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REVIEW ARTICLE

Social physics: uncovering human behaviour from
communication
Kunal Bhattacharya a,b and Kimmo Kaski a,b

aDepartment of Computer Science, Aalto University School of Science, Espoo, Finland; bBritish
Library, Alan Turing Institute, London, UK1527723

ABSTRACT
In the post year 2000 era the technologies that facilitate human
communication have rapidly multiplied. While the adoption of
these technologies has hugely impacted the behaviour and
sociality of people, specifically in urban but also in rural environ-
ments, their ‘digital footprints’ on different data bases have
become an active area of research. The existence and accessi-
bility of such large population-level datasets, has allowed scien-
tists to study and model innate human tendencies and social
patterns in an unprecedentedway that complements traditional
research approaches like questionnaire studies. In this review,
we focus on data analytics and modelling research – along the
lines of Social Physics – as it has been carried out using the
mobile phone datasets to get insight into the various aspects of
human sociality, burstiness in communication, mobility pat-
terns, and daily rhythms.
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1. Introduction

Technologies that harness digital information have grown over the past two
decades in a number of unprecedented ways. It is said that in the current state-
of-the-art, everyday an order of 3� 1018 bytes of data gets created [1], and this
rate of data creation is forecast to increase by 2025 up to 18� 1022 bytes per
annum, the transfer of which with today’s broadband technology would take
450 million years [2]. The main bulk of this ‘big data’ is formed by records or
‘digital footprints’ from various modes of modern-day communication such as
mobile phone calls, social media postings, and online commercial activities. The
availability of such data has opened up an unprecedentedly wide range of
opportunities for computational analytics and modelling research on social
systems in terms of their complex structure and dynamics [3]. In this data-
driven approach one focusses on studying the complexities of social systems or
networks at different structural and dynamical scales to understand ‘how does
microscopic translate to macroscopic’. In order to get insight into the structure,
function and behaviour of social systems, we employ the methodologies of data
analysis for making observations or discoveries,modelling for describing dyna-
mical processes or plausible mechanisms governing the system and simulation
for predicting the behaviour of the system. In this empirical research frame-
work, which along the lines of Social Physics, the broad perspective is about
understanding the dynamics of human social behaviour in different contexts
through phenomenological models. In constructing such models of complex
social systems we are somewhat handicapped because unlike in physics we are
not yet familiar with the ‘underlying laws’. Then the purpose of the model
becomes important. From physics we already know that any model does not
come even close to capturing all the details of the system. Therefore, we have
become accustomed to the idea that ‘the model should be as simple as possible
but not simpler’, yet we want the model to describe some of the salient features
or behaviour of the real system, reasonably well. Thus in our model building we
aim for tractability and clarity, by considering that ‘models are likemaps’ so that
they are useful when they contain the details of interest and ignore others [4].
Therefore, we believe that the utility of simple models in describing the com-
plexities of, for example, poorly understood ICT-based social systems, is very
high. Simplemodelsmay, indeed, give deep insights into the social system in the
same way that the simple Ising model provides useful understanding and
quantitatively correct predictions on critical phenomena of real magnetic
systems.

Over the past few years Social Physics has evolved into a multidisciplinary
area of research interests focusing on human sociality embedded in social
network and societal structures, with the help of data from various sources
and its analytics. It is capable of revealing the structure and behavioural patterns
of social systems at different scales from individual to societal level as well as
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capturing the long term evolution of the society [5]. The concept of Social
Physics is not new; it was first introduced by philosopher August Comte during
the era of Industrial Revolution in the early 19th century with the view that the
behaviour and functions of human societies could be explained in terms of
underlying laws like in physics [7]. In the first half of the 20th century there were
pioneering contributions in this yet emerging area by scientists like G. K. Zipf
and J. Q. Stewart [8]. Since then the area has mainly evolved through the efforts
of statistical physicists, especially through modelling [9–11]. Now a full fledged
data-driven paradigm, the Social Physics research borrows concepts and meth-
odologies from social experiments, network science, game theory, theory of
phase transitions and critical phenomena, automated data-collection systems,
etc. Overall, the Social Physics aims to answer scientific questions that would be
instrumental in tackling challenges in the areas like, socio-political conflicts,
organized crimes, human health, human migration and the development and
productivity at multiple scales from organizations to cities [12,13].

Here we will review the work carried out in the spirit of Social Physics relying
on data from mobile phone call detail records (CDRs), that includes, time
stamps of voice calls and text messages (SMS messages). For the purpose of
academic research such datasets could be released by mobile phone service
providers with anonymity of the subscribers ensured [14]. In another type of
research with volunteers, the subjects have been allotted pre-programmed
mobile phones to allow the collection of the data from the subjects into
centralized servers for the time period of the study for the purpose of subsequent
data analytics [15,16]. One is referred to Section II for further clarification on the
nature of the data. Before such datasets and methods of data collection became
available, research of human social behaviour relied mostly on questionnaire-
based surveys and field observations typically on small number of individuals
[17]. In these survey-based studies the scope of social interactions is usually wide
but based on individual recollection, raising the issues of subjectivity and how to
measure the strength of social interaction, and with what scale. In contrast, the
kind of data from mobile CDRs provides relatively narrow scope to social
interaction while being based on measurements, for example in terms of the
duration of a phone call between a pair of people. The real benefit of studies
based on themobile phone CDRs is that these have allowedmaking in vivo or in
situ observations on large societal level populations over a wide range of spatial
and temporal scales. Nevertheless, the mobile phone CDR based studies should
be considered complementary to the questionnaire based survey studies. In this
review, we provide an overview of the work that includes the characterization
and modelling of social dynamics at the level of individuals as well as the
aggregate levels observed at different scales.

