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(Received 22 August 2018; published 4 December 2018)

Advanced optoelectronic simulation models are needed to study and optimize emerging photonic devices
such as thin-film solar cells, lasers, and light-emitting diodes (LEDs). In particular, better tools are required
for self-consistent modeling of coupled electrical and optical systems. The recently introduced quantized
fluctuational electrodynamics (QFED) and the associated interference-exact radiative transfer equations have
been developed for this purpose, but their use is in part complicated by the need to calculate the full dyadic
Green’s functions. To make QFED and the underlying physical quantities more accessible for new device studies,
we introduce a directly usable method where Green’s functions are obtained through optical admittances. The
optical admittances can be solved analytically for piecewise-homogeneous layer structures and selected graded-
index profiles, and numerically for arbitrary position-dependent refractive index profiles using well-known
techniques. The solutions enable direct construction of the dyadic Green’s functions and all the related optical
quantities. To give examples of the general applicability of the method, we calculate the local and nonlocal optical
densities of states for selected devices, including GaN-based flip-chip LEDs and vertical-cavity surface-emitting
lasers. Using only the rather simple framework presented in this paper, one can analyze energy transport in a
wide range of planar photonic devices accurately without additional difficulties or inputs from external solvers.

DOI: 10.1103/PhysRevE.98.063304

I. INTRODUCTION

Advances in optoelectronics during the last few decades
have had major impacts in society, with high-efficiency solid-
state lighting and solar photovoltaics standing out as prime
examples [1,2]. As conventional light-emitting diodes (LEDs)
and photovoltaic cells are already rapidly gaining ground in
general lighting and energy production, new materials and
nanostructures are being studied and engineered into use
in more sophisticated optoelectronics applications not yet
available on the market. Examples of these include, e.g.,
electroluminescent cooling [3,4], optical on-chip communi-
cation using nanostructure-based optical interconnects [5,6],
photocatalytic solar fuel production [7], solar cells made
of unconventional earth-abundant materials [8], new light
emitters and absorbers targeted for biomedical applications
[9,10], and diverse nanowire-based devices [11]. Studying and
developing these applications requires sophisticated yet suf-
ficiently accessible and insightful full-device modeling tools
where nanoscale simulation of optical, electrical, and thermal
processes is fully integrated.

One of the most important missing pieces in photonic nan-
odevice modeling is the full coupling of optical and electrical
processes. Essentially this means that the emission, trans-
port, and absorption of photons would be self-consistently
accounted for in the carrier dynamics simulation. This is typi-
cally done only in specific cases, with or without wave-optical
effects. For example, Wang et al. treated photon recycling
with a ray-tracing model in GaAs solar cells [12], Durbin and
Gray used a Beer-Lambert expression to account for photon
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recycling [13], and in a previous work we used fluctuational
electrodynamics (FED) to model emission enhancement with
plasmonic gratings [14]. On the other hand, there are several
works where the topic has been explored in nanostructures
with fairly specialized and computationally heavy frameworks
[15–17]. Our aim, in contrast to previous works, is to con-
struct and present an accurate yet straightforward method for
modeling the emission, transport, and absorption of photons
in arbitrary planar photonic devices while fully accounting for
the pertinent interference and other wave-optical effects.

To simplify the fundamental models of light-matter in-
teraction in planar semiconductor devices, in this paper we
show how the optical densities of states needed in FED and
the more advanced quantized fluctuational electrodynamics
(QFED) [18–20] can be calculated directly by expressing the
electromagnetic Green’s functions with optical admittances
[21,22]. Typically the calculation of Green’s functions in pla-
nar structures requires finding two independent eigenmodes
of the homogeneous Helmholtz equations (such as the prop-
agating modes incident on the structure from left or right as
illustrated in Fig. 1). These modes can be calculated using
transfer matrices, numerical methods, or other established
techniques, and such approaches have been widely used,
e.g., in the prior research on the emission and absorption of
distributed feedback (DFB) lasers [23–25]. However, using
these techniques can be cumbersome due to the need to match
the eigenmodes with the free-space Green’s function at the
source location to fix the unknown field amplitudes [26]. On
the other hand, impedances and admittances and the closely
related Smith charts are frequently used in transmission line
theory to solve wave equations and maximize signal transmis-
sion. Considering their apparent convenience for solving wave
equations, it is even surprising that admittances are not used
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FIG. 1. Schematic illustration of the general layer structure mod-
eled using the optical admittance method. The figure also shows
ray-optical illustrations of principally right- and left-propagating
optical modes E→, H→ and E←, H←. The fields generally have
components propagating in both forward and backward directions,
apart from the final half-spaces where the modes exit the structure.

more frequently in wave optics. Here we show that the easily
evaluated optical admittances provide an out-of-the-box tool
to express the dyadic Green’s functions and thereby the local
and nonlocal densities of states (LDOS and NLDOS) directly
without having to formally solve the electromagnetic fields.
Having such a direct tool to accurately couple together carrier
and photon dynamics makes it notably more convenient than
previously to perform all-optoelectronic modeling studies of
planar device structures. This is expected to enable both in-
creasing the performance of existing applications and creating
new device functionalities.

Even if the optical and electrical properties of planar
structures have been studied extensively, often the focus is
mostly on only one of them while simplifying approximations
are made for the other. Having a directly workable, fully
self-consistent model for both electrical and optical transport
is therefore expected to enable various interesting studies.
Examples include optimizing both the carrier dynamics and
photon recycling in heterostructure thin-film solar cells made
of traditional or emerging materials, and maximizing the net
photon absorption and photocarrier collection in electrolumi-
nescent cooling devices. Moreover, using perturbative or other
approximative techniques [14], simulation models for planar
structures can be generalized, even for devices containing
nanostructures, such as optical nanoresonators and optical
antennas.

II. THEORY

In this section, we review the physical significance of
the electromagnetic Green’s functions both for classical and
quantized FED and show how they can be calculated using
the optical admittances. More precisely, Sec. II A presents
the homogeneous and inhomogeneous Maxwell’s equations
in planar structures and briefly reviews how scalar Green’s

functions can be used to calculate the fields resulting from
electric and magnetic sources. Sections II B–II C summarize
the optical admittance method and show how the scalar
Green’s functions are obtained from the optical admittances
for an arbitrary propagation angle. Finally, Secs. II D–II E
generalize the scalar Green’s functions to their vectorial (or
dyadic) forms and show how the optical admittances can be
used to directly obtain all the quantities needed in classical
and quantized FED, as well as in the interference-exact radia-
tive transfer model which can be readily coupled with carrier
dynamics models. We note here that in the end, all these
quantities are obtained without solving the electromagnetic
fields formally, e.g., with external solvers.

