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Abstract – The vast majority of previously proposed metamaterials and metasurfaces are
anisotropic or bianisotropic (exhibiting magnetoelectric coupling). Nevertheless, their anisotropy
was not fully exploited as they were designed only for one or several specific illumination direc-
tions. In this talk, we propose a simple analytical approach to characterize properties of general
bianisotropic meta-atoms for an arbitrary illumination. The approach is based on the qualita-
tive decomposition of an arbitrary meta-atom into separate basic “modules” with elementary
polarization properties. Such decomposition can be used for comprehensive characterization
of previously designed structures as well as for synthesizing novel bianisotropic inclusions of
arbitrary complexity and with desired response.

I. INTRODUCTION

During the last two decades, metamaterials expanded from a small subject into a multidisciplinary area of re-
search with applications for controlling waves of different spectrum and nature: From seismic waves to ultraviolet
radiation. In contrast to natural substances, properties of metamaterials are defined mainly by their internal struc-
ture and geometry of constituents. In the linear regime of material response, through precise engineering of the
material inclusions, it is possible to synthesize composites with both electric and magnetic polarization responses
as well as with magnetoelectric coupling (the latter case refers to bianisotropic composites). Although a rich va-
riety of bianisotropic metamaterials has been proposed and studied, a comprehensive methodology for designing
material with general electromagnetic response remains still a serious challenge. Indeed, in the literature, mostly
materials of one specific bianisotropic type were considered, e.g. chiral or omega materials [1, 2]. The complica-
tion arises due to the absence of theoretical models of inclusions with arbitrary geometries.

On the other hand, previously proposed metamaterials have been designed only for one or several specific
illuminations, while their response at other angles of incidence was either unexplored or taken for granted. Never-
theless, due to anisotropic response, the same material illuminated from different directions can exhibit drastically
different physical response. One well-known example is a planar metasurface consisting of non-chiral inclusions
(omega inclusions [3], gammadions [4], or asymmetric split rings [5]) whose thickness can be arbitrarily small.
Although for the normal incidence, this metasurface reveals no chirality, there exist specific illumination directions
at which it exhibits strong chiral effects (such as circular dichroism or/and optical activity).

In this talk, we will present our recent advances on the concept of “materiatronics” [6]. This concept implies
decomposition of an arbitrary given complex meta-atom into separate “modules”, i.e. fundamental meta-atoms
with pure polarization response of one type along one direction. Such decomposition allows one to understand and
predict how a designed metamaterial will act for illuminations from different directions. Moreover, our modular
approach can be conceptually used to provide some insight on how to design a metamaterial with arbitrary desired
response: e.g., a metamaterial which will behave as chiral slab or metasurface for one illumination and exhibit
strong nonreciprocal bianisotropic effects for the other.

II. DECOMPOSITION OF A GENERAL RECIPROCAL ANISOTROPIC META-ATOM

An arbitrary complex reciprocal meta-atom with electric anisotropy (the same can be applied to magnetic
anisotropy) of polarization response can be always decomposed into (or represented by) six basic modules. In-
deed, according to the Onsager-Casimir symmetry relations [7], if the linear meta-atom is reciprocal (that is, there
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is no external time-odd bias field nor external time modulation), then its polarizability dyadic is symmetric, i.e.
αee = α

T
ee, where T denotes the transpose operation. Next, the dyadic can be decomposed to real and imaginary

parts αee = (αee + α
∗
ee)/2 + (αee − α

∗
ee)/2. Each of the obtained dyadics can be always diagonalized in a new

basis formed by three unit vectors ai (i = 1, 2, 3). Thus, the real part of dyadic αee can be represented by three
lossless modules (basic meta-atoms) oriented along the basis vectors ai. The imaginary part is modeled by another
three purely lossy modules oriented along, generally, different basis vectors. A typical meta-atom with strong
electric polarizability along a single direction, which can play the role of the electrical module, is a straight metal
wire of appropriate length. If we think about a magnetic module, probably, the best candidate could be a double
split-ring resonator exhibiting large magnetic polarizability αmm along its axis. However, it should be noted that
this meta-atom is not purely magnetic: It possesses also electric polarization response.