A number of studies based on big data have already been conducted from
different perspectives including physics, communication engineering, transpor-
tation engineering, epidemiology, and sociology, to name a few. In addition to
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data from mobile phone calls, extensive research has been carried out, on
datasets from social media that include Facebook [18–20], Twitter [21–23],
and Wikipedia [24]. In this wide sense the current review is not an exhaustive
one, and it is aligned to the approach of Social Physics as applied on mobile
phone data. In particular, we lay emphasis on the contributions from physicists
focussing on framing of laws from observed statistical regularities, agent based
modelling and properties of social networks derived from CDRs. Also, the
approaches that we could include in this review are general enough in terms
of applicability to studying and analysing different types of socialmedia datasets.
We will here review a set of selected topics, namely human sociality (Section II),
human burstiness in time series of human communication (Section III), human
mobility patters (Section IV), and the human daily and seasonal rhythms
(Section V). Readers wanting to learn more about related works as well as
various other related topics may explore existing reviews, for example [25–27].

II. Human sociality

The study of human sociality from telecommunication data has over
time developed into a unique field of research that provides insight into
the micro-, meso- and macroscopic structure and dynamics of social
networks of large-scale societal level populations. The paradigm is held
in contrast to the method of surveys [28] for collecting data on human
interactions [15,29]. While, at the macroscopic level, the studies have
primarily investigated the structural aspects of the social networks
derived from the calling information aggregated over time windows
[30–32], at the microscopic level the focus has been on ‘egocentric
networks’ to study the dynamics of closest relationships between egos
(the individuals in focus) and their alters (the contacts of an individual)
[33–36]. At the intermediate or mesoscopic level, social groups or com-
munities and network motifs have been the objects of study [37–41].

A mobile phone CDR dataset comprises of call logs of egos or individuals
with each log containing information of the timings of incoming and out-
going calls and of text messages i.e. SMSs. For calls, usually the information on
the duration of the call is also included. The CDRs used for the purpose of
research are anonymized, and the egos are distinguished by attributed surro-
gate keys. For a given ego and for a given communication event (a call or
SMS) the corresponding alter key also appears in the log. The data acquired
from mobile phone service providers may contain ancillary information on
self-reported age, gender and residential postcode of the users. Using CDRs
the social network is constructed by aggregating information within a time
window (see Figure 1). For the studies in which volunteers are recruited, the
investigators usually avail multiple modes of data collection. Apart from call
logs, additional data could be collected from pre-installed software as well as

4 K. BHATTACHARYA AND K. KASKI



from various sensor signals [15,16,42,43]. For example, the Bluetooth data
from a volunteer collected at a certain instant could also indicate the presence
of other Bluetooth devices, and hence other volunteers in the proximity [44].
The studies of the latter kind usually also collect information from the
participants in the form of questionnaires [36]. Data obtained from multiple
sources provide additional advantages of validating the results and dealing
with the problems of missing data.

A. Macroscale and mesoscale patterns

The first of its kind ‘Reality Mining’ experiment was conducted at the MIT
with 100 volunteers who were either studying or working at the institute
and were allotted Nokia 6600 mobile phones [15]. Using data on Bluetooth
based proximity, the investigators could predict the type of relationship,
namely, friend or office acquaintance with a high enough accuracy. A
contrasting study investigated the large scale structures of human social
networks using CDRs of millions of subscribers with billions of calls from
a mobile phone service provider that had about 20% of the market share in
a European country [32]. In the network, two individuals were connected
by a link if there had been a minimum of one reciprocated pair of phone
calls between them over a period of 18 weeks. This was called a ‘mutual

Figure 1. A part of a network constructed from mobile phone call data. Blue circles
correspond to male and red circles to female subscribers. The numbers inside a circle (and
also its size) indicates the age of the subscriber. Grey circles correspond to subscribers whose
gender and age information is not available in the dataset. The numbers on a link (as well as
its width) indicates the total number of calls between the connected pair of individuals over a
period of seven months. This figure is adopted from [35] and it is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License https://creativecom
mons.org/licenses/by-nc-sa/3.0/.
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network’ that would act as a proxy of a social network, and the construc-
tion method was expected to eliminate a large number of one-way calls
where the caller did not personally know the callee [31]. Also, the weights
of the links were attributed using the total calling duration between the
ego-alter pairs. The final network that was analysed had about 4.6 million
nodes and 7 million links. A major finding of the study [32] was the
confirmation of the strength of weak ties hypothesis [45], according to
which the weights of the links and the network topology were found to be
correlated such that the intra-community links are stronger compared to
the inter-community links. Also, by examining the percolation transition
[46] of the giant component containing 84% of the nodes, the study
showed the importance of weak ties in maintaining the overall connectivity
of the network. A similar investigation was carried out using CDRs of
mobile phone subscribers in Belgium [30]. The mutualized network had
2.5 million nodes and 5.4 million links. Besides characterizing the topology
of the network, the study also showed the influence of language on the
structure of the network (Belgium has native French and Flemish as well as
bilingual speakers).