A. Homogeneous and inhomogeneous Maxwell’s equations

Emission, propagation, and absorption of photons is de-
scribed by Maxwell’s equations, which dictate how the
Fourier components (in frequency domain) of the electric field
E, magnetic field H, electric flux density D, and magnetic
flux density B relate to the Fourier components of the electric
charge density ρf and the polarization and magnetization
current densities Je and Jm. For positive angular frequencies
ω giving the time dependence of the fields as exp(−iωt ),
Maxwell’s equations in frequency domain are given by

∇ · D = ρf , (1)

∇ · B = 0, (2)

∇ × E = −Jm + iωμ0μH, (3)

∇ × H = Je − iωε0εE, (4)

where ε0 and μ0 are the permittivity and permeability of vac-
uum, and the relative permittivity ε and relative permeability
μ describe the polarization and magnetization that depend
linearly on the electric and magnetic fields. The generally
nonlinear polarization and magnetization currents are given
by Je = Jf − iωδP and Jm = −iωμ0δM, where Jf is a linear
free electric current density term and δP and δM are the
polarization and magnetization that do not follow a linear
dependence of the fields. In both classical and quantized FED,
the thermal fluctuations that act as sources of the fields are
included as noise currents in Je and Jm [18,27].

In this paper we focus on planar devices illustrated in
Fig. 1, where the material only changes in the z direction.
Such structures have perfect symmetry in the xy plane, and the
full electromagnetic mode space can be described using the
well-known transverse electric (TE) and transverse magnetic
(TM) modes defined by their plane of propagation, so that TE
(TM) modes have nonzero electric (magnetic) field only in
the direction u1 in the xy plane perpendicular to the plane
of propagation. To define an alternative orthogonal set of
Cartesian coordinates associated with the plane of propaga-
tion, we define a device plane unit vector uK through the
relation u1 = uK × uz, so that uK is the projection of the wave
vector k onto the xy plane perpendicular to u1, and uz is the z

direction of Fig. 1. The coordinates corresponding to u1, uK ,
and uz are then chosen as u, v, and z, respectively. Further-
more, we assume here for simplicity that the permittivity and
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permeability of the material do not depend on the polarization
of light, but this approximation can be removed.

Due to the symmetry of the system, Maxwell’s equations
can be further simplified into the customary scalar nonhomo-
geneous Helmholtz equations. The Helmholtz equation for
the TE modes can be derived for any propagation plane by
dividing Eq. (3) by μ(z), taking the curl, and making use of
vector calculus and Eq. (4). This leads to

1

μ

d2

dv2
E(v, z) + d

dz

(
1

μ

dE(v, z)

dz

)
+ k2

0εE(v, z)

= J T E
eff (v, z), (5)

where E is the magnitude of E along u1, k0 = ω/c (c be-
ing the speed of light in vacuum), and J T E

eff (v, z) = u1 ·
[−iωμ0Je + ∇ × ( 1

μ
Jm)], so that only the source components

normal to the plane of propagation generate the TE field.
In general, however, the Je and ∇ × (Jm/μ) vectors have
three independent components (e.g., x, y, z), with two of them
(x, y) contributing to J T E

eff , and it will be necessary to account
for the x and y components separately if one is interested in
the field correlations between fields with different planes of
propagation. To deal with the derivatives in the xy plane, we
write the Fourier transform of E and J T E

eff as

E(v, z) = 1

(2π )2

∫
K

E(z,K ) exp(iKv)dK, (6)

where K = uK · k is the in-plane component of the wave
vector k, so that the full wave vector is written as k =
K + kzuz = KuK + kzuz, with kz the z component of k. The
Fourier transform of J T E

eff is written similarly with its Fourier
coefficients denoted as Jeff (z,K ). By substituting Eq. (6) to
Eq. (5) and requiring it to hold separately for each K , we get
the Helmholtz equation for TE modes as

d

dz

(
1

μ

dE(z,K )

dz

)
+ k2

0

(
ε − 1

μ

K2

k2
0

)
E(z,K )

= J T E
eff (z,K ). (7)

For TM modes, we use the same symmetry arguments as
for TE and choose the magnetic field as H = Hu1. The
Helmholtz equation for H can then be derived in a similar
way, resulting in

d

dz

(
1

ε

dH (z,K )

dz

)
+ k2

0

(
μ − 1

ε

K2

k2
0

)
H (z,K )

= J T M
eff (z,K ), (8)

where J T M
eff (z,K ) is the Fourier component of J T M

eff (v, z) =
u1 · [−iωε0Jm − ∇ × ( 1

ε
Je )].

Both classical FED and QFED are based on writing Je

and Jm using the fluctuation-dissipation theorem (FDT). With
position-dependent Je and Jm from the FDT, solving Eqs. (7)
and (8) is dramatically simplified by using the electromagnetic
Green’s functions, which describe how a plane source located
at z = z0 generates an electromagnetic field in the surround-
ing space. In other words, the Green’s function for TE modes

GT E (z, z0, k0,K ) satisfies

d

dz

(
1

μ

dGT E

dz

)
+ k2

0

(
ε − 1

μ

K2

k2
0

)
GT E = −δ(z − z0),

(9)

where δ is the Dirac δ function. The Green’s function
GT M (z, z0, k0,K ) for TM modes satisfies a corresponding
modification of Eq. (8). GT E and GT M are the so-called scalar
Green’s functions, which are generalized to their dyadic forms
later. Note that Eq. (9) and the corresponding TM equation
essentially describe how a plane source located at z = z0

generates fields that propagate according to the homogeneous
Helmholtz equations. The homogeneous Helmholtz equations
are Eqs. (7) and (8) with their right-hand sides set to zero,
and therefore they describe the propagation and attenuation of
electromagnetic fields within the layer structure according to
linear optics. When the scalar Green’s functions are known,
the TE electric field at z due to arbitrarily distributed Je and
Jm is obtained as

E(z, k0,K ) =
∫ ∞

−∞
GT E (z, z0, k0,K )J T E

eff (z0, k0,K )dz0.

