards a thermal state. In order to compare the data to theory, we
therefore have to propagate the theory to the observation plane. The general version of Eq. (S15) that holds for
arbitrary N is then

Nθ = tSθo +Nθ
zp (1− t) , (S25)

which we use to obtain the theoretical predictions for squeezing.
The error bars of the ponderomotive squeezing as measured by the HEMT are estimated from two contributions.

One is a statistical uncertainty in the relevant frequency range in the curves in Fig. 2 of the main text. For example,
in Fig. 2 (b) middle panel, the range is about 9.185 ... 9.195 MHz. The other source of error is the uncertainty in
the transmission t, which has the effect of stretching the vertical axis of the squeezing spectra about the zero decibel
level. The error in t is hard to quantify, but as a worst-case estimate we select ±1.5 dB. Notice that uncertainty in t
alone cannot raise the squeezing level above vacuum. These two error contributions are propagated in Eq. (S24).

At approximately zero detuning, we cannot measure the effective coupling independently, but we use Eq. (S18)
under the considered ∆ to get a prediction for the G.

Regarding the bath temperatures, the final values obtained for the mechanics are close to those from sideband
cooling. For the cavity, the value in the latter is somewhat lower at the same G. In our samples, the bath temperatures
can depend sensitively on the pumping conditions (frequency and power), as seen in Fig. S2, so differences can be
anticipated.

It would be interesting to evaluate error bars for the squeezing based on the parameters obtained by independent
means. Here we use the bath temperatures from sideband cooling (Fig. S2) at the same G, and combine their errors
doubled either worst-case or best-case. The result, as shown in Fig. S3, demonstrates that squeezing is rather robust
against changes in bath temperatures.
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We now briefly discuss how the data points in Fig. 5 in the main text are determined. They are the minima in
the spectra in Fig. 4, plus more curves not shown in Fig. 4. Ideally, each point in Fig. 5 would be the value of a
spectrum in Fig. 4 at the x-axis value = 0. In the real case because of noise, of course, we have to average several
points in the spectrum to get one point to Fig. 5. The averaging range around zero is to some extent arbitrary. A
large range would drop the error bars because of more information, but would compromise the obtained squeezing,
because the squeezing deteriorates away from zero. We chose the averaging range such that a corresponding theory
curve would predict less than around 20 % reduction of squeezing as compared to zero frequency. At small values of
ωs − ωm, this corresponds to only a few datapoints in the curves as in Fig. 4. The error bars, however, are obtained
from non-smoothed data, so that more than around 10 independent data points are considered in each case in Fig. 5.
The ±2σ error bars then become approximately twice the standard error of those points.
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