The Belgian dataset was also used to investigate the community structure
with a modularity optimization method, and the results showed that most
communities are monolingual [47]. Similarly, a study [41] applied different
community detection algorithms [48] to the dataset used in [32] to illustrate the
Granovetterian ‘weak ties hypothesis’ from correlations between the link
weights and community structure. The same dataset was also used to study
the evolution of community structure in time [39]. Using networks derived
from mobile phone calls and from co-authorship information in the Cornell
University cond-mat eprint archive, the study showed the differences between
the dynamics of small and large groups.

The Granovetterian hypothesis was also illustrated in the context temporal
networks by carrying out census on temporal motifs in mobile phone data [38]
(see also [37]). A more recent study of meso-scale patterns using the
Copenhagen Network Study (CNS) dataset proposed a general framework for
analysis of evolving social networks [40]. The dataset involving around 1000
freshman University students, contained information on calls, SMSs, proximity
via Bluetooth, geo-location, and social media contacts in addition to general
demographic information. The method involved identifying stable cores in
dynamic networks, representing meetings between individuals having different
social contexts like work and recreation. It was also suggested that the concept of
cores is better suited to the description of social groups in time varying networks
as compared to the other community detection algorithms.

As one of the first examples of an approach towards modelling meso- and
macroscopic structures of a humanmobile communication type social network,
we describe the following model (see [49]). This model describes the processes
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for individuals getting acquainted with each other leading in turn to the
formation of locally and globally complex weighted social network structures.
In the model, one considers a network with a fixed number of N nodes (or
individuals) where the time evolution of the structure proceeds with the
following three rules. (i) The cyclic closure or local attachment rule: In a time
interval Δt each node or individual having at least one neighbour starts a
weighted local search for new friends, see Figure 2(a,b). The node i chooses
one of its neighbouring node j with probability wij=si, where wij represents the
weight of the link connecting i with j and si ¼

P

j
wij is the strength of node i. If

the chosen node j has other neighbours k (apart from i), it chooses one of them
with probability wjk=ðsj � wijÞ implying that the search favours strong links. If
there is no connection between i and k, it will be established with probability
pΔΔt such that wik ¼ w0. If the link exists, then its weight will be increased by a
certain amount δ. In addition, both wij and wjk are increased by δ. This kind of
cyclic linking simulates the mechanism where ‘friend of a friend will also be
friend’. The focal closure or global attachment rule is as follows: If a node has no
links, it will create a link of weight w0 with probability prΔt to a random node,
as depicted in Figure 2(c). This mechanism is to establish a new link outside the
immediate neighbourhood of the chosen node. (iii) The node deletion rule:
With probability pdΔt an existing node with all its links are removed from the
system, and new node is introduced to maintain fixed system size. The para-
meter δ is responsible for the time-dependent development of the weights of the
network. When δ ¼ 0, one obtains unweighted networks without apparent
community structure. With the increase in δ, emerging triangles become the
nuclei for community formation. Networks simulated for different values of δ
are shown in Figure 3 (Δt ¼ 1, w0 ¼ 1, pd ¼ 10�3, and pr ¼ 5� 10�4). For
larger δ values one sees the formation of a community structure very similar to
that observed in the studies of the mobile phone dataset [31,32].

Figure 2. Schematic diagram of the model by [49]. (a): In a time interval Δt, a weighted local
search starts from i and proceeds to j and then to k, which is a also a neighbour of i. (b): the
local search from i ends to k0, which is not a neighbour of i. In this case link wik0 is set with
probability pΔΔt. (c): node i creates a link randomly to a random node l with probability prΔt.
In the cases of (a) and (b) the involved links weights are increased by δ. This figure is adopted
from [49] and it is licensed under a APS Reuse and Permissions License.
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B. Egocentric networks

While the investigations at themacroscopic andmesoscopic scales shed light on
the aspects of social-like societal structure and the dynamics of group forma-
tion, the egocentric networks focus on the structure and dynamics of social ties
within the immediate social neighbourhood of an individual. Different research
questions can be addressed depending on the nature of data at hand. For a
dataset with some (,30) student volunteers being observed over a period of
several months, the study of it can demonstrate how for a given ego the alters
may change their ranks over time [36]. On the other hand if the dataset
comprises of millions of subscribers whose age and gender information is
available, their social behaviour can be analysed as a function of these variables,
even if the dataset only spans over a month [50].

Figure 3. Simulated networks in the model by [49], with (a) δ ¼ 0, (b) δ ¼ 0:1, (c) δ ¼ 0:5,
and (d) δ ¼ 1. Link colours change from green (weak links) to yellow and red (strong links).
With increase in the value of δ, community structure starts appearing. This figure is adopted
from [49] and it is licensed under a APS Reuse and Permissions License.
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In the analysis of egocentric networks it is usually assumed that the
communication intensity is a marker of ‘emotional closeness’ between an
ego and his or her alters [51]. In a study the set of alters were ranked by the
total number of calls, and the gender and age of the top ranked alters were
investigated as functions of ego’s age [35]. It was observed that, while the
primary focus of males of all ages is likely to be on the opposite gender (or
spouse), for older females there is a shift from the spouse to younger
females, who can be assumed to be the daughters on the basis of the age
difference. This observation was found to be in line with the grandmother-
ing hypothesis [52]. A statistical method has also been proposed for
ranking the set of alters based on the different relevant quantities such as
number of calls, duration of calling, and number of SMSs [53].