(10)

The TM magnetic field is obtained from Je and Jm using a
corresponding integral.

B. The optical admittance method

As detailed in the previous section, Green’s functions
describe how the electromagnetic field generated by a point
source propagates in the structure. Solving the Green’s func-
tions therefore typically requires solving the homogeneous
Helmholtz equations. Here we repeat briefly the derivation of
optical admittances from [21,22] and show that they provide
a rather convenient way to do this for an arbitrary propagation
angle. Later in Secs. II C–II D we show how the optical admit-
tances can be used to express GT E and GT M and eventually
the full dyadic Green’s functions and optical densities of states
required to model the light-matter interactions in the classical
and quantized FED.

Using the field components parallel to the interfaces, we
define the optical admittances as [21,22]

γ T E (z) = −
√

μ0

ε0

H‖(z)

E(z)
, (11)

γ T M (z) =
√

ε0

μ0

E‖(z)

H (z)
, (12)

where H‖ = uK · HT E is the magnetic field in the xy plane
in the TE modes, and E‖ = uK · ET M is the corresponding
electric field in the TM modes. The admittances are therefore
written for each k0 and K , but these dependencies are omitted
in the arguments here for brevity. Note that we have defined
γ T M in Eq. (12) as the inverse of the TM admittance of
Ref. [21] to simplify the rest of the equations in this paper.
Strictly speaking, γ T M should therefore be called impedance
rather than admittance. With σ ∈ {T E, T M} representing the
polarization, the optical admittances γ σ defined in Eqs. (11)
and (12) must be continuous over interfaces between different
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layers due to the general continuity requirements of tangen-
tial fields. From Maxwell’s equations (1)–(4), the remaining
fields needed in Eqs. (11) and (12) are obtained as H‖ =
−i/(ωμ0μ)dE/dz and E‖ = i/(ωε0ε)dH/dz, when the cur-
rent terms are set to zero as imposed by the homogeneity
condition. Substituting these into Eqs. (11) and (12) and
solving E and H gives

E(z) = E0 exp

(
−ik0

∫ z

z0

μγ T E (z′)dz′
)

, (13)

H (z) = H0 exp

(
−ik0

∫ z

z0

εγ T M (z′)dz′
)

, (14)

where E0 and H0 are arbitrary initial values at z = z0, which
cancel out from the Green’s functions, as will be shown later.

We note that the modes described by Eqs. (13) and (14)
account for all refraction, reflection, interference, and ab-
sorption effects within the structure (but not emission), and
therefore they generally include both forward- and backward-
propagating wave forms. (See Fig. 1 for ray-optics illustra-
tions of the two independent modes.) Substituting Eqs. (13)
and (14) into the homogeneous forms of Eqs. (7) and (8)
results in first-order differential equations for the optical ad-
mittances given by [21,22]

dγ T E (z)

dz
= ik0μ[γ T E (z)2 − κT E (z)2], (15)

dγ T M (z)

dz
= ik0ε[γ T M (z)2 − κT M (z)2], (16)

where κσ are scaled propagation constants defined as

κT E (z) = −
√

εμ − K2/k2
0

μ
, (17)

κT M (z) = −
√

εμ − K2/k2
0

ε
. (18)

The boundary conditions for Eqs. (15) and (16) can be chosen
so that the solutions represent modes incident from the left
and exiting to the right and modes incident from the right
and exiting to the left side of the structure. On the right (left)
side of the structure, modes exiting to the right (left) exhibit
only a single wave form with E,H ∼ exp(ikzz) (E,H ∼
exp(−ikzz)). To match this boundary condition with Eqs. (13)
and (14), the optical admittances for modes exiting to the right
(left) must be equal to the scaled propagation constants of
Eqs. (17) and (18) in the right (left) half-space. In other parts
of the structure, the admittances are governed by Eqs. (15)

and (16), which can be solved analytically or numerically,
requiring that γ σ is continuous over all boundaries.

For a layer with constant ε and μ, the optical admittance
can be expressed analytically as

γ σ (�z) = −κσ tanh

[
ikz�z + arctanh

(
−γ σ

b

κσ

)]
, (19)

where �z = zb − z (rightward modes) and �z = z − zb (left-
ward modes), zb is the z coordinate of the interface where the
mode exits the layer, and γ σ

b is the initial value of γ σ at zb. For
a structure with piecewise constant ε and μ, the full solution
can be easily constructed by starting from the final outer
boundary where the admittances match the propagation con-
stants of Eqs. (17) and (18). One then writes the admittances
subsequently for all the layers using Eq. (19) and requiring
continuity at each interface. On the other hand, if there are
graded layers in the structure, the admittances in those layers
have to be solved numerically or by using analytical solutions
that apply for specific graded-index profiles [22].

Solving the optical admittances γ σ
r and γ σ

l for modes
exiting to the right and left, respectively, corresponds to
solving two independent eigenmodes of the homogeneous
Maxwell’s equations. However, no formal determination of
the optical field profiles nor simultaneous accounting of the
left- and right-propagating fields is needed to gain access to,
e.g., the Green’s functions. Note that the process formulated
in this section is very similar to a typical calculation of signal
propagation within a transmission line and the related Smith’s
charts, where the position-dependent current and voltage are
represented by equations similar to Eqs. (7) and (8), and
position-dependent impedances and admittances are defined
as their ratio.