III. DECOMPOSITION OF A GENERAL RECIPROCAL BIANISOTROPIC META-ATOM

General reciprocal bianisotropic meta-atom, in addition to electric and magnetic response, possesses magneto-
electric coupling characterized by polarizability dyadic αem. In contrast to dyadics αee and αmm, polarizability
dyadic αem has both symmetric and antisymmetric parts even for the reciprocal inclusions. Therefore, the decom-
position of magnetoelectric dyadic has the following three terms [7]:

αem = TI +

3∑
i=1

Piaiai +A(b× I), (1)

where T , Pi, and A are complex amplitudes defining the weights of each dyadic in the linear combination, I is the
unit dyadic, ai are the unit vectors in the diagonalized basis (here we assume that they are real), and b is a unit
vector defining the asymmetry axis. The first term in (1) defines isotropic true chiral bianisotropic response. It is
not zero only for three-dimensional meta-atoms with broken mirror symmetry. One can model this response, as is
shown in Fig. 1(a), by the response of three uniaxial helices of the same helicity state arranged along the Cartesian
basis unit vectors. The dimensions of the helices define amplitude T . A true chiral meta-atom (the three helices)
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Fig. 1: Conceptual realizations of general reciprocal bianisotropic meta-atoms. (a) True chiral meta-atom. (b)
Pseudochiral meta-atom. The right- and left-handed helices are shown in yellow and blue, respectively. Different
size of the helices corresponds to the different amplitudes of polarizabilities. (c) Uniaxial omega meta-atom. (d)
The conceptual representation of the bianisotropic meta-atom with electromagnetic coupling described by (2).

exhibits chiral effects (polarization rotation, circular dichroism, etc.) when illuminated from an arbitrary direction.
It should be noted that true chirality can be achieved only with three-dimensional meta-atoms.

The second term in (1) refers to the so-called pseudochiral (or extrinsic) bianisotropic response [3, 5]. In the
lossless case, it can be modelled by three metal helices oriented along the basis vectors ai with the strengths
of electromagnetic coupling determined by amplitudes Pi [see Fig. 1(b)]. The sum of all amplitudes Pi must
be equal to the trace of the second dyadic in composition (1), i.e. equal to zero. This implies that the helices
oriented along the basis vectors ai must be of different handedness so that in total true chirality in the entire
meta-atom is compensated. Importantly, although pseudochiral bianisotropic inclusions do not possess true chiral
(isotropic) electromagnetic response, they do exhibit chiral effects for certain illumination directions, namely along
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the eigenvectors ai. This fact has led to far-reaching implications, enabling to achieve various chiral effects even
with planar (two-dimensional) structures suitable for various nanofabrication techniques [3, 4, 5].

Finally, the last (antisymmetric) term in (1) represents omega bianisotropic coupling. A uniaxial omega meta-
atom [2] (formed by two orthogonal omega-shaped inclusions) shown in Fig. 1(c) oriented along vector b is a
proper module modeling such electromagnetic coupling. Illuminated along the −b and +b directions, the omega
meta-atom possesses asymmetric scattering towards the direction of the source.

The universality of the described modular approach of reciprocal bianisotropic meta-atoms can be demonstrated
by an example of an arbitrary inclusion with a given magnetoelectric dyadic αem (magnetoelectric dyadic can be
determined for an arbitrary inclusion using various techniques [8, 9]):

αem = −jV
c

2 1 0
1 2 −1
0 1 2

 , (2)

where V is the volume of the meta-atom, c is the speed of light in vacuum, and j is the imaginary unit (time-
harmonic dependency in the form ejωt is assumed). From (1) the amplitudes can be found: T = −2jV/c,
P1 = jV/c, P2 = 0, P3 = −jV/c, A = −jV/c. The eigenvectors are given in terms of the original basis
vectors as a1 = [−1; 1; 0]T , a2 = [0; 0; 1]T , and a3 = [1; 1; 0]T , while vector b is equal to [1; 0; 0]T . Therefore,
electromagnetic properties of the meta-atom with bianisotropic dyadic (2) can be described by the decomposition
depicted in Fig. 1(d). As is seen from the figure, now the electromagnetic response is easily determined for different
illumination directions. For example, the maximum chiral effect appears when the incident wave propagates
along a1 because in this scenario the left-handed helix (shown in blue) is not excited, while the other three right-
handed helices are polarized. Furthermore, the highest asymmetry of backscattering occurs when the virtual omega
inclusion is excited, i.e. for incident waves propagating along vector b.

IV. CONCLUSIONS

The modular approach allows us to extract all relevant information on the properties of a given bianisotropic
meta-atom. Furthermore, to some extent, the approach can be also used for the inverse problem. Defining the de-
sired electromagnetic response of the meta-atom for different illumination directions in terms of separate modules
(similarly to Fig. 1(d)), one can find the required polarizability dyadics using (1). Next, synthesizing topology
and dimensions of the meta-atom with the required polarizabilities is performed using either known theoretical
models [7] or numerical and semi-analytical techniques (see e.g., [8, 9]). In the presentation, we will show more
examples of the use of the modular approach for characterizing and synthesizing meta-atoms, including nonrecip-
rocal designs.
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