A question that has been addressed in a number of studies is how an ego
distributes its total time of communication among its alters. A study on a large
dataset [34] calculated a measure for disparity and found it to be negatively
dependent on the number of alters, suggesting differences in communication
strategies between the users who have large numbers of contacts and those
who have few. In general, all the users were found to distribute their limited
time very unevenly across their contacts. Interestingly, the average commu-
nication time per alter, though being positively dependent on the number of
alters, appeared to decrease when the number of alters increased beyond 40. It
was suggested that this effect was a partial reflection of the social brain
hypothesis [54], according to which there is a cognitive limit in the number
of social contacts that an individual can maintain, usually termed as the
Dunbar number (,150). Another study with the same dataset characterized
the social strategy for communication in a space spanned by the communica-
tion capacity and communication activity of individuals [55]. Two kinds of
extreme strategies were identified, namely, social keeping in the case of which
the individuals keep a very stable focus on selected contacts, and, social
exploring when the individuals activate and deactivate social ties at a high
rate. In a different study [36], it was shown that even in the presence of a
turnover occurring in the egocentric network, the pattern in which an ego
allocates its communication across the alters is stable. Also, that this pattern is
usually the characteristic of an individual and could be considered as a ‘social
signature’ of that person. A recent investigation [56] has explored the con-
nections between the social signatures obtained from mobile phone calling
and the individual personality traits of the participants obtained using Big five
model surveys [57]. It was observed that extroverts have slightly lower tem-
poral persistence of their social signatures, as compared to introverts.

Several other studies have also investigated the aspect social focus as
functions of ego’s age and gender. A study found that, overall, younger
individuals have more contacts, and among them, males more than females
[33]. In addition, the study observed a steady decrease in the number of
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contacts with different rates for males and females, such that there is a
reversal in the number of contacts around the age of late 30s. This pattern
was attributed to the difference in reproductive investments made by the
two genders. The study also analysed the gender-based inequality or
disparity in social investment patterns by measuring the Gini coefficient
and found the women and older people to have slightly larger values.
Related studies have characterized different types of social ties (friendship,
spousal, kinship) based on age and gender information of the alter in
conjunction with the ego [58,59]. The studies demonstrated how commu-
nication patterns are consistent with the idea that, in general, individuals
have the tendency to rearrange their social lives as they grow older.

Maintenance of social relationships, in particular, friendships is another
important topic in the context of egocentric networks. The effect of such
maintenance behaviour on communication has been shown by examining the
dependence of call durations on inter-call gaps (inter-event times) for pairs of
individuals who regularly call each other [60]. The study found a logarithmic
increase in call duration (T, measured in seconds) with an increase in the inter-
call gap (τ, measured in number of days):T ¼ β log τ þ α. It was suggested that
the increase in the duration of the succeeding call after a long gap (time gapwith
the previous call) could serve as an act of relationship repair. In a sense this
finding can also be considered as reflecting the maintenance of the strength of
Granovetterian links. The study also examined the effect with the set of alters
categorized into different subsets, as shown in Figure 4. Another study showed
the persistence of ties in terms of a prediction model based on the intensity,
intimacy, structural and temporal features of social interaction between pairs of
individuals [61]. These features included variables, like the total number of calls,
age difference, topological overlap [32], reciprocity [62], and coefficient of
variation in inter-call gap. The analysis showed that temporal features are
effective and efficient predictors, and that bursty communication is correlated
with decay of ties (see Section III). In a slightly different context, the problem of
social tie prediction for egocentric networks has been investigated [63]. The
study proposed a machine learning scheme using a mixture of supervised and
unsupervised methods that, for a given ego, would predict the presence or
absence of a link between a pair of its alters.

III. Burstiness in the time series of human communication

Having looked at patterns observed at the level of information aggre-
gated from calls, we now focus on the topic of ‘burstiness’ that becomes
relevant when the times series of the calling activity of the service
subscribers are investigated. The dynamics of a system is typically
termed as bursty when there are short periods of heightened activity
followed by longer periods of inactivity [64–66]. This type of dynamics
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has been observed in various kinds of natural and man-made systems
where the dynamics can be characterized in terms of a time series. Some
examples of them are earthquakes [67], neuronal firing [68], biological
evolution [69], email patterns [70], and mobile phone calls [71]. Systems
displaying bursty dynamics are typically differentiated from systems
displaying Poisson processes [72]. The inter-event times (τ) are calcu-
lated as, τi ¼ tiþ1 � ti, where ti and tiþ1 are the timings of consecutive
events. In a Poisson process the rate at which events occur is a constant
that is independent of time, and the resulting probability distribution of
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Figure 4. Quantifying the dependence of the duration of the succeeding call (T , measured in
seconds) on the inter-call gap (τ, measured in number of days) for pairs of regularly
communicating individuals. The coefficients resulting from the regression: T ¼ β log τ þ α,
are shown. β0 is the coefficient when both the duration and the gap are scaled by their
respective averages. A broad distinction into four groups (as indicated on the top of the
columns) is done based on whether for a given pair the distance between their locations is
less or greater than 30 km (i.e. geographically ‘close’ or ‘distant’, respectively) which being the
spatial extension of large cities; and whether average gap, hτi is less or greater than 12 days
(i.e. communication is ‘frequent’ or ‘infrequent’) which being the most probable inter-call gap.
A finer classification is made based on the gender of the individuals as indicated along the
horizontal axis (FF: female-female, MM: male-male, FM: mixed). Pairs are chosen irrespective of
their age. The dashed line is a guide to the eye. This figure is adopted from [60] and it is
licensed under a Creative Commons Attribution 4.0 International License (http://creativecom
mons.org/licenses/by/4.0/).
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inter-event times (PðτÞ) is an exponential. Burstiness in time series is
found to result due to the departure of the distribution of inter-event
time from being an exponential, as well due to the presence of correla-
tions between inter-event times (see Figure 5(a)). The time series found
in nature and society where burstiness is observed is usually found to be
a power-law with an exponential cut-off: PðτÞ,τ�α expð�τ=τcÞ, where
α> 0, and τc is a time scale originating from the finiteness of the time