C. Scalar Green’s functions from optical admittances

Having derived the optical admittances, the scalar Green’s
functions GT E and GT M can be obtained by using a mapping
between the homogeneous fields and the scalar Green’s func-
tions as presented for normal incidence by Di Stefano et al.
[28]. The mapping is based on a more general framework
for solving Green’s functions (see, e.g., Ref. [29]), where the
Green’s function outside the source point is first constructed
from the homogeneous solutions exiting to the right and left,
and the solution is normalized by a Wronskian to satisfy the
differential equation also at the source point. Using the sign
conventions of Ref. [18] and generalizing for arbitrary ε, μ,
and K , this results in scalar Green’s functions given by

GT E (z, z0, k0,K )= −μ(z)

WT E (k0,K )
[E→(z, k0,K )E←(z0, k0,K )�(z − z0) + E←(z, k0,K )E→(z0, k0,K )�(z0 − z)] (20)

and

GT M (z, z0, k0,K ) = −ε(z)

WT M (k0,K )
[H→(z, k0,K )H←(z0, k0,K )�(z − z0) + H←(z, k0,K )H→(z0, k0,K )�(z0 − z)],

(21)

where z0 is the source point coordinate, E→, E← and H→,H← are the electric and magnetic fields of the modes exiting to the
right and left side of the structure for TE and TM, and � is the unit step function. Finally, Wσ (k0,K ) in Eqs. (20) and (21) is
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the Wronskian defined for TE as

WT E (k0,K ) = E←(z, k0,K )
∂

∂z
E→(z, k0,K ) − E→(z, k0,K )

∂

∂z
E←(z, k0,K ), (22)

and similarly for TM by replacing E with H .
The scalar Green’s functions can now be expressed with the optical admittances by substituting Eqs. (13) and (14) into

Eqs. (20) and (21), resulting in

GT E (z, z0, k0,K )= −i

k0

1

γ T E
r (z) + γ T E

l (z)

[
exp

(
−ik0

∫ z

z0

εγ T E
l dz′

)
�(z − z0) + exp

(
−ik0

∫ z0

z

εγ T E
r dz′

)
�(z0 − z)

]
,

(23)

GT M (z, z0, k0,K ) = −i

k0

1

γ T M
r (z) + γ T M

l (z)

[
exp

(
−ik0

∫ z

z0

εγ T M
l dz′

)
�(z − z0) + exp

(
−ik0

∫ z0

z

εγ T M
r dz′

)
�(z0 − z)

]
.

(24)

Looking at Eqs. (23) and (24), one can directly see that at the limit z → z0, the integral terms vanish and the scalar Green’s
functions are simply given by the prefactors of the equations.

D. Dyadic Green’s functions and densities of states

Using Eq. (10) and the corresponding equation for the TM magnetic field, the scalar Green’s functions GT E and GT M can
be directly used to evaluate how a current source or its curl [cf. Eqs. (7) and (8)] excites the electric field of a TE mode or the
magnetic field of a TM mode. The transverse electric or magnetic field then provides direct access to the corresponding magnetic
and electric field components through the curls in Eqs. (3) and (4). However, to more conveniently keep track of the fields and
source orientations, one typically makes use of the fundamental vector calculus theorems and includes all the derivatives and
directions in the so-called vectorial (or dyadic) Green’s function. Below we loosely follow Refs. [19] and [20] and review how
to break down the full dyadic Green’s function to its different components.

The dyadic Green’s function can be understood by considering how an arbitrary point source creates electric and magnetic
fields with a given K vector. For simplicity, we construct the dyadic in the basis defined by the vectors u1, uK , and uz so that the
current terms generating the fields are also projected or rotated to this basis. As an example, the components of the electric field
resulting from the electric current source components along the basis directions u1, uK, uz are then given by

Ei (z, k0,K ) = iωμ0

∫ ∞

−∞

∑
j

gij
ee(z, z0, k0,K )Je,j (z0, k0,K )dz0, (25)

where i, j ∈ {1,K, z}. Electric sources in the u1 direction create only TE electric fields along u1 as described by the components
g11

ee = GT E and gK1
ee = gz1

ee = 0 of the dyadic Green’s function. Electric sources in the uK and uz direction correspondingly
create only TM modes, which have electric fields both in the uK and uz directions, and these fields are described by the
dyadic components gKK

ee , gzK
ee , and g1K

ee = 0, and gKz
ee , gzz

ee , and g1z
ee = 0, respectively, with the associated formulas given in

Appendix A. Accordingly, one can understand the magnetic Green’s functions g
ij
mm describing how magnetic sources create

magnetic fields, and the exchange Green’s functions g
ij
me and g

ij
em, which describe how electric sources create magnetic fields

and magnetic sources create electric fields, respectively. All the dyadic Green’s function components can be derived from the
scalar Green’s functions using Maxwell’s equations and Green’s identities as shown in Ref. [20], and we have included them as
functions of the optical admittances in Appendix A.

Writing the dyadic Green’s function with optical admittances allows expressing all the LDOS and NLDOS required in the
classical and quantized FED. In vacuum, the electric and magnetic LDOS are proportional to the trace of the imaginary parts of
the dyadic Green’s functions [30,31]. In a lossy medium, on the other hand, the LDOS can be calculated as the integral of the
NLDOS. In Ref. [19], we showed that by using the dyadic Green’s function components introduced above and setting z → z0,
the resulting electric and magnetic LDOS are obtained as [19,20]

ρe(z, k0,K ) = k0

4π3c
	
{
g11

ee + gKK
ee + ε2

|ε|2 gzz
ee

}
, (26)

ρm(z, k0,K ) = k0

4π3c
	
{
g11

mm + gKK
mm + μ2

|μ|2 gzz
mm

}
. (27)

Note that in the limit of small losses, ε2 ≈ |ε|2 and μ2 ≈ |μ|2, and these equations correspond to the above-mentioned
conventional LDOS formula for vacuum. Also, the well-known divergence of the pointwise LDOS in lossy media [30,31] only
appears after the inverse Fourier transform integration over large K values corresponding to evanescent waves. With the above
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expressions, the LDOS can now be obtained using the optical admittances directly as a simple expression,

ρe(z,K, k0) = −1

4π3c
�

{(
1

γ T E
r + γ T E

l

+ γ T M
r γ T M

l

γ T M
r + γ T M

l

+ (K/k0)2

|ε|2
1

γ T M
r + γ T M

l

)}
(28)

for the electric field and

ρm(z,K, k0) = −1

4π3c
�

{(
1

γ T M
r + γ T M

l

+ γ T E
r γ T E

l

γ T E
r + γ T E

l

+ (K/k0)2

|μ|2
1

γ T E
r + γ T E

l

)}
(29)

for the magnetic field. The total electromagnetic LDOS for the energy density can be calculated from these as ρtot = 1/2(|ε|ρe +
|μ|ρm).