Figure 5. Spatio-temporal patterns studied from data collected from subjects in Finland in the
Otasizzle project for a period spanning 16 months [42,76]. There were around 180 subjects,
who were either students or staff members of the Aalto University, Finland, and were using
Nokia Symbian smartphones with pre-installed software. (a) Probability distribution of inter-
event times (PðτÞ) for web domain visits by all users. The peaks in the original distribution
occur due to automatic events by the browser. (b) Positional stamps of mobile phone
communication of the subjects at cell towers located around Finland. The stamps got
recorded every half an hour, or whenever a phone got connected to a new cell tower. Each
cell tower could be located with a unique pair of latitude and longitude degrees. The higher
the frequency of usage, the warmer the colour. The spatial trajectory of an individual user
could be determined by following the sequence of the towers used. (c) Locations and service
usage patterns of a sample user during typical Friday and Saturday. The first and second rows
represent cells and contexts assigned to cells like home, office, other meaningful place, and
elsewhere. Service usage events are denoted by vertical lines in the rows of web, app, email,
call and SMS (from the third row to the bottom). This figure is a combination of figures from
[76] and is under a Creative Commons Attribution License (http://creativecommons.org/
licenses/by/2.0).
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series [73]. Other commonly used measures to characterize the hetero-
geneity and correlations in the inter-event times include the burstiness
parameter and the memory coefficient [65].

For mobile phone-based interactions, the time series are constructed
from CDRs of individual users by marking the timings of the events,
namely, calls and SMSs. The information on the finite duration of calls is
rather discarded, and only the starting time is considered. Also, for calls as
well as SMSs the outgoing and incoming events may be separately analysed
[74]. A number of empirical results support the power-law form for PðτÞ,
where the exponent α is generally found to depend on whether it is from
calls or from SMSs. For example, investigation on data from a European
operator showed that α � 0:7 for calls and α � 1:0 for SMSs [73]. Another
study on a different European dataset found α to be 1:2 and 1:4 for calls
and SMSs, respectively [74]. In contrast, a study on a Chinese dataset
found that although the aggregate PðτÞ follows a power-law, a majority
of individual users show Weibull distributions for inter-event times [75].
For individuals with power-law the values of α varied from 1:5 to 2:6. It
was observed that anomalous and extreme calling patterns were associated
with power-laws, which could link the users to robot-based calls, telecom
frauds or telephone sales.

In general, heavy-tailed PðτÞ has been observed in several different
studies with calls and SMSs [77–79]. Interestingly, bimodal distribution
of inter-event times has also been observed in SMS datasets [80] such that
the distributions are power-law for τ< τ0, and exponential for τ > τ0. The
study also reproduced the observations using a model of interacting queues
for individuals, and showed that the time scale τ0 could be related to a
parameter called ‘processing time’ in the model.

Motivated by the observations from mobile call and SMS data, and
communication data in general, there have been several attempts to repro-
duce the features related to burstiness using agent based models. Karsai
et al. [66] proposed a broad categorization of the models: (a) models of
individual activity [81–84], (b) models of link activity [80,85], and (c)
network models of bursty agents [86–88]. Apart from the above type of
models, there have been investigations of dynamical processes using dyna-
mical substrates or temporal networks such as a mobile phone call network
that has burstiness inherent to its structure [89]. Processes that have been
studied include epidemic spreading [90,91], random walks [92] and thresh-
old-driven contagion models [93,94].

Here we briefly describe a model [87] that is similar to the model of
community formation by Kumpula et al. [49] with the cyclic and focal
closure mechanisms for network formation (see Section II), and incorpo-
rates the concept of queues. In this model, N agents are each allotted a list
containing tasks of two types, I and O. The priorities of each task is
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randomly chosen from a uniform distribution. At each time step t, every
node selects the task with the highest priority. If it is an I-task, the actual
node i selects a target node for interaction either (i) from the whole
population with probability pGA , or (ii) from its next nearest neighbours
with probability pLA , or (iii) from its neighbours with probability 1� pGA �
pLA weighted by their link weight wij. The next nearest neighbour j of the
node i is defined as a node that satisfies tik; tjk

� � ¼ t � 2; t � 1f g with an
intermediate node k, implying that i and k interacted at time t � 2, and k
and j interacted at time t � 1. In the first two cases, (i) and (ii), links with
unit weights are created between the interacting nodes. In case of (iii) the
process is reinforcement in terms of an increment of existing weights.
After an interaction the priority of I-task of node i is updated. In addition,
at each time step each node can forget all of its existing connections with a
probability pML , that is having a memory loss, to become isolated. By
measuring the inter-event times between two consecutive I-tasks of a
given node the system exhibits a broad inter-event time distribution with
an exponential cut-off. In addition, the emerging network structure shows
several realistic features similar to the model by Kumpula et al.