For completeness, the electric NLDOS can be calculated from the dyadic Green’s function components as

ρNL,e(z, z0, k0,K ) = k3
0

4π3c

(
ε′
i

∣∣g11
ee

∣∣2 + μ′
i

∣∣g1K
em

∣∣2 + μ′
i

∣∣g1z
em

∣∣2 + μ′
i

∣∣gK1
em

∣∣2

+ ε′
i

∣∣gKK
ee

∣∣2 + ε′
i

∣∣gKz
ee

∣∣2 + μ′
i

∣∣gz1
em

∣∣2 + ε′
i

∣∣gzK
ee

∣∣2 + ε′
i

∣∣gzz
ee

∣∣2)
, (30)

where ε′
i = εi (z0) and μ′

i = μi (z0) are the imaginary parts of the relative permittivity and permeability at the source coordinate
[20]. Note that all the gem exchange terms vanish if μi = 0, which is the case in most materials used in optoelectronic devices.
The magnetic NLDOS is similarly given by

ρNL,m(z, z0, k0,K ) = k3
0

4π3c

(
μ′

i

∣∣g11
mm

∣∣2 + ε′
i

∣∣g1K
me

∣∣2 + ε′
i

∣∣g1z
me

∣∣2 + ε′
i

∣∣gK1
me

∣∣2

+μ′
i

∣∣gKK
mm

∣∣2 + μ′
i

∣∣gKz
mm

∣∣2 + ε′
i

∣∣gz1
me

∣∣2 + μ′
i

∣∣gzK
mm

∣∣2 + μ′
i

∣∣gzz
mm

∣∣2)
. (31)

As with the LDOS, the total electromagnetic NLDOS can be calculated as ρNL,tot = 1/2(|ε|ρNL,e + |μ|ρNL,m). To calculate the
NLDOS, the dyadic components need to be calculated from the optical admittances for a chosen source point z0 as specified in
Appendix A, but they do not simplify as much as the LDOS in Eqs. (28) and (29).

E. Application to fluctuational electrodynamics

Having access to the dyadic Green’s function and consequently the LDOS and NLDOS enables directly formulating the
classical or quantized FED. In both, Je and Jm are written as thermally fluctuating source currents, which depend on the
position through the local temperature and/or excitation of the carrier populations. To finally obtain the position-dependent
photon numbers in FED, the NLDOS functions have to be multiplied with the fluctuating source terms, then integrated over all
the source coordinates, and finally normalized with the LDOS. Specifically in QFED, Je and Jm are represented by polarization
and magnetization noise current operators, which are defined in terms of the bosonic source-field operators and the imaginary
parts of the relative permittivity and permeability [18–20]. In QFED, the photon-number expectation values at coordinate z can
therefore be calculated with the help of the LDOS and NLDOS as

〈n̂e/m/tot (z,K, k0)〉 =
∫

ρNL,e/m/tot (z, z0, k0,K )〈η̂(z0, k0)〉dz0

ρe/m/tot (z, k0,K )
, (32)

where η̂ is the source-field photon-number operator, whose expectation value follows the Bose-Einstein distribution for purely
thermal fields or electrically excited semiconductors, if the material’s Fermi-level separation is included as the photon chemical
potential [32]. Finally, the local net emission rate according to QFED can be calculated using the expectation values mentioned
above as

〈Q̂(z)〉ω,K = h̄ω2εiρe(z, k0,K )[〈η̂(z, k0)〉 − 〈n̂e(z, k0,K )〉]
+ h̄ω2μiρm(z, k0,K )[〈η̂(z, k0)〉 − 〈n̂m(z, k0,K )〉], (33)

where the subindices ω and K denote the variables one has
to integrate over to get the total net emission rate. Note
that both nonzero εi and/or μi and a nonzero LDOS are
needed to obtain a nonzero net emission. The dyadic Green’s
function components can also be used to express the damping
and scattering coefficients for the interference-exact radiative
transfer (IFRT) model, which is being developed to provide a
computationally efficient access to the local photon numbers
in Eq. (33) and consequently, to a direct integration with the
chosen carrier dynamics model [20]. Once this is done, the

self-consistent coupling of optical and electrical processes
can be done by, e.g., coupling the IFRT model and the drift-
diffusion (DD) model for carrier dynamics in a similar way
as in Ref. [33], where the conventional radiative transfer
model was still used instead of the IFRT. Essentially this
involves evaluating 〈η̂(z, k0)〉 using the quasi-Fermi levels
from DD and setting it as the source term in the IFRT model.
Correspondingly, the spatial net recombination and generation
rate is evaluated using Eq. (33) and the photon numbers from
IFRT, and it is used as an input to the DD model.
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To comment shortly on the computational efficiency of the
optical admittance method, we note that the potential benefits
of the method would mostly follow from the more straight-
forward integration of the model with the charge transport
framework and the availability of simple analytic solutions.
For the full Green’s functions and the related quantities, on
the other hand, the calculation time is fully determined by
the time required for spatial numerical integration [see, e.g.,
Eqs. (23) and (24)]. That, in turn, is dependent on the number
of points required for the spatial grid. We leave a more
detailed comparison of the computational efficiency between
the presented method and, e.g., the transfer-matrix method to
a possible future work on the topic.

III. RESULTS & DISCUSSION

To demonstrate how the optical admittance method is used,
we calculate the LDOS and NLDOS and related quantities
for selected optoelectronic devices. We begin by showing
how the position of the emitting quantum well (QW) af-
fects the photon numbers in a GaN-based multi-quantum-well
(MQW) flip-chip LED. Then we apply the method to map
the optical confinement of a vertical cavity surface-emitting
laser (VCSEL), another frequently used device architecture in
modern optoelectronics. Finally in Appendix B, to show how
optical admittances are applied to model graded structures,
we simulate photon transport in top-emitting GaN LEDs, with
and without graded antireflective coatings. The purpose of
this section is to give an overview on how the information
normally calculated with more complex methods can be ob-
tained using the proposed optical admittance method. In these
results we do not go notably beyond calculating the LDOS
and NLDOS, but we note that they are the quantities that are
needed for building fully self-consistent optoelectronic mod-
els through the use of Eqs. (32) and (33) or the interference-
exact radiative transfer model [20]. To choose a representative
but sufficiently simple quantity that illustrates the optical
fields created by point sources, we show normalized total
photon-number expectation values defined as

N (z, z0, k0,K ) = 1

Nm

ρNL,tot (z, z0, k0,K )

ρtot (z, k0,K )
, (34)

where Nm is the maximum of ρNL,tot/ρtot, limiting N be-
tween 0 and 1 for convenience. Comparing with Eq. (32),
N essentially denotes the normalized photon number of the
electromagnetic field created by a point source located at the
chosen z = z0. All the calculations are performed for fixed
photon energies (and thereby k0) and z0, and all the results are
shown as color maps, with z and K as the coordinate axes.

A. GaN MQW flip-chip LED structure

GaN MQW LEDs form the backbone of today’s solid-
state lighting technologies. Here we illustrate the optical
characteristics of a flip-chip GaN LED consisting of a na-
tive GaN substrate, an InGaN/GaN MQW layer with five
3-nm-thick QWs separated by 10-nm-thick GaN barriers,
a p-type GaN layer, and a thin silver contact of 20 nm
before the interface with air. The silver contact is similar to
the one in Ref. [19], where it was used to support plasmons.

We use the same thickness here for comparison, even if we
do not focus on plasmon resonances in this paper. In addition,
to make a simple comparison between two slightly differing
structures, we place the MQW either 300 or 600 nm below
the top contact. (These distances are chosen arbitrarily to
demonstrate the method without a specific relation to the
wavelength.) The calculation is made with the photon energy
Ep = h̄ck0 fixed to 2.786 eV, μ equal to 1 everywhere, and
the refractive indices N = √

εμ set to 2.51 + 0.0029i (GaN),
2.51 + 0.094i (InGaN), 0.013 + 3.119i (silver), and 1 (air),
following Ref. [19].

To show how the MQW position affects the photon energy
density resulting from emission in the QWs, Fig. 2 shows
N as calculated from the optical admittances. Figures 2(a)
and 2(b) show the results for the structure where the MQW
is located 300 nm below the top contact, and the source
is in the middle of the (a) lowest and (b) uppermost QW.
In Figs. 2(c) and 2(d), the MQW is located 600 nm below
the top contact, and the source is correspondingly in the (c)
lowest and (d) uppermost QW. The figures are plotted on a
logarithmic scale due to the large variations in N within the
studied z and K range. It can be seen that as expected, the
structure creates freely propagating modes in the GaN escape
cone (left side of the figures up to K/k0 = 2.51) and in the air
escape cone (right side up to K/k0 = 1), while the fields are
evanescent elsewhere. Considering freely propagating modes
in air (values K/k0 < 1 in air), neither the MQW position nor
the source position seems to substantially affect the value of
N on the logarithmic scale. This can be expected, since the
silver film reflectivity does not depend on the MQW position,
and there is no mirror on the left that would cause interference
effects with the field initially emitted towards the left. In
addition, the N value is small in air due to reflection from
the metal contact.

Considering emission into the GaN substrate on the left,
N varies over roughly 2 orders of magnitude in the left side
of Figs. 2(a)–2(d) due to interference with the field reflected
from the silver contact. Therefore the position of the MQW
region and the source point have a considerable effect on the
emission towards the left. More specifically, the cases shown
in Figs. 2(b) and 2(c) give larger N values in GaN in the left
side at K/k0 < 1 (rectangle in the bottom left corner) than
those shown in Figs. 2(a) and 2(d). This could be important
information, if one would need accurate angular control of
the emission pattern towards the bottom side. Even in a typical
flip-chip LED, this might be useful information for optimizing
the total emission towards the bottom interface, where light is
typically extracted through a roughened surface. In any case,
based on the results of Fig. 2, the proposed model provides
direct access to the emission patterns of QWs embedded in
fairly complex heterostructure devices, such as the chosen
flip-chip MQW LED.

B. GaN VCSEL structure

As a second short example of using the proposed optical
admittance method, we study it in one of the GaN vertical
cavity surface-emitting laser (VCSEL) structures reported in
Ref. [34]. The structure chosen here has a 42-period dis-
tributed Bragg reflector (DBR) consisting of GaN and AlGaN
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FIG. 2. 10-base logarithm of the normalized photon number N in the different GaN MQW flip-chip for (a) MQW located 300 nm below
the top contact with the source in the middle of the lowest QW, (b) MQW located 300 nm below the top contact with the source in the middle
of the uppermost QW, (c) MQW located 600 nm below the top contact with the source in the lowest QW, and (d) MQW located 600 nm below
the top contact with the source in the uppermost QW. The horizontal dashed lines mark the escape cones of air and GaN, and the vertical
dashed lines the position of the MQW and the metal-air interface. The photon energy and wavelength in the calculations are 2.786 eV and
446 nm, respectively.

in the bottom side and a seven-period DBR consisting of TiO2

and SiO2 in the top side, and a MQW layer consisting of
three InGaN QWs separated by InGaN barriers. The refractive
indices are obtained from Refs. [34] and [35], and the photon
energy is 2.96 eV. To see how well the DBRs confine photons
in the active region of the VCSEL, in Fig. 3 we plot again
N with the source placed in the middle of the (a) first, (b)
second, and (c) third QW. Also here we plot the results on a

logarithmic scale due to the large variations in N within the
studied z and K range.

All the cases considered in Fig. 3 show that the optical
admittance method predicts strong optical confinement in the
active layer of the VCSEL roughly up to K/k0 = 0.5, as
expected due to the DBRs. Interestingly, based on Figs. 3(a)–
3(c), the quantitative details of N at the bottom DBR depend
somewhat on the position of the light emitter. On the other
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0
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FIG. 3. 10-base logarithm of the normalized photon number N in the structure of Ref. [34] with the source point in the middle of the
(a) first, (b) second, and (c) third QW. The photon energy and wavelength in the calculations are 2.96 eV and 420 nm, respectively.
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hand, the emission pattern towards the top side where light is
extracted (on the right side of the figures) is roughly similar
in all three cases up to K/k0 = 0.5 with the chosen logarith-
mic scale. Overall, these results demonstrate that the optical
admittances allow calculating the detailed emission patterns
directly even in the complex VCSEL structures, which include
DBRs consisting of tens of subsequent extremely thin layers
as well as large variations in the emitted electromagnetic
fields.