IV. Human mobility patterns

The idea of randommotion ofmaterial particles while interacting with complex
environments has long interested physicists [95,96]. With access to imaging
technologies and other data loggingmethods a whole research area has emerged
for studying the movement patters of organisms from microbial scales to the
scales of primates and other mammalian species [97,98]. A question underlying
such the paths of individual entities that can decide for themselves. A popular
candidate has been the Lévy flight process in which the distribution of move
lengths follows an inverse power-law [99]. Addressing similar questions in the
case of humans have been possible with the advent of mobile phones that have
facilitated to infer the trajectories of users. For billing purposes the service
providers usually record the cell tower that is involved in routing a call.
Therefore, when a user initiates or receives a call the location of the associated
tower is known in terms of latitude and longitude (see Figure 5 where the data
from the Otasizzle project is visualized). In certain studies, data from GPS and
WiFi routers have allowed the recording of trajectories with finer resolution, for
example the researchers in the CNS [100] achieved a median spatial resolution
of 20 meters by sampling every 15 minutes. Large-scale studies based of such
spatio-temporal data have provided insights into the mobility patterns of
humans. The investigations have addressed diverse topics ranging from the
statistical properties of trajectories to predictive models and to characterization
of urban landscapes.
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The Lévy flights hypothesis for human trajectories was first tested using two
different datasets, the larger of which comprised of 100,000 individuals [101]. It
was observed that with each user a characteristic ‘radius of gyration’ could be
associated, which served as a bound on individual trajectories. Travel patterns
of a users could be described by Lévy flights for walk lengths below a radius of
gyration, and extremely large displacements that would be predicted by a Lévy
flights hypothesis were rather absent. In general, human trajectories appeared to
be highly regular and could be characterized by few highly frequented locations
like home andworkplace. Also, as a result of a heavy tailed distribution of radius
of gyration within the population, the aggregated distribution of the move
length of all users would still be a power-law. These ideas were followed up in
a later work [102] that provided a microscopic model laying stress on the
aspects of exploration of space and propensity to return to already visited
locations. A different study describing the spatio-temporal trajectories of
90,000 users in a countrywide dataset in terms of a weighted and directed
network concluded that the daily trajectory ofmost of the users were dominated
by 5–20 frequently visited locations or ‘habitats’ [103]. The general idea of
spatio-temporal motifs in the daily patterns of commuting individuals has also
been investigated and modelled [79,104]. A study showed that the number of
locations an individual visits regularly is conserved over time [105]. The con-
served number could be an outcome of the limited capacity of human cognition
similar to the Dunbar number [54]. An exploratory analysis of a dataset from
Portugal showed how the locations of home and office can indeed be ascer-
tained [106]. The study further used these locations to estimate the number of
commuting trips (xij) between two counties i and j, and modelled this quantity
by using a gravity law.

The gravity law having a form similar to Newton’s law of attraction states
that, xij / mα

i m
β
j =d

δ
ij, where, xij is a measure of social interaction between i and

j, with mi and mj being the populations of i and j, respectively, and dij is the
distance between the geographical centres of the counties [107–110]. The
parameters α, β and δ are usually estimated from the data. Studies considering
xij as the aggregated intensity of mobile phone communication have yielded
different values of the parameters depending on the geographical origin of the
dataset [30,111,112]. As a development over the gravity model, a ‘radiation
model’ has been proposed for the mobility and migration between places in the
framework of emission and absorption of particles from sources and targets
[113]. To evaluate the flux between an origin county (source) and a destination
county (target), the model considers all counties lying at intermediate distances
from the origin as potential targets. Apart from modelling commuting fluxes,
the framework could be applied to model volume of phone calls. A more recent
model has taken into account the systematic decrease of communication flux
induced by regional borders within countries [114]. The model being based on
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the concept of a hierarchical distance (replacing continuum geographical dis-
tance), was applied to study the spatial organization of population within
countries using calling data frommultiple countries. Interestingly, spatial orga-
nization of population within cities could also be studied using mobile phone
data [115]. The data from CDRs when aggregated can provide the number of
unique individuals using a given cell tower for each hour of the day. By studying
a time dependent quantity which is the separation between the tower positions
weighted by the density of users, cities could be classified as monocentric or
polycentric.

Predictability and benchmarking of mobility patterns of individuals has
been another important track. In this respect, the concept of Shannon
entropy has been a powerful tool. The Reality Mining study [15] suggested
that people whose patterns yield low entropies should be easier to predict,
and vice versa. In a seminal work, Song et al. [116] utilized three expres-
sions based on entropy to test the extent to which human mobility could
be predicted. For example, an individual visiting N locations could be
characterized by a temporal-uncorrelated entropy, S ¼ � P

i¼1;N
pilog2pi,

where pi is the probability that a location i is visited by the individual
(see [117] for applicability in other contexts). Additionally, they used a
random, and a correlated entropy that took into account the order in
which the locations were visited. Using these entropy expressions the
Song et al. employed Fano’s inequality [118] to estimate the upper
bound of predictability that algorithms can achieve. The findings revealed
that irrespective of the background of the individuals investigated, there
was a high degree of regularity in the trajectories, with the average of the
maximum predictability having a value around 93%. Using this framework
with the data from mobile phone users who were displaced following an
earthquake in Haiti, a study showed that predictability as constructed from
historical records of the individuals was quite high [119]. The knowledge
about the possible future locations of people displaced by natural disasters
could indeed be useful in planning and dispensing of relief.