IV. CONCLUSIONS

In order to realize an accurate and generally applicable
model of photon transport in arbitrary lossy resonator struc-
tures, we formulated the Green’s functions and the related
optical quantities required for the recently introduced quan-
tized fluctuational electrodynamics (QFED) framework using
the so called optical admittance functions. The optical ad-
mittance functions can be expressed analytically for arbitrary
piecewise-homogeneous layer structures and solved numeri-
cally for any embedded graded layers. In addition, the optical
admittance functions enable straightforward expressions for
all the local and nonlocal densities of states required for ac-
curate modeling of light-matter interaction. Through selected
examples we illustrated that by using the presented frame-
work, one can make straightforward yet detailed analyses
of energy densities and transport in a wide range of planar
photonic devices, especially once the method is coupled with
full-device models including electrical and thermal transport.
We believe that having a directly workable self-consistent
model of electrical and optical processes will enable both
understanding the physics of planar devices better, as well as
developing new photonic device functionalities for thin-film
structures.
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APPENDIX A: DYADIC GREEN’S FUNCTIONS
FROM OPTICAL ADMITTANCES

To make the presentation of the spectral dyadic compo-
nents more clear, we define integral terms related to TE optical
admittances as

ZT E (z1, z2, γ
T E )

= exp

(
−ik0

∫ z2

z1

μγ T E (z′)dz′
)

�(z2 − z1), (A1)

where z1 and z2 are position coordinates and γ T E is the TE
optical admittance calculated for a right- or leftward mode.
For the same purpose, we define similar integral terms for TM
optical admittances as

ZT M (z1, z2, γ
T M )

= exp

(
−ik0

∫ z2

z1

εγ T M (z′)dz′
)

�(z2 − z1). (A2)

The coordinates are defined as in the article so that u1 is
the direction of the electric (magnetic) field in the TE (TM)
modes and uK is the direction perpendicular to u1 in the xy

plane, so that u1 = uK × uz. The dyadic Green’s function
components are derived following Ref. [20], making use of the
reciprocity relations GT E (z, z0, k0,K ) = GT E (z0, z, k0,K )
and GT M (z, z0, k0,K ) = GT M (z0, z, k0,K ).

1. Electric field from electric sources

Using the dyadic Green’s function, the electric field created by an electric source is obtained from the relation

E(z, k0,K ) =
∫ ∞

−∞

←→
G ee(z, z0, k0,K ) · Je

eff (z0, k0,K )dz0

=
∫ ∞

−∞

⎡
⎣g11

ee (z, z0, k0,K ) 0 0
0 gKK

ee (z, z0, k0,K ) gKz
ee (z, z0, k0,K )

0 gzK
ee (z, z0, k0,K ) gzz

ee (z, z0, k0,K )

⎤
⎦ ·

⎡
⎣ JE

eff,1(z0, k0,K )
JE

eff,K(z0, k0,K )
JE

eff,z(z0, k0,K )

⎤
⎦dz0, (A3)

with the elements (separated into components associated with the TE and TM polarization) given below.

a. TE

g11
ee (z, z0, k0,K ) = GT E = − i

k0
[
γ T E

r (z) + γ T E
l (z)

] [
ZT E

(
z0, z, γ

T E
l

) + ZT E
(
z, z0, γ

T E
r

)]
. (A4)

b. TM

gKK
ee (z, z0, k0,K ) = 1

ε(z)ε(z0)

1

k2
0

∂2

∂z∂z0
GT M − 1

ε(z0)k2
0

δ(z − z0) = − i

k0
[
γ T M

r (z0) + γ T M
l (z0)

]
× [

γ T M
l (z0)γ T M

r (z)ZT M
(
z0, z, γ

T M
r

) + γ T M
r (z0)γ T M

l (z)ZT M
(
z, z0, γ

T M
l

)]
. (A5)
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gzK
ee (z, z0, k0,K ) = − iK

ε(z0)ε(z)k2
0

∂

∂z0
GT M = −K/k2

0

ε(z)

i

γ T M
l (z0) + γ T M

r (z0)

× [
γ T M

l (z0)ZT M
(
z0, z, γ

T M
r

) − γ T M
r (z0)ZT M

(
z, z0, γ

T M
l

)]
. (A6)

gKz
ee (z, z0, k0,K ) = iK

ε(z)ε(z0)k2
0

∂

∂z
GT M = iK

k2
0

1

ε(z0)

1

γ T M
l (z) + γ T M

r (z)

× [
γ T M

l (z)ZT M
(
z, z0, γ

T M
r

) − γ T M
r (z)ZT M

(
z0, z, γ

T M
l

)]
. (A7)

gzz
ee (z, z0, k0,K ) = K2

ε(z0)ε(z)k2
0

GT M − 1

ε(z0)k2
0

δ(z − z0)

= − K2/k3
0

ε(z0)ε(z)

i(
γ T M

r (z0) + γ T M
l (z0)

) [
ZT M

(
z, z0, γ

T M
l

) +ZT M
(
z0, z, γ

T M
r

)] − 1

ε(z0)k2
0

δ(z − z0). (A8)

2. Magnetic field from electric sources

The magnetic field related to an electric source is obtained when the Green’s dyadic
←→
G ee in Eq. (A3) is replaced by

←→
G me

with the following elements.

a. TE

gK1
me (z, z0, k0,K ) = 1

k0μ(z)

∂

∂z
GT E = 1

k0
(
γ T E

l (z) + γ T E
r (z)

)[
γ T E

l (z)ZT E
(
z, z0, γ

T E
r

) − γ T E
r (z)ZT E

(
z0, z, γ

T E
l

)]
. (A9)

gz1
me(z, z0, k0,K ) = − 1

μ(z)

iK

k0
GT E = − 1

μ(z)

K

k2
0

1

γ T E
r (z) + γ T E

l (z)

[
ZT E

(
z0, z, γ

T E
l

) +ZT E
(
z, z0, γ

T E
r

)]
. (A10)

b. TM

g1K
me (z, z0, k0,K ) = 1

k0ε(z0)

∂

∂z0
GT M = 1

k0
[
γ T M

l (z0) + γ T M
r (z0)

] [
γ T M

l (z0)ZT M
(
z0, z, γ

T M
r

) − γ T M
r (z0)ZT M

(
z, z0, γ

T M
l

)]
.