Correlations between social ties and mobility have been explored as well.
Data from three cities in two industrialized countries were used to con-
struct location vectors of individuals by counting visits to different loca-
tions in a city (number of entries in the vector) [120]. The cosine
similarities obtained from vectors of pairs of communicating individuals
showed that the mobility pattern of an individual is similar to the latter’s
social contacts. Moreover, the stronger the social tie as evidenced from
communication, the more was the similarity in mobility. In another study
[121], concepts of scaling and universality were applied to obtain a scaling
relationship between mobility and communication. The study was able to
connect the exponents of the two empirically observed power-laws
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characterizing the distributions of aggregated move lengths and geodesic
distances (as well as density-dependent distances) between the commu-
nicating pairs. To establish the relation, a mediating scaling relationship
was shown to exist between fluxes of mobility (number of trips) and fluxes
of communication (number of calls) between two locations.

More recently, the CNS dataset [122] has been used to show that
mobility as well as other types of behaviour of individuals can be predicted
with high precision based on patterns obtained at the population level. The
conclusions are based on a logistic regression model using information on
calls, SMS, proximity via Bluetooth and mobility from GPS. Also, it has
been shown that the problem of predicting a visit to an already visited
location is altogether different from predicting exploration of newer loca-
tions [100]. In addition, the latter study discussed the effect of spatial and
temporal resolutions on the predictive power. A recent study has also
addressed the related issue of sampling [123]. A one-dimensional model
of alternating moves and rests, with sampling at regular intervals, was used
to show analytically that the fraction of correctly sampled moves can be
51% at maximum. The model was also applied to empirical datasets to
show that the fraction decreases even further.

V. Daily and seasonal rhythms

In Section III we focused on the temporal heterogeneity in people’s social
patters. Here we discuss the periodic nature of the temporal signals
obtained from the CDRs of individuals [124]. Remarkably, by precisely
examining the daily, weekly and seasonal patterns, it is possible to gather
insights into the different factors influencing human behaviour and health
[125]. This is demonstrated very clearly in the Figure 6 where the daily
pattern for outgoing calls in a city is shown, from which a characteristic
time duration can be calculated that provides an upper bound for the
sleeping time of the population [126].

Traditionally, the field of chronobiology had been involved in the
science of circadian rhythms – a roughly 24-hour cycle that is found in
the biological processes of living organisms [127,128]. Notably, the Nobel
Prize in Physiology or Medicine of 2017 was awarded for the discovery of
molecular mechanisms behind these rhythms [129]. For humans, a circa-
dian cycle encompass oscillations in different physiological processes, like
blood pressure and body temperature, along with the alternating phases of
sleep and wakefulness. It is known that the ‘clocks’ that are internal to
body, and are responsible for maintaining the rhythm are synchronized or
entrained to various external factors of which the day-night cycle is likely
the most well-understood one. Other factors like social interactions and
environmental conditions are also known to be important [130,131]. The
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major goals for understanding the circadian rhythm and sleep or overall
daily resting behaviour include characterizing populations with respect to
physiological factors like gender and age, and at the same time construct-
ing benchmarks for monitoring the health of individuals. The study on
human subjects is usually conducted through questionnaires and wearable
sensors [132,133]. In this regard, the daily records of usage of mobile and
smart phones appears to provide a complimentary, unobtrusive and viable
alternative [125,134].

In the studies on sleep-wake cycles individuals are usually classified as
morning-type and evening-type, based on the tendency to wake up early
and the tendency to sleep late, respectively [135]. It is also known that due
to busy work schedules evening-type individuals sleep less on weekdays [136].
As a compensatory effect the duration of sleep for these individuals gets
stretched on weekends. A study using the smartphone screen on-off sensor
data from 9 volunteers collected over a period of 97 days, demonstrated this
effect by quantifying ‘sleep-debt’ [137]. The screen on-off was considered as
an indicator of activity of the users. There have been other investigations of

Figure 6. Probability distribution functions (PDF) of finding an outgoing call at a time t of the
day in a city, for a pair of consecutive days in a given year. (Green) Distribution when all calls
are included. (Red) Distribution when only the last call (L) at night is included (between 5:00
pm and 4:00 am next day). (Blue) Distribution when only the first call (F) of the day is included
(between 5:00 am and 4:00 pm). The respective mean times, �tL and �tF , and the standard
deviations σL and σF are calculated. A period of low calling activity is defined as the region
bounded by �tL and �tF , and its width Tnight is calculated as the time interval between �tL þ σL
and �tF � σF . Interestingly, the onset and length of Tnight change along the seasons, in middle
of February (day 46) Tnight is around 10:5 hours, whilst in the early August (day 214) it is 9:5
hours. This figure is adopted from [126] and it is licensed under a Creative Commons
Attribution 4.0 International License (http://creativecommons.org/ licenses/by/4.0/).
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sleep, circadian rhythm, and mental health in general, based on smartphone
data not restricted to screen on-off times but also including data from other
sensors like accelerometer, microphone and GPS [138–142].

Using an 18-month longitudinal dataset, the investigation of circadian
patterns in the percentage of calls as a function of the time of the day showed
the persistence of the individual patterns [143]. The screen on-off data from
400 participants in the CNS has been used to propose a Bayesian model for
estimating individual sleep durations [144]. The data from CDRs of 900,000
users based in 36 different cities located within the latitudes of 36�N and 44�N
have been used to study the influence of seasonality and geography on the
sleep and the daily resting patterns in general [145]. The inactivity observed in
daily mobile phone usage was considered as the indication of human resting.
The study showed that the daylight controls human sleeping periods during
the night time and the seasonal variation of sleep is dependent on the latitude.
Also, the afternoon resting of humans was found to be influenced by tem-
perature, and a compensatory effect was found to exist between the nightly
resting and the resting in the afternoon (see Figure 7). In a related study on the
same population, the possible age and gender dependencies of sleeping were
investigated [126]. A ‘data collapse’ of distributions of the calling activity of
cities located at different longitudes revealed that the activity of people in
urban environments of a country in one time zone follows closely the east-
west progression of the sun throughout the year.

We would like to briefly comment on a related area of work that utilizes
smartphone applications in sensing of the mental health of individuals. The
StudentLife study [43] obtained continuous sensing data from the smartphones
of 48 student participants for a period of 10weeks at theDartmouthCollege, UT
Austin. Behavioural features likemobility, sleep and type of social conversations
(without explicitly analysing the contents) were extracted from the sensor data.
In parallel questionnaire studies were also conducted. Finally, correlations were
measured between the sensor data, psychological condition, and academic
performance (i.e. grades) of the students. A similar study has tried to predict
the reported levels of stress perceived by the participants in terms of their call
related features, Bluetooth data, weather conditions and personality traits [146].
There have been studies on related issues focussing on day-to-day mood [147],
depression [148], specific mental disorders [149], academic performance [150],
and positioning in the social network [151]. This is a rapidly developing field
[152] in its inception phase with the current focus on infrastructure develop-
ment [153,154].

VI. Conclusions and future directions

What we have tried to achieve in this review is the exposition of the
approach and methodology of Social Physics to study mobile phone

ADVANCES IN PHYSICS: X 19



based communication datasets. With this we hope to have demonstrated
that Social Physics can give us quite an unprecedented insight into the
structure, function and behaviour of social systems and networks of people
at different structural and dynamical scales, and this with the help of the
data-driven methodologies of data analysis for making observations or

Figure 7. Periods of low calling activity or resting periods as measured from intra-day
distributions of calls (Figure 6): Tbreak (afternoon) and Tnight (night) for 12 different cities for
3 different days of the week (Tuesdays, Saturdays and Sundays in the left, central, and right
column, respectively) in a given year. Four cities are located in one of the three different
latitudinal bands centred at: 37�N (top); 40�N (middle) and 42:5�N (bottom). For cities lying
around 37�N, the colour line associated with their times series are blue, magenta, turquoise
and maroon; for cities at 40�N, the colours are red, orange, brown and yellow; and for cities
around 42:5�N the colours are green, dark green, indigo and grey. Inside each one of the nine
plots, the annual behaviour of Tbreak (lower lines) and Tnight (upper lines) are shown, for the
four different cities located at each band. On every plot, Tbreak and Tnight show an opposite
seasonal variations, with dynamics that appear to counterbalance each other, particularly on
Sundays. This figure is adopted from [145] and it is licensed under a Creative Commons
Attribution 4.0 International License (http://creativecommons.org/ licenses/by/4.0/).
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discoveries, modelling for describing dynamical processes or plausible
mechanisms governing the human sociality and their social networks,
and simulation for predicting the behaviour of the social system.

So far our research quest has concentrated on gaining understanding of
human sociality with direct observations and analysis of data from social
systems. In order to learn more and get deeper insight into the observed
regularities as indication of some kind of governing principles or laws, there is
need to reach out and consider whether other complex systems show beha-
vioural similarities, patterns, and universalities rather than differences, variation
and specifics. According to Ball [155] the former viewpoint is akin to physics
while the latter is akin to biology. In the studies of complex systems both
viewpoints are of course needed as these complement each other and could
give us a more solid basis to develop better computational models to be used in
simulating or predicting the behaviour of social systems more realistically.

The advent and adoption of newer channels of communication [156],
is bound to change the distribution of the usage of different commu-
nication modalities, especially among younger generations. Whereas
most of the CDR datasets discussed here include data from under 1
million to 20 million mobile phones, the data getting collected currently
across Internet of Things originate from tens of billions of smart devices
[157]. This, however, widens our scope of human sociality research.
Moreover, the approach of leveraging digital information for analysis
and modelling of human sociality, embedded in social networks of
different scales, is expected to get further developed and refined, for
example, by the inclusion of tools like machine learning [158] which has
found a place in the area of condensed matter physics [159]. Besides
serving as sources of rich datasets, mobile phone networks and other
social media platforms have as well motivated the development of more
generalized frameworks for the analysis of large-scale socio-technical
systems [18,89,160].

Human sociality in the contemporary world is no more separable from
the existing structures of Internet-driven social technologies.
Understanding the structure and dynamics of information exchange in
these systems has become pivotal to understanding the functioning of the
society, from the perspective of scientists as well as policy makers. There
has been serious concern about the rise of adversarial and manipulative
behaviour as witnessed for example, in the spread of fake news and the use
of so called social bots [161,162]. In this respect an interesting avenue of
research has opened in the form of human experiments of social phenom-
ena focusing on artificial and online networks, which is in contrast to the
idea of passive data collection [163–166]. The development of hybrid
experiments with humans teaming up with bots or algorithms to partici-
pate in cooperating tasks, appears to be particularly promising [167,168].
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Teams performing efficiently in collaborative tasks are known to have
shared mental models. Therefore, the need for modelling pro-social bots
has indeed widened the scope of modelling humans.
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