(A11)

g1z
me(z, z0, k0,K ) = iK

k0

1

ε(z0)
GT M = 1

ε(z0)

K

k2
0

1

γ T M
r (z0) + γ T M

l (z0)

[
ZT M

(
z, z0, γ

T M
l

) +ZT M
(
z0, z, γ

T M
r

)]
. (A12)

3. Magnetic field from magnetic sources

The magnetic field related to a magnetic source is obtained when the electric current Je
eff in Eq. (A3) is replaced by the

magnetic current Jm
eff , and the Green’s dyadic

←→
G ee is replaced by

←→
G mm with the following elements.

a. TE

gKK
mm (z, z0, k0,K ) = 1

μ(z0)μ(z)

1

k2
0

∂2

∂z∂z0
GT M − 1

μ(z0)k2
0

δ(z − z0) = − i

k0
[
γ T E

r (z0) + γ T E
l (z0)

]
× [

γ T E
l (z0)γ T E

r (z)ZT E
(
z0, z, γ

T E
r

) +γ T E
r (z0)γ T E

l (z)ZT E
(
z, z0, γ

T E
l

)]
. (A13)

gzK
mm(z, z0, k0,K ) = − iK

μ(z0)μ(z)k2
0

∂

∂z0
GT E = −K/k2

0

μ(z)

i(
γ T E

l (z0) + γ T E
r (z0)

)
× [

γ T E
l (z0)ZT E

(
z0, z, γ

T E
r

) − γ T E
r (z0)ZT E

(
z, z0, γ

T E
l

)]
. (A14)

gKz
mm(z, z0, k0,K ) = iK

μ(z0)μ(z)k2
0

∂

∂z
GT E = iK

k2
0

1

μ(z0)

1

γ T E
l (z) + γ T E

r (z)

× [
γ T E

l (z)ZT E
(
z, z0, γ

T E
r

) − γ T E
r (z)ZT E

(
z0, z, γ

T E
l

)]
. (A15)
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gzz
mm(z, z0, k0,K ) = K2

μ(z0)μ(z)k2
0

GT E − 1

μ(z0)k2
0

δ(z − z0)

= − K2/k3
0

μ(z0)μ(z)

i[
γ T E

r (z0) + γ T E
l (z0)

] [
ZT E

(
z, z0, γ

T E
l

) +ZT E
(
z0, z, γ

T E
r

)] − 1

μ(z0)k2
0

δ(z − z0). (A16)

b. TM

g11
mm(z, z0, k0,K ) = GT M = − i

k0
[
γ T M

r (z) + γ T M
l (z)

] [
ZT M

(
z0, z, γ

T M
l

) +ZT M
(
z, z0, γ

T M
r

)]
. (A17)

4. Electric field from magnetic sources

The electric field related to a magnetic source is obtained when the electric current Je
eff in Eq. (A3) is replaced by the magnetic

current Jm
eff , and the Green’s dyadic

←→
G ee is replaced by

←→
G em with the following elements.

a. TE

g1K
em (z, z0, k0,K ) = − 1

k0μ(z0)

∂

∂z0
GT E = − 1

k0
(
γ T E

l (z0) + γ T E
r (z0)

)
× [

γ T E
l (z0)ZT E

(
z0, z, γ

T E
r

) − γ T E
r (z0)ZT E

(
z, z0, γ

T E
l

)]
. (A18)

g1z
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APPENDIX B: TOP-EMITTING GAN LED
WITH GRADED ITO

To shortly demonstrate the use of optical admittances in
graded-index structures, as an additional example we study
the optical admittance method in top-emitting LEDs, where
light is extracted through a transparent top contact instead of
the roughened bottom side. In top-emitting LEDs as well as
in various solar cells, antireflective (AR) coatings are often
used, as they enhance the coupling of light between the
semiconductor structure and free space. The use of graded-
index materials can be especially attractive, as they have been
reported to decrease the reflectivity more and over a wider
range of incidence angles than homogeneous quarter-wave
ITO layers [36–38]. Following Ref. [37], we choose three
different top-emitting LED structures, all of which again have
a MQW region including five InGaN QWs with a thickness
of 3 nm, separated by 10-nm-thick GaN barriers. After the
last QW, there is a 300-nm-thick layer of GaN before the
AR coating, which consists of either (a) 500 nm of graded

indium tin oxide (ITO) with a refractive index N varying
from 2.19 to 1.17, similarly as in Ref. [37], (b) ungraded ITO
with N = 1.17, or (c) ungraded ITO with N = 2.19. In the
ungraded cases, the coating thickness is always a quarter of
the wavelength in the medium. Again, the permeability is 1
everywhere, and the refractive indices for GaN and InGaN are
the same as those of the flip-chip LED in the main article text.
The photon energy is 2.786 eV, and the source is placed in the
middle of the topmost QW.

Figure 4 shows N as a function of position and K in
the LED with (a) graded ITO, (b) ITO with n = 1.17, and
(c) ITO with n = 2.19. The source QW is located at the 0
position, and the K values have been limited to the escape
cone of light towards air (K < k0), as none of the chosen
AR coatings prevents total internal reflection at K > k0. For
Fig. 4(a), the admittances within the graded layer have been
solved numerically, while for the other layers and figures they
are obtained from Eq. (19) of the article text. By comparing
Figs. 4(a)–4(c), we see that N in air is slightly larger in
(a) than in (b) and (c) at almost all K values. To study this
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FIG. 4. Normalized photon number N on a linear scale in the light cone of air for a top-emitting GaN LED with different antireflective
coatings: (a) 500 nm of graded ITO with the refractive index N varying from 2.19 to 1.17, (b) ungraded ITO with N = 1.17, and (c) ungraded
ITO with N = 2.19. In (b) and (c) the ITO thickness is a quarter of the wavelength. The emitting QW is at the 0 position, and the different
regions are marked in the figures. The photon energy and wavelength in the calculations are 2.786 eV and 446 nm, respectively.

further, we have calculated the reflectivities of all the AR
coatings as a function of K (not shown) from the optical
admittances as advised in [21], and they correspond well to
values reported in Ref. [37]. The nongraded AR coatings are
unideal and reflect roughly 10% at normal incidence, while
the graded AR coating is almost transparent. The unideal
performance of the single-layer AR coatings is due to imper-
fect destructive interference of the reflected wave, as the ITO
layer is surrounded by different materials at its two interfaces.

Based on this qualitative comparison to Ref. [37], the optical
admittance method gives direct insight to experimental results
of different antireflective coatings and pertinent interference
effects. In addition, these results further demonstrate that
the optical admittance method allows expressing the Green’s
functions and related quantities accurately, even in graded
structures, without additional difficulties apart from solving
the relatively simple differential equations (15)–(16) of the
article text numerically within the graded layer.
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